Skip to main content

Cancer Stem Cell Modeling Using a Cellular Automaton

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7931))

Abstract

We used a cellular automaton model for cancer growth simulation at cellular level, based on the presence of different cancer hallmarks acquired by the cells. The rules of the cellular automaton determine cell mitotic and apoptotic behaviors, which are based on the acquisition of the hallmarks in the cells by means of mutations. The simulation tool allows the study of the emergent behavior of tumor growth. This work focuses on the simulation of the behavior of cancer stem cells to inspect their capability of regeneration of tumor growth in different scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artificial Life 12(4), 617–634 (2006)

    Article  Google Scholar 

  2. Basanta, D., Ribba, B., Watkin, E., You, B., Deutsch, A.: Computational analysis of the influence of the microenvironment on carcinogenesis. Mathematical Biosiciences 229, 22–29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Enderling, H., Hahnfeldt, P.: Cancer stem cells in solid tumors: Is ’evading apoptosis’ a hallmark of cancer? Progress in Biophysics and Molecular Biology 106, 391–399 (2011)

    Article  Google Scholar 

  4. Gibbs, W.W.: Untangling the roots of cancer. Scientific American 289, 56–65 (2003)

    Article  Google Scholar 

  5. Gil, J., Stembalska, A., Pesz, K.A., Sasiadek, M.M.: Cancer stem cells: the theory and perspectives in cancer therapy. J. App. Genet. 49(2), 193–199 (2008)

    Article  Google Scholar 

  6. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  Google Scholar 

  7. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: The next generation. Cell 144(5), 646–674 (2011)

    Article  Google Scholar 

  8. Kansal, A.R., et al.: Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. Journal of Theoretical Biology 203, 367–382 (2000)

    Article  Google Scholar 

  9. Monteagudo, Á., Santos, J.: A cellular automaton model for tumor growth simulation. In: Rocha, M.P., Luscombe, N., Fdez-Riverola, F., Rodríguez, J.M.C. (eds.) 6th International Conference on PACBB. AISC, vol. 154, pp. 147–155. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Morton, C.I., et al.: Non-stem cancer cell kinetics modulate solid tumor progression. Theoretical Biology and Medical Modelling 8, 48 (2011)

    Article  Google Scholar 

  11. Patel, M., Nagl, S.: The role of model integration in complex systems. An example from cancer biology. Springer (2010)

    Google Scholar 

  12. Rejniak, K.A., Anderson, A.R.A.: Hybrid models of tumor growth. WIREs Syst. Biol. Med. 3, 115–125 (2010)

    Article  Google Scholar 

  13. Santos, J., Monteagudo, Á.: Study of cancer hallmarks relevance using a cellular automaton tumor growth model. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 489–499. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Sottoriva, A., et al.: Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Research 70(1), 46–56 (2010)

    Article  Google Scholar 

  15. Spencer, S.L., Gerety, R.A., Pienta, K.J., Forrest, S.: Modeling somatic evolution in tumorigenesis. PLoS Computational Biology 2(8), 939–947 (2006)

    Article  Google Scholar 

  16. Vainstein, V., et al.: Strategies for cancer stem cell elimination: Insights from mathematical modeling. Journal of Theoretical Biology 298, 32–41 (2012)

    Article  MathSciNet  Google Scholar 

  17. Wodarz, D., Komarova, N.: Can loss of apoptosis protect against cancer? Trends in Genetics 23(5), 232–237 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monteagudo, Á., Santos Reyes, J. (2013). Cancer Stem Cell Modeling Using a Cellular Automaton. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Computation in Engineering and Medical Applications. IWINAC 2013. Lecture Notes in Computer Science, vol 7931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38622-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38622-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38621-3

  • Online ISBN: 978-3-642-38622-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics