Skip to main content

Development and Procedural Evaluation of Immersive Medical Simulation Environments

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7915))

Abstract

We present a method in designing a medical simulation environment based on task and crisis analysis of the surgical workflow. The environment consists of real surgical tools and instruments that are augmented with realistic haptic feedback and VR capabilities. Inherently, we also addressed a broad spectrum of human sensory channels such as tactile, auditory and visual in real-time. Lastly, the proposed approach provides a simulation environment facilitating deliberate exposure to adverse events enabling mediation of error recovery strategies. To validate the face validity of our simulator design we chose a spinal procedure, the vertebroplasty, in which four expert surgeons were immersed in our medical simulation environment. Based on a Likert-scale questionnaire, the face validity of our simulation environment was assessed by investigating surgeon behavior and workflow response. The result of the conducted user-study corroborates our unique medical simulation concept of combining VR and human multisensory responses into surgical workflow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodriguez-Paz, J.M., Kennedy, M., Salas, E., Wu, A.W., Sexton, J.B., Hunt, E.A., Pronovost, P.J.: Beyond see one, do one, teach one: toward a different training paradigm. Quality Safety Health Care 18(1), S63–S68 (2009)

    Google Scholar 

  2. Kneebone, R.: Simulation, safety and surgery. Quality and Safety in Health Care 19(3), i47–i52 (2010)

    Google Scholar 

  3. Lateef, F.: Simulation-based learning: Just like the real thing. J. Emerg. Trauma Shock 3(4), S348–S352 (2010)

    Google Scholar 

  4. Gallagher, A.G., O’Sullivan, G.C.: Fundamentals of Surgical Simulation Principles and Practices. Springer, London (2012)

    Book  Google Scholar 

  5. Grantcharov, T.P., Kristiansen, V.B., Bendix, J., Bardram, L., Rosenberg, J., Funch-Jensen, P.: Randomized clinical trial of virtual reality simulation for laparoscopic skills training. British Journal of Surgery 91(2), 146–150 (2004)

    Article  Google Scholar 

  6. Aggarwal, R., Mytton, O.T., Derbrew, M., Hananel, D., Heydenburg, M., Issenberg, B., MacAulay, C., Mancini, M.E., Morimoto, T., Soper, N., Ziv, A., Reznick, R.: Training and simulation for patient safety. Quality and Safety in Health Care 19(2), i34–i43 (2010)

    Google Scholar 

  7. Gaba, D.M., DeAnda, A.: A comprehensive anesthesia simulation environment: re-creating the operating room for research and training. Anesthesiology 69(3), 387–394 (1988)

    Article  Google Scholar 

  8. Fritz, P.Z., Gray, T., Flanagan, B.: Review of mannequin-based high-fidelity simulation in emergency medicine. Emergency Medicine Australasia 20(1), 1–9 (2008)

    Article  Google Scholar 

  9. Heng, P.-A., Cheng, C.-Y., Wong, T.-T., Yangsheng, X., Chui, Y.-P., Chan, K.-M.: Virtual reality based system for training on knee arthroscopic surgery. Stud. Health. Technol. Inform. 98, S130–S136 (2004)

    Google Scholar 

  10. Rosen, K.R.: The history of medical simulation. Journal of Critical Care 23(2), 157–166 (2008)

    Article  Google Scholar 

  11. Fargen, K.M., Siddiqui, A.H., Veznedaroglu, E., Turner, R.D., Ringer, A.J., Mocco, J.: Simulator Based Angiography Education in Neurosurgery: Results of a Pilot Educational Program. J. NeuroIntervent. Surg. 4(6), 438–441 (2011)

    Article  Google Scholar 

  12. Schout, B., Hendrikx, A., Scheele, F., Bemelmans, B., Scherpbier, A.: Validation and implementation of surgical simulators: a critical review of present, past, and future. Surgical Endoscopy 24(3), 536–546 (2010)

    Article  Google Scholar 

  13. Rodgers, D.L.: High-fidelity patient simulation: A descriptive white paper report (2007)

    Google Scholar 

  14. Krueger, A., Bliemel, C., Zettl, R., Ruchholtz, S.: Management of pulmonary cement embolism after percutaneous vertebroplasty and kyphoplasty: a systematic review of the literature. Eur. Spine. J. 18(9), 1257–1265 (2009)

    Article  Google Scholar 

  15. Ploeg, W.T., Veldhuizen, A.G., The, B., Sietsma, M.S.: Percutaneous vertebroplasty as a treatment for osteoporotic vertebral compression fractures: a systematic review. European Spine Journal 15(12), 1749–1758 (2006)

    Article  Google Scholar 

  16. Freitag, M., Gottschalk, A., Schuster, M., Wenk, W., Wiesner, L., Standl, T.G.: Pulmonary embolism caused by polymethylmethacrylate during percutaneous vertebroplasty in orthopaedic surgery. Acta Anaesthesiol Scand 50(2), S248–S251 (2006)

    Google Scholar 

  17. Barr, J.: Vertebroplasty and Kyphoplasty. Thieme Medical Publishers (2005)

    Google Scholar 

  18. Steven, M., Nick, H.: Characterization of the Novint Falcon Haptic Device for Application as a Robot Manipulator. In: ACRA Proceedings, Sydney (2009)

    Google Scholar 

  19. Ruspini, D.C., Kolarov, K., Khatib, O.: Haptic Interaction in Virtual Environments. In: Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, pp. S128–S133 (1997)

    Google Scholar 

  20. McReynolds, T., Blythe, D., Grantham, B., Nelson, S.: Advanced graphics programming techniques using OpenGL. In: SIGGRAPH 1998 Course Notes, pp. S90–S99 (1998)

    Google Scholar 

  21. Pettersson, J., Palmerius, K.L., Knutsson, H., Wahlstrom, O., Tillander, B., Borga, M.: Simulation of Patient Specific Cervical Hip Fracture Surgery With a Volume Haptic Interface. IEEE Transactions on Biomedical Engineering 55(4), 1255–1265 (2008)

    Article  Google Scholar 

  22. Ra, J.B., Kwon, S.M., Kim, J.K., Yi, J., Kim, K.H., Park, H.W., Kyung, K.-U., Kwon, D.-S., Kang, H.S., Kwon, S.T., Jiang, L., Zeng, J., Cleary, K., Mun, S.K.: Spine needle biopsy simulator using visual and force feedback. Comput. Aided Surg. 7(6), 353–363 (2002)

    Article  Google Scholar 

  23. Palmerius, K.L., Gudmundsson, B., Ynnerman, A.: General proxy-based haptics for volume visualization. In: Proc. World Haptics Conf., pp. 557–560 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wucherer, P., Stefan, P., Weidert, S., Fallavollita, P., Navab, N. (2013). Development and Procedural Evaluation of Immersive Medical Simulation Environments. In: Barratt, D., Cotin, S., Fichtinger, G., Jannin, P., Navab, N. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2013. Lecture Notes in Computer Science, vol 7915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38568-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38568-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38567-4

  • Online ISBN: 978-3-642-38568-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics