
Model-Based Deployment of Mission-Critical
Spacecraft Applications on Multicore Processors

J. Reinier van Kampenhout and Robert Hilbrich

Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31

10589 Berlin Germany
{j.r.van.kampenhout,robert.hilbrich}@fokus.fraunhofer.de

http://www.fokus.fraunhofer.de

Abstract. A variety of complex spacecraft applications, such as au-
tonomous maneuvers based on image recognition, can benefit from the
increased performance of multicore processors. On the other hand the
redundant cores can also be used for fault-tolerance. Spacecraft missions
more and more require a balanced trade-off between power, performance
and reliability. Finding an optimal trade-off for each mission phase leads
to new engineering challenges, especially regarding the efficient and safe
deployment of software applications to hardware resources. We propose
a model-based approach for the construction of software deployment
schemes, and apply it to a spacecraft use case with two different mission
phases to illustrate the benefits of such model-based software deploy-
ment.

Keywords: avionics, deployment, multicore, model-based engineering

1 Introduction

After being widely adopted in the server, desktop and hand held markets, multi-
core processors now start to appear in the domain of safety-critical and mission-
critical embedded systems. At the same time an ongoing trend to integrate
functionality on shared platforms becomes apparent from initiatives such as In-
tegrated Modular Avionics (IMA) [26, 25] and AUTOSAR [2].

Similar ideas slowly start to emerge in the domain of spacecraft avionics.
A holistic engineering approach to combine the two trends and exploit the full
potential of multicores is required for the successful adoption of such processors.
At the same time there is a significant increase in complexity that threatens
the system reliability, and poses the challenge of managing this complexity to
system architects, system engineers and software developers. In this work we
propose a model-based systems engineering approach with software architecture
deployment at its center.

In Section 2 we present the motivation for the use of multicore processors in
spacecraft avionics and describe our own use case: a multicore based computing
platform for space applications. Section 3 then describes the challenges that

2 J. Reinier van Kampenhout and Robert Hilbrich

arise by the use of multicore processors in complex space applications, and why
existing engineering methods are at their limits. In Section 4 we describe our
approach to model-based deployment, and present a first implementation that
we apply to an example mission with two phases in Section 5.

Related Work

Recently the use of multicore processors in safety-critical domains has received
much attention [11, 23, 12]. Of particular interest for these domains is the im-
provement of reliability by using the available parallelism [6, 17]. Real-time schedul-
ing has been an active research domain for decades, and recently several ap-
proaches to dynamic [4] and static [7, 3] scheduling of mixed-criticality software
tasks on multicores have been proposed. In the deployment process however
the hardware usage and runtime scheduling are affected by the allocation and
mapping of tasks [24, 9]. Therefore these should be addressed in a unified sys-
tems engineering methodology in order to arrive at an integrated result in which
the key properties are balanced [21, 18]. Model-driven systems engineering of-
fers the appropriate mechanisms to address these challenges [10]. Apart from
that, partitioning is indispensable to guarantee the absence of interference be-
tween applications in the deployment of safety-critical systems [27, 22]. One way
to achieve this which currently receives much attention is by virtualization of
resources [19, 20, 13, 12].

2 Multicore Processors for Spacecraft Avionics

2.1 Space Mission Requirements

We recognize that the complexity of spacecraft applications in modern space
missions has risen significantly over the last years. The widespread use of high-
resolution sensors leads to the generation of large amounts of data. There is
a clear trend to process these data on board in order to relieve the pressure
on space-to-ground communications. In the imaging domain we see applications
such as hyperspectral imaging, earth observation and synthetic-aperture radar
systems. In communication, antennae arrays and broadband communication can
benefit from advanced encoding algorithms. Another cluster of applications are
solutions for autonomous Entry, Descent and Landing (EDL) or docking maneu-
vers in space. These can be based on advanced imaging processing algorithms.
All these applications need a significant amount of computational power.

State-of-the-art systems often use highly specialized FPGA or DSP solu-
tions. These are costly and limited to a relatively low functional complexity, and
cannot be reconfigured easily once in flight. Such benefits are only offered by
software-defined systems, which can execute complex dissimilar workloads and
offer a flexibility that can be used to balance power, performance and fault tol-
erance. While specialized single-core processors are currently used in spacecraft
avionics, their performance and energy consumption lags behind that of commer-
cially available processors. Especially multicore processors provide an increase

Model-Based Deployment of Spacecraft Applications on Multicore Processors 3

in processing power by exploiting the parallelism that is inherent to many appli-
cations, while combining energy-efficient semiconductor technologies, moderate
clock rates and advanced power management functions. Such processors provide
a major increase in versatility besides power and performance benefits. In the
following sections we focus on the benefits and challenges of the use of multicore
processors for space applications.

2.2 The MUSE Platform

As an answer to the increasing demand for computing power in space applica-
tions, we developed a satellite payload computer that builds on COTS multicore
technology in the context of the MUSE project [5]. We employed the Freescale
QorIQ P4080 processor, which features eight PowerPC e500 cores operating at
1.5 GHz. An additional advantage is the use of power saving silicon-on-insulator
technology, which is less susceptible to single-event upsets that are due to the
background radiation in space applications. Especially when using COTS com-
ponents, the high reliability and availability demands for space computing can
only be guaranteed when sufficient redundancy is provided on the system level.

The MUSE platform consists of two P4080 nodes on separate boards, con-
nected by an additional I/O board that also contains the logic and connectors
to other instruments. Thus a dual redundant symmetric 1-out-of-2 setup with
several high-speed I/O channels is achieved (see Figure 1).

Each processing board furthermore contains DDR3 memory, radiation toler-
ant flash memory, and an FPGA that together with its symmetrical counterpart
controls the worker/monitor configuration of the boards. The two FPGA’s are
connected to the processors over the Enhanced Local Bus (ELB) and implement
watchdog functionality to monitor the status of the processor, as well as a syn-
chronizing voter to generate reliable control outputs. Because the FPGA’s are
radiation tolerant and their logic is triple-mode redundant, the implementation
as a whole is radiation-hardened. All large memory areas such as the DRAM,
L3 and L2 caches are protected by error correction logic. Thus a design with
multiple complementary mechanisms for fault-tolerance is achieved, with the ul-
timate safety net of a node switch where the monitor becomes worker if a fault
in the latter can not be handled locally.

We implemented the software for the mission that was previously discussed
in Section 2.1, namely that of autonomous EDL, which builds on an advanced
image processing algorithm called MoonDetect [5]. Using a pre-loaded map of
the moon’s surface, the landing zone is recognized with help of one or more
high-resolution cameras. The application was implemented on top of a standard
embedded operating system and uses the redundant cores of the multi-core pro-
cessor not only to maximize computing power, but also to increase fault tolerance
by the redundant execution of critical functions.

4 J. Reinier van Kampenhout and Robert Hilbrich

Fig. 1. The architecture of the MUSE platform with one I/O board and two redundant
processing nodes.

3 Emerging Engineering Challenges

3.1 Dynamic Mission Requirements

The increasing functional requirements that we described in Section 2.1 translate
to novel and more complex resource requirements for space missions. Mission
requirements especially become more dynamic, there are three main drivers for
this.

Firstly, missions become more and more complex and thus include multiple
applications with different criticality levels that each have unique requirements
regarding power, performance and reliability. The engineering process must en-
sure that the tasks of each application are mapped and scheduled so that there
is no unintended interference during simultaneous execution. We will elaborate
on this in Section 3.2.

Secondly, deep-space and planet exploration missions usually consist of dif-
ferent phases. To execute multiple functions with different criticality levels in
each phase of the mission, the deployment of software-based platforms must be
dynamically reconfigured.

Thirdly, support for online software updates is desirable for both maintenance
and configuration changes caused by a revision of the mission targets. This again
requires dynamic reconfiguration, we focus on this subject in Section 3.3.

Model-Based Deployment of Spacecraft Applications on Multicore Processors 5

3.2 Multi-Function Integration Within a Mission Phase

The requirements for the spacecraft missions that we previously described have
a complexity that requires an implementation based on multiple applications.
In our example, an image recognition algorithm is executed in parallel with a
camera driver and a control task that monitors the system status. As these
applications have different requirements, we are dealing with mixed criticality
software for which the use of time and space partitioning is indispensable, as
described in [29]. This publication also mentions a reduced integration effort,
hardware savings, fault containment and increased security between applications
as additional advantages of a partitioning approach. Partitioning in time assures
that the execution of a software application in one partition does not affect
timely behaviour of a software application in another partition.

Partitioning in space on the other hand protects the data and private devices
of partitions by exclusively allocating memory and other hardware resources
such as busses and I/O interfaces. Thus partitioning isolates applications from
each other. This functionality is usually provided by the operating system [27].
Correct partitioning can however not be achieved with mere isolation, as safety
requirements such as redundancy also impose constraints on the deployment. A
deployment only based on safety requirements however would lead to inefficient
resource usage, because simultaneous access to shared resources will be blocked
by the isolation mechanism. Therefore we propose a method for optimizing the
deployment according to the changing resource requirements.

3.3 Dynamic Reconfiguration between Multiple Mission Phases

A spacecraft mission comprises multiple phases which are executed over time
during the mission. Each phase has different requirements so that the resource
utilization trade-off between power, performance and reliability may need to be
re-balanced at run-time. Dynamic reconfiguration allows to exploit the flexibility
of multicore processors to switch from one phase to another. These transitions re-
quire a change and perhaps transformation of partitions, which is not accounted
for in classical time and space partitioning. Thus an extension of these concepts
is required in order to deal with data integrity and security, and to minimize and
control the disruption of service. The phase-based (“mode-based”) partitioning
that we proposed in [16] is a first step in this direction. A reconfiguration mech-
anism furthermore simplifies maintenance and allows online software updates.

We conclude that the versatility of multicore processors can be exploited with
existing methods such as partitioning, but enhancements are necessary to deal
with the extended spatial dimension and to better support varying requirements
of multiple mission phases as well as online updates.

4 Model-based Software Deployment

Software deployment refers to the assignment of hardware resources, such as
CPU time, memory, and I/O access to software tasks. This assignment process

6 J. Reinier van Kampenhout and Robert Hilbrich

results in a deployment scheme. We distinguish between spatial and temporal
deployment. The former leads to the mapping of a task to a set of hardware
resources, such as a processor or electronic control unit. The latter concerns the
execution schedule of each hardware resource in time. A deployment is correct if
the proper type and amount of resources is assigned to all tasks at the right time.
The operating system must ensure that the temporal deployment is properly
executed at runtime.

There are two prerequisites for successful deployment: software must be dis-
tributable and isolatable. The trend towards function-oriented development en-
sures the dependencies between software and hardware are dissolving. This is
enabled by standardized interfaces such as described in the ARINC 653 Apex
[1] and integrated modular avionics (IMA) [26, 25] for the avionics domain, and
in AUTOSAR [2] for the automotive domain. The ability to distribute tasks
on its own however is not sufficient for building cost-effective mission-critical
embedded systems, this capability must be complemented with time and space
isolation. There are commercially available hypervisors and tools that provide
such isolation on modern multicore architectures.

The correctness of a software deployment scheme has a direct impact on the
extra-functional requirements of embedded software, such as real-time behaviour
and reliability. Furthermore the deployment scheme determines the amount of
resources that are required, and thus its efficiency has a significant influence on
the hardware costs for a system. Because the trend towards integrating software
from different vendors on one electronic control unit increases, a deployment
scheme is the central asset and synchronization point for different development
teams during the system integration phase. Therefore we address these issues by
exploring an automated deployment approach based on models.

4.1 Engineering Methodology

Traditional engineering methodologies for software-based systems require a high
number of development iterations and prototypes, and the correctness of the
system is often primarily assured by observing the system behaviour after it has
been built [21]. This becomes more and more difficult as the complexity of the
system and software architecture increases, and analytical approaches to assure
correct timing behaviour do not suffice for modern multicore processors [28].

In our research we explore an alternative engineering methodology, which is
rooted in the “Correctness by Construction” (CbyC) principle. CbyC is based on
the observation that the correctness of a complex system should be argued “in
terms of the manner in which it had been produced, rather than just observing
operational behaviour” [8, 14].

We applied this approach to the construction of software deployment schemes.
In order to assure correctness, we use models to capture deployment requirements
as well as architectural properties and capabilities in a clear and unambiguous
way. The explicit distinction between problem statement, solution construction
strategy and solution proves to be beneficial to achieve optimized, re-usable ar-
chitectures.

Model-Based Deployment of Spacecraft Applications on Multicore Processors 7

Our approach for the construction of a deployment scheme is depicted in
Fig. 2a. Due to the complexity of the solution space, the spatial and temporal de-
ployment are addressed consecutively. Therefore our methodology comprises two
steps that distinctly focus on the spatial (“mapping”) and temporal deployment
(“scheduling”). Within each step, different types of deployment requirements
and engineering constraints are addressed. Several iterations between these two
steps may be required before valid a deployment scheme is obtained.

However, in order to account for the knowledge of experts, we distinguish
between valid and desired solutions (see Fig. 2b). Valid solutions are all those
that are correct with regard to the specified requirements. This set might be
very large. The desired solutions on the other hand are valid, but also optimal
with respect to certain optimization criteria provided by a domain expert. Thus
we achieve solutions that are not only formally correct, but also incorporate
valuable knowledge and experiences from those experts.

Software
Resource

Requirements

Hardware
Resource Supply

Safety
Requirements

Construction of a spatial deployment
„mapping“

Construction of a temporal deployment
„schedule“

Deployment scheme

(a) Engineering Methodology

All solutions

Valid solutions

Desired
solutions

(b) Valid and Desired Solutions

Fig. 2. Engineering methodology and types of solutions

This methodology was implemented in a prototype tool suite (see Section 5).
It allows us to automatically construct a correct and optimized deployment
scheme for our use-case within minutes.

4.2 Construction of Mappings

Where spatial deployment could be performed manually for a handful of single-
core processors, it is not viable for complex systems with hundreds of cores spread
over dozens of processors. This is especially true when we consider the need for

8 J. Reinier van Kampenhout and Robert Hilbrich

a safe dynamic reconfiguration to optimize the resource utilization. Besides, the
mapping of safety-critical systems does not only depend on the schedulability,
but also on the satisfaction of other safety-related criteria, such as redundancy,
dissimilarity and independence.

Applications that belong to two redundant partitions for instance are usually
not allowed to be mapped on the same core or processor, because that would
violate safety requirements. Some safety critical applications contain partitions
that feature a dissimilar implementation of the same functionality. Depending
on the criticality level, these partitions may need to be mapped onto dissimilar
processors and configured to use dissimilar communication channels to account
for undetected design errors.

Our prototype tool generates all valid mappings of software components onto
processor cores. It matches the resources offered by the underlying hardware
architectures to the resource requirements of the applications.

Currently the following matching criteria are implemented:

– type of processors, cores and I/O interfaces;
– capacity of processors, cores and I/O interfaces;
– safety relations between applications (redundancy or dissimilarity);
– communication intensity between applications, in order to express proximity.

The first three criteria are used to specify valid spatial deployments, where
the correct type, amount and the independence of resources for critical software
components has to be guaranteed.

Metrics and optimization strategies for a desired spatial deployment on the
other hand are based on criteria such as minimizing average communication
distances and equal load distribution.

Note that our tool only generates solutions with significant difference. De-
ployment schemes which only differ in the location of identical tasks of the same
parallel application are treated as being equal. This reduces the complexity of
the solution space for applications with parallel tasks.

4.3 Construction of Schedules

Our model-based approach for the construction of static operating system sched-
ules for multicores is based on the following assumptions. To achieve predictable
and deterministic real-time behaviour for a system that relies only on periodical
tasks with known periods, the following information (or at least an estimation)
must be available at design time:

1. timing characteristics such as the worst case execution time (WCET), period
and jitter, of all tasks within an application;

2. dependencies between tasks;
3. the access patterns of external resources of all applications.

A key aspect of static scheduling is that all conflicts that may appear at run-
time and lead to unpredictable timing are resolved at design time. Our approach

Model-Based Deployment of Spacecraft Applications on Multicore Processors 9

aims to construct and optimize the schedule beforehand to avoid cumbersome
timing analysis afterwards.

For this we developed a prototype scheduling tool [15]. It automatically gen-
erates a valid static schedule that satisfies the timing characteristics of a given set
of applications on a given hardware architecture. As the underlying problem is
NP-hard, there are many solutions and the user can adjust the generated sched-
ules for specific needs and purposes. Our scheduler ensures that no constraints
are violated during the adjustment process.

Based on constraint-solving strategies specifically tuned for the problem, our
scheduler constructs a schedule that satisfies the constraints defined in the input
model. This model and the problem specifications have been developed to suit
the needs of the safety-critical aerospace domain. All execution times for software
tasks should be based on a worst-case analysis.

The resulting schedule is input for a time-triggered OS dispatcher that exe-
cutes the tasks at run-time. External resources can be separately modelled and
incorporated in the schedule construction process. After being approved by the
certification authority, the schedule is used in the final configuration of the op-
erating system.

5 Use-Case: Spacecraft Software Deployment
on the MUSE Platform

In this section we describe our use-case, a real mission consisting of two phases
to show our approach to model-based software deployment on the fault-tolerant
MUSE hardware platform.

5.1 Mission Description

We implemented one of the previously discussed missions, namely that of au-
tonomous EDL based on images provided by a Camera Driver (CamDr). An
optimal performance can be achieved if MoonDetect (MD), our image recogni-
tion application, is executed on eight cores in parallel, as depicted on the left
hand side of Figure 3. Here, one instance of MoonDetect is executed, its result
are saved with triple redundancy and checked for plausibility by independent
tasks (Plausibility Check, PC). The ELB driver (ELBDr) collects these results
and transfers them shifted in time after which they are voted in the FPGA, our
radiation hardened component.

Furthermore we consider the supervisor system application, which consists of
two redundant tasks in a worker/monitor configuration (SVWorker/SVmonitor).
This application has a higher criticality than MoonDetect, and thus we are
dealing with mixed-criticality as discussed in Section 3.2.

The main goal in this phase is to recognize the landing area from a great
distance, for which high performance is necessary because of the large area that
must be covered. At a resolution of 800x600 pixels we achieved a frame rate of
23 fps when MoonDetect was executed on eight cores.

10 J. Reinier van Kampenhout and Robert Hilbrich

In the second phase the spacecraft descends for landing, and reliability be-
comes more important because a fault might lead to loss of the spacecraft. The
frame rate can however be reduced because the target area is already recognized
and the algorithm is only used for course alterations that are performed every
few seconds or so. Thus in this phase an architecture such as depicted on the
right hand side of Figure 3 is more suitable. Here two cameras are used, there
are two (possibly dissimilar) instances of MoonDetect on four cores each, and
the data path of each instance still has triple-mode redundancy. We expect that
in this case the overhead will reduce the frame rate to less than half than that of
the eight-core solution, and indeed we measured 11 fps at 800x600 in the actual
setup.

MD

C

ELBDr

PC_a PC_b PC_c

Hardware

Voter

FPGA

C C C C C C C

ELB

Cam

Dr

MD1

C

PC1a PC1b PC1c PC2a PC2b PC2c

MD2

Cam

Dr1

Cam

Dr2

C C C C C C C

ELBDr

Hardware

Voter

FPGA

ELB

SVWorker

SVMonitor

SVWorker

SVMonitor

Fig. 3. Two mission phases: on the left an eight-core solution with triple redundant
datapath is shown, the solution on the right features two redundant instances of the
algorithm that use four cores each.

Our example mission consists of two phases. Both contain mission-critical
applications and the phases must be dynamically switched over time. The mission
thus contains the challenges we initially described in Section 3. In the remainder
of this section we will describe our approach to automatically deploy these two
phases on the MUSE hardware. As the software on both processors is identical in
this mission, we will show the workflow for one processor only. Our tools however
can handle multiple (distributed) processors with dissimilar workloads as well.

5.2 Spatial Deployment - “Mapping”

As described in Section 4.2, the generation of correct mappings requires mod-
elling the resources provided by the hardware architecture and the demands of
software components. In our use-case, we employ an eight core processor (see
Section 2.2).

Model-Based Deployment of Spacecraft Applications on Multicore Processors 11

Although all cores on the P4080 are physically connected to all I/O inter-
faces, we imposed additional access constraints on I/O interfaces for reliability
purposes. Therefore Ethernet connections are allowed on core 1 and 2 only, and
ELB connections only on core 3. The resulting hardware model is contained in
Listing 1.1. The computational capacity and I/O access capabilities are specified
for each core within a processor.

1 Hardware {
2 Processor QorIQ P4080 {
3 Core C1 {
4 Capacity = 100 ;
5 Provides IO access = Ethernet ;
6 } ;
7

8 [. . .]
9

10 Core C3 {
11 Capacity = 100 ;
12 Provides IO access = EnhancedLocalBus ;
13 } ;
14

15 [. . .]
16 }
17 }

Listing 1.1. Modelling the QorIQ P4080 hardware architecture

The software architecture is modelled similarly (see Listing 1.2). Applications
are modelled per task, thus each “Application” is mapped onto a single core. An
“Application” requires a certain amount of computational capacity, as well as
access to specific I/O interfaces.

1 Software {
2 Application CamDr {
3 Core Util ization = 2 ;
4 Requires IO access = Ethernet ;
5 } ;
6

7 Application ELBDr {
8 Core Util ization = 2 ;
9 Requires IO access = EnhancedLocalBus ;

10 } ;
11

12 Application MD a {
13 Core Util ization = 90 ;
14 } ;
15

16 Application MD b {
17 Core Util ization = 90 ;
18 } ;
19

20 [. . .]
21

22 Application PC a {
23 Core Util ization = 1 ;
24 } ;
25

26 [. . .]
27 }

Listing 1.2. Modelling the software architecture

12 J. Reinier van Kampenhout and Robert Hilbrich

In addition to the matching of resource supply and demand, the correctness
of a mapping depends on reliability criteria. Using independent resources is a
significant prerequisite for robustness and reliability.

In our use-case we limit our focus to independence on the core level, which
means that two redundant applications are not allowed to be deployed on the
same core. These redundancy requirements are specified in Listing 1.3.

1 Relations {
2 MD a, MD b, MD c , MD d, MD e , MD f , MD g, MD h redundant ;
3 SVWorker , SVMonitor , CamDr, ELBDr redundant ;
4 PC a , PC b , PC c redundant ;
5 }

Listing 1.3. Modelling reliability relations for spatial deployment (phase 1)

With this modelling approach we generated mappings for both phases. The
results for each phase are shown in Table 1. The generation process took about
1 second on a standard laptop.

Table 1. Result of the spatial deployment for phase 1 (upper half) and 2 (lower half)

Phase Cores
C1 C2 C3 C4 C5 C6 C7 C8

1
MD a CamDr ELBDr MD d MD e MD f MD g MD h
PC a MD b MD c SVMonitor
SVworker PC b PC c

2
MD 1a MD 1b MD 1c MD 1d MD 2a MD 2b MD 2c MD 2d
PC1a PC1b PC1c SVMonitor SVWorker PC2a PC2b PC2c
CamDr1 CamDr2 ELBDr

5.3 Temporal Deployment - “Static Scheduling”

In order to initiate the scheduling process, several input parameters are required.
Global parameters include the hyperperiod duration and switching time between
applications (OS overhead), which we fixed at 0.5 milliseconds. Then the pro-
cessor is modelled as follows:

1 def processor
2 id (’ 1 ’) ,
3 name(’ P4080 ’) ,
4 cores (8) .

Listing 1.4. The processor model

For the modelling of applications timing information is needed, the execution
time of MoonDetect can be deduced from the frame rate. Although we measured
that the camera and ELB drivers, the supervisor and the plausibility checks

Model-Based Deployment of Spacecraft Applications on Multicore Processors 13

have execution times in the order of microseconds, we will model them all with
1 millisecond to be able to depict them on the same scale. An application model
looks as follows:

1 def application
2 id (CamDr) ,
3 processor (’ 1 ’) ,
4 cores possible (3) ,
5 period (500) ,
6 duration (1 0) .

Listing 1.5. The model of the CamDriver application

We see that this process is only allowed to be executed on core C3, which is
the result of the mapping process. Finally the dependencies that are needed for
the scheduling must be specified. They are implied by Figure 3. Such dependen-
cies may be specified in the following way.

1 def after
2 id1 (CamDr) ,
3 id2 (moondetect) ,
4 distance (0 , 1 0) .

Listing 1.6. Specifying a dependency

Figure 4 shows the schedules of one execution period of each phase. The first
phase is shown in the upper eight horizontal bars, time is on the horizontal axis.
We see that MoonDetect, as expected, requires the bulk of the processing power.
Shorter tasks are executed in parallel to each other whenever possible.

In the second phase depicted in the lower eight bars we see that two instances
of MoonDetect are executed in parallel and subsequently have a longer execution
time, and that there are six instances of the plausibility check task instead of
three. Because of the parallel instances of MoonDetect the frame rate deterio-
rates. In the first phase it is 20 fps (or a hyperperiod of 50 ms), in the second
we achieve 10.4 fps (hyperperiod is 96 ms).

Fig. 4. The schedule of one period of phase 1 (upper eight bars) and 2 (lower eight bars).
The horizontal axis represents time, on the bottom the task identifiers are indexed.

14 J. Reinier van Kampenhout and Robert Hilbrich

Between the two phases dynamic reconfiguration is necessary as both the
mapping and scheduling change because tasks are started and migrated. Startup
and migration times in our system are negligible with these execution times, and
thus a phase switch can take place without noticeable disruption of service. A
switch could however also be modeled as separate phase in which the startup
and migration times are precisely indicated.

While our example is somewhat simplified and the final deployment scheme
could have been produced manually, the benefit of using a model-based approach
becomes especially apparent when more tasks and more resources have to be
incorporated. With the advent of manycore processors comes the likelihood that
the system complexity will significantly rise in the near future. At this point,
manual processing of problems with such orders of magnitudes is costly, error
prone and inefficient. Our automated approach completes in mere seconds, its
result is correct by construction and a new iteration can be started with one
click. Furthermore, optimization criteria can be easily modified so that existing
models can be efficiently re-used.

6 Conclusions

In this paper we discussed the advantages of using multicore processors in space-
craft avionics, and recognized that many missions can benefit from the increased
computing power. We introduced our MUSE hardware platform that comprises
two eight-core processors and focused on the engineering challenges that come
with increasingly diverse mission requirements. Multicore processors seem a
future-proof platform for space applications as they offer the flexibility to sup-
port these requirements. The push towards multi-function integration leads to
new challenges that are created by applications with different criticality levels.

Safe integration requires the operating system to offer time and space par-
titioning extended to support multicores, in concert with correct deployment.
Comprehensive mission requirements result in multiple mission phases and cor-
responding mode-switches that must be accounted for. Such dynamic reconfigu-
ration furthermore allows online software updates.

Exploiting the potential of multicores in spacecraft avionics requires an engi-
neering method that efficiently builds optimized system configurations for each
phase of a mission. The challenge to profit from the available flexibility be-
comes apparent in the software deployment. A correct deployment of software
components relies on spatial and temporal resource assignment. We presented
a model-based engineering method that automates the construction of deploy-
ments. It facilitates the efficient design of complex software architectures and
has a result that is “Correct by Construction”.

Finally we presented an example mission consisting of two phases which con-
tain mixed-criticality applications. We deployed these phases onto the MUSE
hardware platform and showed the advantages of our engineering approach,
namely that, once a phase is modelled, a correct deployment scheme can be
generated almost instantly. This allows quick feedback and easy balancing of

Model-Based Deployment of Spacecraft Applications on Multicore Processors 15

parameters in the development process. In concert with the operating system,
isolated execution of mission-critical applications along with non-critical appli-
cations and can be handled. Multiple deployment schemes allow multi-phase
missions provided that mode-switches are well-defined.

References

1. ARINC. ARINC Specification 653P1-2: Avionics Application Software Standard
Interface Part 1 - Required Services. Technical report, Aeronautical Radio Inc.,
Maryland, USA, Dec. 2005.

2. AUTOSAR. Layered Software Architecture. http://autosar.org/download/R4.

0/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf, Nov 2010.

3. J. Baro, F. Boniol, M. Cordovilla, E. Noulard, and C. Pagetti. Off-line (Optimal)
multiprocessor scheduling of dependent periodic tasks. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing, SAC ’12, pages 1815–1820, New
York, NY, USA, 2012. ACM.

4. S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow,
and L. Stougie. Scheduling Real-Time Mixed-Criticality Jobs. Computers, IEEE
Transactions on, 61(8):1140 –1152, aug. 2012.

5. P. M. Behr, I. Haulsen, J. R. van Kampenhout, and S. Pletner. Multi-Core Tech-
nology for Fault Tolerant High-Performance Spacecraft Computer Systems. In
DASIA, 2012.

6. S. Borkar. Designing reliable systems from unreliable components: the challenges
of transistor variability and degradation. Micro, IEEE, 25(6):10 – 16, nov. 2005.

7. V. Brocaly, M. Masmanoy, I. Ripolly, A. Crespoy, P. Balbastrey, and J.-J. Metge.
Xoncrete: a scheduling tool for partitioned real-time systems. In Proceedings of the
Embedded Real Time Software and Systems Conference (ERTS2 2010), May 2010.

8. R. Chapman. Correctness by construction: a manifesto for high integrity software.
In Proceedings of the 10th Australian workshop on Safety critical systems and soft-
ware - Volume 55, SCS ’05, pages 43–46, Darlinghurst, Australia, Australia, 2006.
Australian Computer Society, Inc.

9. C.-L. Chou and R. Marculescu. User-Aware Dynamic Task Allocation in Networks-
on-Chip. In 2008 Design, Automation and Test in Europe, pages 1232–1237. IEEE,
März 2008.

10. G. Deng, D. C. Schmidt, and A. Gokhale. Addressing crosscutting deployment
and configuration concerns of distributed real-time and embedded systems via
aspect-oriented & model-driven software development. In Proceedings of the 28th
international conference on Software engineering, ICSE ’06, pages 811–814, New
York, NY, USA, 2006. ACM.

11. R. Fuchsen. How to address certification for multi-core based IMA platforms:
Current status and potential solutions. In Digital Avionics Systems Conference
(DASC), 2010 IEEE/AIAA 29th, pages 5.E.3–1 –5.E.3–11, oct. 2010.

12. T. Gaska, B. Werner, and D. Flagg. Applying virtualization to avionics sys-
tems #x2014; The integration challenges. In Digital Avionics Systems Conference
(DASC), 2010 IEEE/AIAA 29th, pages 5.E.1–1 –5.E.1–19, 2010.

13. G. Heiser. The role of virtualization in embedded systems. In Proceedings of the
1st workshop on Isolation and integration in embedded systems - IIES ’08, pages
11–16, New York, New York, USA, 2008. ACM Press.

16 J. Reinier van Kampenhout and Robert Hilbrich

14. R. Hilbrich. How to Safely Integrate Multiple Applications on Embedded Many-
Core Systems by Applying the ”Correctness by Construction” Principle. Advances
in Software Engineering, 2012(354274):14, 2012.

15. R. Hilbrich and H.-J. Goltz. Model-based generation of static schedules for safety
critical multi-core systems in the avionics domain. In Proceeding of the 4th in-
ternational workshop on Multicore software engineering, IWMSE ’11, pages 9–16,
New York, NY, USA, 2011. ACM.

16. R. Hilbrich and J. R. van Kampenhout. Partitioning and Task Transfer on NoC-
based Many-Core Processors in the Avionics Domain. In 4. Workshop: Entwicklung
zuverlssiger Software-Systeme (Stuttgart, Deutschland) and Journal Softwaretech-
niktrends, 2011.

17. A. Jacobs, G. Cieslewski, and A. George. Adaptive Software-based Fault Tolerance
for Space Multicore Processing. In Workshop for Multicore Processors For Space
- Opportunities and Challenges, IEEE International Conference on Space Mission
Challenges for Information Technology (SMC-IT), 2009.

18. M. Jamshidi. System of systems engineering: innovations for the 21st century.
Wiley series in systems engineering and management. Wiley, 2009.

19. R. Kaiser. Alternatives for scheduling virtual machines in real-time embedded sys-
tems. In Proceedings of the 1st workshop on Isolation and integration in embedded
systems, IIES ’08, pages 5–10, New York, NY, USA, 2008. ACM.

20. R. Kaiser. Virtualisierung von Mehrprozessorsystemen mit Echtzeitanwendungen.
Dissertation, Universitt Koblenz-Landau, June 2009.

21. A. Kossiakoff, W. Sweet, S. Seymour, and S. Biemer. Systems Engineering Princi-
ples and Practice. Wiley Series in Systems Engineering and Management. Wiley,
2011.

22. P. N. Leroux and K. Johnson. Using Resource Partitioning to Build Secure ,
Survivable Embedded Systems. Technical report, QNX Software Systems, 2009.

23. J. Nowotsch and M. Paulitsch. Leveraging Multi-Core Computing Architectures
in Avionics. In 2012 European Dependable Computing Conference, 2012.

24. C. Pinello, L. Carloni, and A. Sangiovanni-Vincentelli. Fault-Tolerant Distributed
Deployment of Embedded Control Software. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 27(5):906 –919, may 2008.

25. P. J. Prisaznuk. ARINC 653 role in Integrated Modular Avionics (IMA). In 2008
IEEE/AIAA 27th Digital Avionics Systems Conference, pages 1.E.5–1 – 1.E.5–10.
IEEE, 2008.

26. RTCA. Integrated Modular Architecture – Development Guidance and Certifica-
tion Considerations, 2005.

27. J. Rushby. Partitioning for Safety and Security: Requirements, Mechanisms, and
Assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research
Center, June 1999.

28. R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdi-
nand. Memory Hierarchies, Pipelines, and Buses for Future Architectures in Time-
Critical Embedded Systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 28(7):966 –978, july 2009.

29. J. Windsor and K. Hjortnaes. Time and Space Partitioning in Spacecraft Avionics.
In Space Mission Challenges for Information Technology, 2009. SMC-IT 2009.
Third IEEE International Conference on, pages 13 –20, july 2009.

