
ar
X

iv
:1

30
1.

08
49

v1
 [

cs
.P

L
]

 4
 J

an
 2

01
3

Static Analysis for Regular Expression

Denial-of-Service Attacks

James Kirrage Asiri Rathnayake Hayo Thielecke

University of Birmingham, UK

Abstract. Regular expressions are a concise yet expressive language
for expressing patterns. For instance, in networked software, they are
used for input validation and intrusion detection. Yet some widely de-
ployed regular expression matchers based on backtracking are themselves
vulnerable to denial-of-service attacks, since their runtime can be expo-
nential for certain input strings. This paper presents a static analysis for
detecting such vulnerable regular expressions. The running time of the
analysis compares favourably with tools based on fuzzing, that is, ran-
domly generating inputs and measuring how long matching them takes.
Unlike fuzzers, the analysis pinpoints the source of the vulnerability and
generates possible malicious inputs for programmers to use in security
testing. Moreover, the analysis has a firm theoretical foundation in ab-
stract machines. Testing the analysis on two large repositories of regular
expressions shows that the analysis is able to find significant numbers of
vulnerable regular expressions in a matter of seconds.

1 Introduction

Regular expression matching is a ubiquitous technique for reading and validat-
ing input, particularly in web software. While pattern matchers are among the
standard techniques for defending against malicious input, they are themselves
vulnerable. The root cause of the vulnerability is that widely deployed regular
expression matchers, like the one in the Java libraries, are based on backtracking
algorithms, rather than the construction of a Deterministic Finite Automaton
(DFA), as used for lexers in compiler construction [11,2]. One reason for relying
on backtracking rather than a DFA construction is to support a more expressive
pattern specification language commonly referred to as “regexes”. Constructs
such as back-references supported by such regex languages go beyond regular
and even context-free languages and are known to be computationally expen-
sive [1]. However, even if restricted to purely regular constructs, backtracking
matchers may have a running time that is exponential in the size of the input [6],
potentially causing a regular expression denial-of-service (ReDoS) attack [17].
It is this potentially exponential runtime on pure regular expressions (without
backreferences) that we are concerned about in this paper. Part of our motiva-
tion is that, for purely regular expressions, the attack could be defended against
by avoiding backtracking matchers and using more efficient techniques [7,24]
instead.

http://arxiv.org/abs/1301.0849v1

For a minimalistic example [6], consider matching the regular expression
a** against the input string a. . . a b, with n repetitions of a. A backtracking
matcher takes an exponential time [6] in n when trying to find a match; all
matching attempts fail in the end due to the trailing b. For such vulnerable
regular expressions, an attacker can craft an input of moderate size which causes
the matcher to take so long that for all practical purposes the matcher fails to
terminate, leading to a denial-of-service attack. Here we assume that the regular
expression itself cannot be manipulated by the attacker but that it is matched
against a string that is user-malleable.

While the regular expression a** as above is contrived, one of the questions
we set out to answer is how prevalent such vulnerable expressions are in the
real world. As finding vulnerabilities manually in code is time consuming and
error-prone, there is growing interest in automated tools for static analysis for
security [12,5], motivating us to design an analysis for ReDoS.

Educating and warning programmers is crucial to defending against attacks
on software. The standard coverage of regular expressions in the computer sci-
ence curriculum, covering DFAs in courses on computability [11] or compiler
construction [2], is not necessarily sufficient to raise awareness about the pos-
sibility of ReDoS. Our analysis constructs a series of attack strings, so that
developers can confirm the exponential runtime for themselves.

This paper makes the following contributions:

1. We present an efficient static analysis for DoS on pure regular expressions.
2. The design of the tool has a firm theoretical foundation based on abstract

machines [18] and derivatives [4] for regular expressions.
3. We report finding vulnerable regular expressions in the wild.

In Section 2, we describe backtracking regular expression matchers as ab-
stract machines, so that we have a precise model of what it means for a matching
attempt to take an exponential number of steps. We build on the abstract ma-
chine in designing our static analysis in Section 3, which we have implemented
in OCaml as described in Section 4. Experimental results in testing the analysis
on two large corpora of regular expressions are reported in Section 5. Finally,
Section 6 concludes with a discussion of related work and directions of further
research. The code of the tool and data sets are available at this URL:
http://www.cs.bham.ac.uk/~hxt/research/rxxr.shtml

2 Regular expression matching by backtracking

This and the next section present the theoretical basis for our analysis. Readers
primarily interested in the results may wish to skim them.

We start with the following minimal syntax for regular expressions:

e ::= e1 | e2 Alternation

e∗ Kleene star

e1 · e2 Concatenation

a Constant, where a is an input symbol

http://www.cs.bham.ac.uk/~hxt/research/rxxr.shtml

The · in concatenation e1 · e2 is usually omitted, except when it is useful for em-
phasis, as in a syntax tree. Following the usual parser construction methods [2],
we can define a parser which is capable of transforming (parsing) a given regular
expression into an AST (abstract syntax tree) which complies with the above
grammar. As an example, the AST constructed by such a parser for the regular
expression (a | b)∗c can be visualized in the following manner:

p0
·

p1
∗

p2
|

p3
a

p4
b

p5
c

p π(p)

p0 p1 · p5

p1 p2
∗

p2 p3 | p4

p3 a

p4 b

p5 c

Notice that we have employed a pointer notation to illustrate the AST struc-
ture; this is quite natural given that in most programming languages, such an
AST would be defined using a similar pointer-based structure definition. Each
node of this AST corresponds to a unique sub-expression of the original regular
expression, the relationships among these nodes are given on the table to the
right. We have used the notation π(p) to signify the dereferencing of the pointer
p with respect to the heap π in which the above AST is constructed. A formal
definition of π was avoided in order to keep the notational clutter to a minimum,
interested readers may refer [18] for a more precise definition of π.

Having parsed the regular expression into an AST, the next step is to con-
struct an NFA structure that allows us to define a backtracking pattern matcher.
While there are several standard NFA construction techniques [2], we opt for a
slightly different construction which greatly simplifies the rest of the discussion.
The idea is to associate a continuation pointer cont with each of the nodes in the
AST such that cont points to the following (continuation) expression for each
of the sub-expressions in the AST. In other words, cont identifies the “next sub-
expression” which must be matched after matching the given sub-expression.
More formally, cont is defined as follows:

Definition 1. Let cont be a function

cont : dom(π) → (dom(π) ∪ {null})

Such that,

– If π(p) = (p1 | p2), then contp1 = contp and contp2 = contp

– If π(p) = (p1 · p2), then contp1 = p2 and contp2 = contp
– If π(p) = (p1)

∗, then contp1 = p
– contp0 = null, where p0 is the pointer to the root of the AST.

The following example illustrates the NFA constructed this way for the regular
expression (a | b)∗c:

null

p0
·

p1
∗

p2
|

p3
a

p4
b

p5
c

p π(p) contp

p0 p1 · p5 null

p1 p2
∗ p5

p2 p3 | p4 p1

p3 a p1

p4 b p1

p5 c null

Here the dashed arrows identify the cont pointer for each of the AST nodes.
Readers familiar with Thompson’s construction [24,2] will realize that the re-
sulting NFA is a slightly pessimized version of that resulting from Thompson’s
algorithm. The reason for this pessimization is purely of presentational nature; it
helps to visualize the NFA as an AST with an overlay of a cont pointer mesh so
that the structure of the original regular expression is still available in the AST
portion. Furthermore, this presentation allows the definitions and proofs to be
presented in an inductive fashion with respect to the structure of the expressions.

With the NFA defined, we present a simple non-deterministic regular ex-
pression matcher in the form of an abstract-machine called the PWπ machine:

Definition 2. A configuration of the PWπ machine consists of two components:

〈p ; w〉

The p component represents the current sub-expression (similar to a code pointer)
while w corresponds to the rest of the input string that remains to be matched.
The transitions of this machine are as follows:

〈p ; w〉 → 〈p1 ; w〉 if π(p) = (p1 | p2)

〈p ; w〉 → 〈p2 ; w〉 if π(p) = (p1 | p2)

〈p ; w〉 → 〈q ; w〉 if π(p) = p1
∗ ∧ contp = q

〈p ; w〉 → 〈p1 ; w〉 if π(p) = p1
∗

〈p ; w〉 → 〈p1 ; w〉 if π(p) = (p1 · p2)

〈p ; aw〉 → 〈q ; w〉 if π(p) = a ∧ contp = q

〈p ; w〉 → 〈q ; w〉 if π(p) = ε ∧ contp = q

The initial state of the PWπ machine is 〈p0 ; w〉, where p0 is the root of the AST
corresponding to the input expression and w is the input string. The machine
may terminate in the state 〈null ; w′′〉 where it has matched the original regular

expression against some prefix w′ of the original input string w such that w =
w′w′′. Apart from the successful termination, the machine may also terminate if
it enters into a configuration where none of the above transitions apply.

The PWπ machine searches for a matching prefix by non-deterministically mak-
ing a choice whenever it has to branch at alternation or Kleene nodes. While
this machine is not very useful in practice, it allows us to arrive at a precise
model for backtracking regular expression matchers. Backtracking matchers op-
erate by attempting all the possible search paths in order; this allows us to model
them with a stack of PWπ machines. We call the resulting machine the PWFπ
machine:

Definition 3. The PWFπ machine consists of a stack of PWπ machines. The
transitions of the PWFπ machine are given below:

〈p ; w〉 → 〈q ; w′〉

〈p ; w〉 :: f → 〈q ; w′〉 :: f

〈p ; w〉 6→

〈p ; w〉 :: f → f

〈p ; w〉 → 〈q1 ; w〉 〈p ; w〉 → 〈q2 ; w〉

〈p ; w〉 :: f → 〈q1 ; w〉 :: 〈q2 ; w〉 :: f

The initial state of the PWFπ machine is [〈p0 ; w〉]. The machine may ter-
minate if one of the PWπ machines locates a match or if none of them succeeds
in finding a match. In the latter case the PWFπ machine has exhausted the en-
tire search space and determined that the input string cannot be matched by the
regular expression in question.

The PWFπ machine allows us to analyze backtracking regular expression match-
ers at an abstract level without concerning ourselves about any implementation
specific details. More importantly, it gives an accurate cost model of backtrack-
ing matchers; the number of steps executed by the PWFπ machine corresponds
to the amount of work a backtracking matcher has to perform when searching
for a match. In the following sections we employ these ideas to develop and
implement our static analysis.

3 Static analysis for exponential blowup

The problem we are aiming to solve is this: given a regular expression e, repre-
sented as in Section 2, are there input strings x, y, and z, such that:

1. Reading x takes the machine to a pointer p0 that is the root of a Kleene star
expression.

2. Reading the input w takes the machine from p0 back to p0, and in at least
two different ways, that is, along two different paths in the NFA.

3. Reading the input z when starting from p0 causes the match to fail.

r

p0

p0

p0

fail

z

w

p0

fail

z

w

w

p0

p0

fail

z

w

p0

fail

z

w

w

x

Fig. 3.1. The search tree for xww y

We call x the prefix, w the pumpable string by analogy with pumping lemmas
in automata theory [11], and z the failure suffix.

From these three strings, malicious inputs can be constructed: the n-th ma-
licious input is xwn z. Figure 3.1 illustrates the search tree that a backtracking
matcher has to explore when w is pumped twice. Because w can be matched in
two different ways, the tree branches every time a w is read from the input. All
branches fail in the end due to the trailing z, so that the matcher must explore
the whole tree.

To state the analysis more formally, we will need to define paths in the
matcher.

Definition 4. A path of pointers, t : p
w

−→ q is defined according to the following
inductive rules:

– For each pointer p, [p] : p
ε

−→ p is a path (identity).

– If t : p
w

−→ q is a path and there exists a PWπ transition such that:

〈q ; w′w1〉 → 〈q′ ; w1〉

Then t · [q′] : p
ww

′

−→ q′ is also a path.

Lemma 1. The path t : p
w

−→ q (q 6= p) exists if and only if a PWπ run exists
such that:

〈p ; ww′〉 → · · · → 〈q ; w′〉

Lemma 1 associates a unique string w with each path of pointers (the sub-
string matched by the corresponding PWπ run). However, note that the inverse
of this implication does not hold; there can be input strings for which we may
find more than one PWπ run. In fact, it is this property of paths that leads us
to the main theorem of this paper:

Theorem 1. For a given Kleene expression p0 where π(p0) = p1
∗, if at least

two paths exist such that t1 : p1
w

−→ p0, t2 : p1
w

−→ p0 and t1 6= t2, then a
regular expression involving p0 exhibits o(2n) runtime on a backtracking regular
expression matcher for input strings of the form xwnz where x is a sub-string
matching the prefix of p0 and z is such that xwnz fails to match the overall
expression.

While a formal proof of Theorem 1 is outside of the scope of this paper, we
sketch its proof with reference to Figure 3.1. The prefix x causes the PWFπ
machine to advance into a state where it has to match p0 against the remainder
of the input string, which leads to the branching of the search tree. Finally, the
suffix z at the end of the input causes each search path to fail, which in turns
forces the PWFπ machine to backtrack and explore the entire search tree before
concluding that a match cannot be found. For the complexity, note that each
additional pumping increases the size of the input by a constant (the length of
w) whereas it doubles the size of the binary subtree given by the w branches,
as well as the number of failed attempts to match z at the end. If there are
more than 2 ways to match the pumpable string, say b, then b rather than 2
becomes the base of the exponent, but 2 is still a lower bound. The matching of
the prefix x at the beginning contributes a constant to the runtime, which can
be disregarded relative to the exponential growth. Thus the lower bound for the
number of steps is exponential.

3.1 Generating the pumpable string

The most important step in generating an attack string for a vulnerable regular
expression is to generate the pumpable string w in xwnz (for some Kleene sub-
expression). In order to arrive at the machine for building the pumpable string,
we must first introduce several utility definitions. Note that in the remainder of
this discussion, p0 refers to a Kleene expression such that π(p0) = p1

∗.

Definition 5. For a given pointer p, the operation � p (called evolve) is defined
as:

� p = [q | ∃t.t : p
ε

−→ q ∧ ∃a.π(q) = a]

Notice that the result of � p is a list of pointers.

Definition 6. The function Da(P), (called derive) is defined on a list of pointers
P and an input symbol a according to the following rules:

Da([]) = []

Da(h :: t) =











Da(t) if π(h) = b, b 6= a

q :: Da(t) if π(h) = a ∧ conth = q

Da(�h · t) otherwise.

The definition Da(P) is analogous to Brzozowski’s derivatives of regular ex-
pressions [4]. In essence, the analysis computes derivatives of a Kleene expression
in order to find two different matcher states for the same input string.

Definition 7. A wP frame is defined as a pair (w,P) where w is a string and
P is a list of pointers. A non-deterministic transition relation is defined on wP
frames as follows:

Da(P) 6= []

(w,P) → (w a,Da(P))

Definition 8. The HFπ machine has configurations of the following form:

〈H ; f〉

Here H (history) represents a set of (sorted) pointer lists and f is a list of wP
frames. A deterministic transition relation defines the behavior of this machine
as follows:

(w,P) → (wx0, P0) . . . (w,P) → (wxn, Pn) ∀i.xi ∈ Σ Pi /∈ H

〈H ; (w,P) :: f〉 → 〈H ∪ {P0, . . . , Pn} ; f · [(wx0, P0), . . . , (wxn, Pn)]〉

The initial configuration of the HFπ machine is 〈∅ ; [(ε, [p1])]〉 and the machine
can terminate in either of the following two configurations:

〈H ; []〉

〈H ; (w,P) :: f〉 where ∃p′, p′′ ∈ P. ∃t′, t′′. t′ : p′
ε

−→ p0 ∧ t′′ : p′′
ε

−→ p0

In the former configuration the machine has determined the Kleene expression
in question to be non-vulnerable while in the latter it has derived the pumpable
string w.

3.2 Generating the Prefix and the Suffix

For a regular expression of the form e1 (e2
∗) e3, apart from a pumpable string w,

we must also generate a prefix x and a suffix z. The intention is that x would
lead the matcher to the point where it has to match e2

∗, after which we can
pump many copies of w to increase the search space of the matcher. However, a
successful exploit also needs a suffix z which forces the matcher to fail and so to
traverse the entire search space.

Generating the prefix is quite straightforward since a depth-first search for
Kleene sub-expressions (on the AST) can be augmented such that a (minimal)
prefix is generated for each search-path. On the other hand, the suffix generation
is more involved. One would think z should be generated such that it fails to
match the continuation expression e3 of the original expression, but this intuition
is flawed since there is a possibility that z could be matched by e2 itself (while
it was meant for e3). Depending on e2, it could be the case that no failure suffix
exists. One example we found is that e2 ends in .*, so that it can match anything.
In other cases, a failure suffix may exists, but depend in complicated ways on
e2. We chose not to solve this problem in full generality, but rather to employ
heuristics that find failure suffixes for many practical expressions, as illustrated
in the results section.

4 Implementation of the static analysis

We implemented the HFπ machine described in Section 3 using the OCaml
programming language. OCaml is well suited to programming abstract syntax,
and hence a popular choice for writing static analyses. One of the major ob-
stacles faced with the implementation is that in order to be able to analyze
real-world regular expressions, it was necessary to build a sophisticated parser.
In this regard, we decided to support the most common elements of the Perl /
PCRE standards, as these seem to be the most commonly used (and adapted)
syntaxes. It should be noted that the current implementation does not support
back-references or look-around expressions due to their inherent complexity; it
remains to be seen if the static analysis proposed in this work can be adapted
to handle such “regexes”. However, as it was explained earlier, exponential vul-
nerabilities in pattern specifications are not necessarily dependent on the use of
back-references or other advanced constructs (although one would expect such
constructs to further increase the search space of a backtracking matcher). A
detailed description of the pattern specification syntax currently supported by
the implementation has been included in the resources accompanying this paper.

The implementation closely follows the description of the HFπ machine pre-
sented in Section 3. The history component H is implemented as a set of sorted
integer lists, where a single sorted integer list corresponds to a list of nodes
pointed by the pointer list P of a wP frame (w,P). This representation allows
for quick elimination of looping wP frames. While the size of H is potentially
exponential in the number of nodes of a given Kleene expression, for practical
regular expressions we found this size to be well within manageable levels (as
evidenced in the results section).

A matter not addressed in the current work is that the PWFπ machine (and
naive backtracking matching algorithms in general) can enter into infinite loops
for Kleene expressions when the enclosed sub-expression matches the empty
string (i.e the sub-expression is nullable). Although a complete treatment of this
issue and its solution (implemented by most of the well known backtracking
matchers) is beyond the scope of this paper, it should be mentioned that a
similar problem occurs in the HFπ machine during the � p operation. We have
incorporated a method for detecting and terminating such infinite loops into the
OCaml code for the � p function so that it terminates in all cases.

5 Experimental results

The analysis was tested on two corpora of regexes (Figure 1). The first of these
was extracted from an online regex library called RegExLib [19], which is a
community-maintained regex archive; programmers from various disciplines sub-
mit their solutions to various pattern matching tasks, so that other developers
can reuse these expressions for their own pattern matching needs. The second
corpus was extracted from the popular intrusion detection and prevention system
Snort [23], which contains regex-based pattern matching rules for inspecting IP

RegExLib Snort

Total patterns 2994 12499

Analyzable (only regular constructs) 2213 9408

Uses Kleene star 1103 2741

Pumpable Kleene and suffix found 127 15

Pumpable Kleene only 20 4

No pumpable Kleene 2066 9389

Max HFπ steps 509 256

Total classification time 40 s 10 s

(Intel Core 2 Duo 1.8 MHz, 4 GB RAM)

Table 1. Experimental results with RegExLib and Snort

packets across network boundaries. The contrasting purposes of these two cor-
pora allow us to get a better view of the seriousness of exponential vulnerabilities
in practical regular expressions.

The regex archive for RegExLib was only available through the correspond-
ing website [19]. Therefore, as the first step the expressions had to be scraped
from their web source and adapted so that they can be fed into our tool. These
adaptations include removing unnecessary white-space, comments and spurious
line breaks. A detailed description of these adjustments as well as copies of both
adjusted and un-adjusted data sets have been included with the resources ac-
companying this paper (also including the Python script used for scraping). The
regexes for Snort, on the other hand, are embedded within plain text files that
define the Snort rule set. A Python script (also included in the accompanying
resources) allowed the extraction of these regexes, and no further processing was
necessary.

The results of the HFπ static analysis on these two corpora of regexes are
presented in Table 1. The figures show that we can process around 75% of each
of the corpora with the current level of syntax support. Out of these analyzable
amounts, it is notable that regular expressions from the RegExLib archive use
the Kleene operator more frequently (about 50% of the analyzable expressions)
than those from the Snort rule set (close to 30%). About 11.5% of the Kleene-
based RegExLib expressions were found to have a pumpable Kleene expression
as well as a suitable suffix, whereas for Snort this figure stands around 0.55%.

The vulnerabilities reported range from trivial programming errors to more
complicated cases. For an example, the following regular expression is meant to
validate time values in 24-hour format (from RegExLib):

^(([01][0-9]|[012][0-3]):([0-5][0-9]))*$

Here the author has mistakenly used the Kleene operator instead of the ? op-
erator to suggest the presence or non-presence of the value. This pattern works

perfectly for all intended inputs. However, our analysis reports that this expres-
sion is vulnerable with the pumpable string “13:59” and the suffix “/”. This
result gives the programmer a warning that the regular expression presents a
DoS security risk if exposed to user-malleable input strings to match.

For a moderately complicated example, consider the following regular ex-
pression (again from RegExLib):

^([a-zA-z]:((\\([-*\.*\w+\s+\d+]+)|(\w+)\\)+)(\w+.zip)|(\w+.ZIP))$

This expression is meant to validate file paths to zip archives. Our tool identifies
this expression as vulnerable and generates the prefix “z:\ ”, the pumpable
string “\zzz\” and the empty string as the suffix. This is probably an unexpected
input in the author’s eye, and this is another way in which our tool can be
useful in that it can point out potential mis-interpretations which may have
materialized as vulnerabilities.

It is worth noting that the HFπ machine manages to classify both the corpora
(the analyzable portions) in a matter of seconds on modest hardware. This shows
that our static analysis is usable for most practical purposes, with the average
classification time for an expression in the range of micro-seconds. The two
extreme cases for which the machine took several seconds for the classification
are given below (only the respective Kleene expressions):

([\d\w][-\d\w]{0,253}[\d\w]\.)+

([^\x00]{0,255}\x00)*

Here counting expressions [-\d\w]{0,253} and [^\x00]{0,255} were ex-
panded out during the parsing phase. The expansion produces a large Kleene
expression, which naturally requires more analysis during the HFπ simulation.
However, it should be noted that such expressions are the exception rather than
the norm.

Finally, it should be mentioned that all the vulnerabilities reported above
were individually verified using a modified version of the PWFπ machine (which
counts the number of steps taken for a particular matching operation). A sample
of those vulnerabilities was also tested on the Java regular expression matcher.

6 Conclusions

We have presented a static analysis to help programmers defend against regular
expression DoS attacks. Large numbers of regular expressions can be analysed
quickly, and developers are given feedback on where in their regular expressions
the problem has been identified as well as examples of malicious input.

As illustrated in Section 5, the prefix, pumpable string and failure suffix can
be quite short. If their length is, say, 3, 5 and 0 characters, then an attacker
only needs to spend a very small amount of effort in providing a malicious
input of length 3+5*100 characters to cause a matching time in excess of 2100

steps. Even if a matching step takes only a nanosecond, such a running time

takes, for all intents and purposes, forever. The attacker can still scale up the
attack by pumping a few times more and thereby correspondingly multiplying
the matching time.

The fact that the complexity of checking a regular expression for exponential
runtime may be computationally expensive in the worst case does not necessarily
imply that such an analysis is futile. Type checking in functional languages like
ML and Haskell also has high complexity [14,21], yet works efficiently in practice
because the worst cases rarely occur in real-world code. There are even program
analyses for undecidable problems like termination [3], so that the worst-case
running time is infinite; what matters is that the analysis produces results in
enough cases to be useful in practice. It is a common situation in program
analysis that tools are not infallible (having false positives and negatives), but
they are nonetheless useful for identifying points in code that need attention by
a human expert [9].

6.1 Related work

A general class of DoS attacks based on algorithmic complexities has been ex-
plored in [8]. In particular, the exponential runtime behavior of backtracking
regular expression matchers has been discussed in [6] and [20]. The seriousness
of this issue is further expounded in [22] and [16] where the authors demonstrate
the mounting of DoS attacks on an IDS/IPS system (Snort) by exploiting the
said vulnerability. The solutions proposed in these two works involve modifying
the regular expressions and/or the matching algorithm in order to circumvent
the problem in the context of IDS/IPS systems. We consider our work to be
quite orthogonal and more general since it is based on a compile-time static
analysis of regular expressions. However, it should be noted that both of those
works concern of regexes with back-references, which is a feature we are yet to
explore (known to be NP-hard [1]).

While the problem of ReDoS has been known for at least a decade, we are not
aware of any previous static analysis for defending against it. A handful of tools
exist that can assist programmers in finding such vulnerable regexes. Among
these tools we found Microsoft’s SDL Regex Fuzzer [15] and the RegexBuddy [13]
to be the most usable implementations, as other tools were too unstable to be
tested with complex expressions.

While RegexBuddy itself is not a security oriented software, it offers a debug
mode, which can be used to detect what the authors of the tool refer to as
Catastrophic Backtracking [10]. Even though such visual debugging methods
can assist in detecting potential vulnerabilities, it would only be effective if the
attack string is known in advance—this is where a static analysis method like
the one presented on this paper has a clear advantage.

SDL Fuzzer, on the other hand, is aimed specifically at analyzing regular
expression vulnerabilities. While details of the tool’s internal workings are not
publicly available, analyzing the associated documentation reveals that it oper-
ates fuzzing, i.e., by brute-forcing a sequence of generated strings through the

regular expression in question to detect long running times. The main disadvan-
tage of this tool is that it can take a very long time for the tool to classify a
given expression. Tests using some of the regular expressions used in the results
section above revealed that it can take up to four minutes for the Fuzzer to
classify certain expressions. It is an inherent limitation of fuzzers for exponen-
tial runtime DoS attacks that the finding out if something takes a long time
by running it takes a long time. By contrast, our analysis statically analyzes
an expression without ever running it. It is capable of classifying thousands of
regular expressions in a matter of seconds. Furthermore, the output produced
by the SDL Fuzzer only reports the fact that the expression in question failed
to execute within a given time limit for some input string. Using this generated
input string to pin-point the exact problem in the expression would be quite
a daunting task. In contrast, our static analysis pin-points the exact Kleene
expression that causes the vulnerability and allows programmers to test their
matchers with a sequence of malicious inputs.

6.2 Directions for further research

In further work, we aim to broaden the coverage of our tool to include more
regexes. Given its basis in our earlier work on abstract machines [18] and deriva-
tives [4], we aim for a formal proof of the correctness of our analysis. We intend
to release the source code of the tool as an open source project. More broadly,
we hope that raising awareness of the dangers of backtracking matchers will help
in the adoption of superior techniques for regular expression matching [7,24,18].

References

1. Alfred V. Aho. Algorithms for Finding Patterns in Strings. In Jan van Leeuwen,
editor, Handbook of theoretical computer science (vol. A), pages 255–300. MIT
Press, Cambridge, MA, USA, 1990.

2. Alfred V. Aho, Monica Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers -
Principles, Techniques and Tools. Addison Wesley, second edition, 2007.

3. J. Berdine, B. Cook, D. Distefano, and P. OHearn. Automatic termination proofs
for programs with shape-shifting heaps. In Computer Aided Verification, pages
386–400. Springer, 2006.

4. Janusz A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11(4):481–494,
1964.

5. B. Chess and G. McGraw. Static analysis for security. Security & Privacy, IEEE,
2(6):76–79, 2004.

6. Russ Cox. Regular Expression Matching Can Be Simple And Fast (but is slow in
Java, Perl, Php, Python, Ruby, ...). Available at http://swtch.com/~rsc/regexp/
regexp1.html, January 2007.

7. Russ Cox. Regular expression matching: the virtual machine approach. Available
at http://swtch.com/~rsc/regexp/regexp2.html, December 2009.

8. Scott A. Crosby and Dan S. Wallach. Denial of Service via Algorithmic Complexity
Attacks. In Proceedings of the 12th USENIX Security Symposium, Washington,
DC, August 2003.

http://swtch.com/~ rsc/regexp/regexp1.html
http://swtch.com/~ rsc/regexp/regexp1.html
http://swtch.com/~ rsc/regexp/regexp2.html

9. Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities. Addison Wesley,
2006.

10. Jan Goyvaerts. Runaway Regular Expressions: Catastrophic Backtracking. Avail-
able at http://www.regular-expressions.info/catastrophic.html, 2009.

11. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

12. V.B. Livshits and M.S. Lam. Finding security vulnerabilities in java applications
with static analysis. In Proceedings of the 14th conference on USENIX Security
Symposium, volume 14, pages 18–18, 2005.

13. Just Great Software Co. Ltd. RegexBuddy. Available at http://www.regexbuddy.
com/, 2012.

14. H.G. Mairson. Deciding ML typability is complete for deterministic exponential
time. In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 382–401. ACM, 1989.

15. Microsoft. SDL Regex Fuzzer. Available at http://www.microsoft.com/en-gb/

download/details.aspx?id=20095, 2011.
16. Kedar Namjoshi and Girija Narlikar. Robust and Fast Pattern Matching for In-

trusion Detection. In Proceedings of the 29th conference on Information commu-
nications, INFOCOM’10, pages 740–748, Piscataway, NJ, USA, 2010. IEEE Press.

17. The Open Web Application Security Project (OWASP). Regular Expression Denial
of Service - ReDoS. Available at https://www.owasp.org/index.php/Regular_

expression_Denial_of_Service_-_ReDoS, 2012.
18. Asiri Rathnayake and Hayo Thielecke. Regular Expression Matching and Oper-

ational Semantics. In Structural Operational Semantics (SOS 2011), Electronic
Proceedings in Theoretical Computer Science, 2011.

19. RegExLib.com. Regular Expression Library. Available at http://regexlib.com/,
2012.

20. Alex Roichman and Adar Weidman. Regular Expression Denial
of Service. Available at http://www.checkmarx.com/white_papers/

redos-regular-expression-denial-of-service/, 2012.
21. H. Seidl et al. Haskell overloading is DEXPTIME-complete. Information Process-

ing Letters, 52(2):57–60, 1994.
22. Randy Smith, Cristian Estan, and Somesh Jha. Backtracking Algorithmic Com-

plexity Attacks Against a NIDS. In Proceedings of the 22nd Annual Computer Se-
curity Applications Conference, ACSAC ’06, pages 89–98, Washington, DC, USA,
2006. IEEE Computer Society.

23. Sourcefire. Snort (IDS/IPS). Available at http://www.snort.org/, 2012.
24. Ken Thompson. Programming Techniques: Regular Expression Search Algorithm.

Communications of the ACM, 11(6):419–422, June 1968.

http://www.regular-expressions.info/catastrophic.html
http://www.regexbuddy.com/
http://www.regexbuddy.com/
http://www.microsoft.com/en-gb/download/details.aspx?id=20095
http://www.microsoft.com/en-gb/download/details.aspx?id=20095
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
http://regexlib.com/
http://www.checkmarx.com/white_papers/redos-regular-expression-denial-of-service/
http://www.checkmarx.com/white_papers/redos-regular-expression-denial-of-service/
http://www.snort.org/

	Static Analysis for Regular Expression Denial-of-Service Attacks

