Skip to main content

Neuron Threshold Variability in an Olfactory Model Improves Odorant Discrimination

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7930))

Abstract

We used a model based on the olfactory system of insects to analyze the impact of neuron threshold variability in the mushroom body (MB) for odorant discrimination purposes. This model is a single-hidden-layer neural network (SLN) where the input layer represents the antennal lobe (AL), which contains a binary code for each odorant; the hidden layer that represents the Kenyon cells (KC) and the output layer named the output neurons. The KC and output layers are responsible for learning odor discrimination. The binary code obtained for each odorant in the output layer has been used to measure the discrimination error and to know what kind of thresholds (heterogeneous or homogeneous) provide better results when they are used in KC and output neurons. We show that discrimination error is lower for heterogeneous thresholds than for homogeneous thresholds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angioy, A.M., Desogus, A., Barbarossa, I.T., Anderson, P., Hansson, B.S.: Extreme Sensitivity in an Olfactory System. Chemical Senses 28(4), 279–284 (2003)

    Article  Google Scholar 

  2. Daly, K.C., Wright, G.A., Smith, B.H.: Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. J. Neurophysiol. (February 25, 2004)

    Google Scholar 

  3. Doleman, B.J., Lewis, N.S.: Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sensors and Actuators B 72, 41–50 (2001)

    Article  Google Scholar 

  4. Dubnau, J., Grady, L., Kitamoto, T., Tully, T.: Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411, 476–480 (2001)

    Article  Google Scholar 

  5. Galan, R.F., Sachse, S., Galizia, C.G., Herz, A.V.: Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid odor classification. Neural Computation 16(5), 999–1012 (2004)

    Article  MATH  Google Scholar 

  6. García, M., Huerta, R.: Design Parameters of the Fan-Out Phase of Sensory Systems. Journal of Computational Neuroscience 15, 5–17 (2003)

    Article  Google Scholar 

  7. Huerta, R., Nowotny, T., García, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning Classification in the Olfactory System of Insects. Neural Computation 16, 1601–1640 (2004)

    Article  MATH  Google Scholar 

  8. Huerta, R., Nowotny, T.: Fast and Robust Learning by Reinforcement Signals: Explorations in the Insect Brain. Neural Computation 21, 2123–2151 (2009)

    Article  MATH  Google Scholar 

  9. Jortner, R.A., Farivar, S.S., Laurent, G.: A simple connectivity scheme for sparse coding in an olfactory system. The Journal of Neuroscience (February 14, 2007)

    Google Scholar 

  10. Laurent, G., Stopfer, M., Friedrich, R.W., Rabinovich, M.I., Volkovskii, A., Abarbanel, H.D.I.: Odor encoding as an active, dynamical process: Experiments, Computation, and Theory. Neuroscience 24, 263–297 (2001)

    Google Scholar 

  11. Laurent, G.: Olfactory network dynamics and the coding of mutidimensional signals. Nat. Rev. Neurosci. 3(11), 884–895 (2002)

    Article  Google Scholar 

  12. Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., Luo, L.: Representation of the glomerular olfactory map in the Drosophila brain. Cell 109(2), 243–255 (2002)

    Article  Google Scholar 

  13. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in neurons activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pérez-Orive, J.: Oscillations and Sparsening of Odor Representations in the Mushroom Body. Science 297, 359–365 (2002)

    Article  Google Scholar 

  15. Tanaka, N.K., Awasaki, T., Shimada, T., Ito, K.: Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14(6), 449–457 (2004)

    Article  Google Scholar 

  16. Turner, G.C., Bazhenov, M., Laurent, G.: Olfactory representations by drosophila mushroom body neurons. J. Neurophysiol. 99, 734–746 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montero, A., Huerta, R., Rodríguez, F.B. (2013). Neuron Threshold Variability in an Olfactory Model Improves Odorant Discrimination. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Models in Computation and Biology. IWINAC 2013. Lecture Notes in Computer Science, vol 7930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38637-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38637-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38636-7

  • Online ISBN: 978-3-642-38637-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics