Skip to main content

A Novel Approach for Quantitative Analysis of 3D Phosphenes

  • Conference paper
  • 1320 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7930))

Abstract

Visual prosthesis development relays in the ability of the visual system to evoke visual topographically organized perceptions called phosphenes when it is electrically stimulated. There have been many approaches to quantify phosphenes and describe their position in the visual field but no one managed to be accurate and easy to be handled by visually impairment individuals. Here, we present a highly accurate, intuitive and freely movement method to draw phosphenes in the 3D visual space. We use an infrared sensor from the commercial Kinect hardware through a customized software to detect the movements of the subjects drawing on the air in the same 3D coordinate were they perceive the phosphenes.With this new technique we introduce the component of depth of the visual space in the phosphenes mapping, a disregarded component in the old 2D techniques. No techniques in the past had this measurement in account but our results show that transcraneal magnetic stimulated subjects clearly perceived phosphenes at different depth locations (data not shown at this paper). Furthermore this new mapping technique has three main advantages: (i) it allows patients to locate phosphenes in the real 3D visual space were they perceive the phosphenes, (ii) allows a quantitative measurement of the area and shape of the phosphenes (iii) and avoid the interactions between external devices and patients in order to facilitate the performance to the low vision or blind individuals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engel, S.A., Glover, G.H., Wandell, B.A.: Retinotopic organization in human visual cortex and the spatial precision of functional mri. Cereb Cortex 7, 181–192 (1997)

    Article  Google Scholar 

  2. Fitzgibbon, T., Taylor, S.F.: Retinotopy of the human retinal nerve fibre layer and optic nerve head. J. Comp. Neurol. 375, 238–251 (1996)

    Article  Google Scholar 

  3. Tusa, R.J., Palmer, L.A., Rosenquist, A.C.: The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol. 177, 213–235 (1978)

    Article  Google Scholar 

  4. Brindley, G.S., Lewin, W.S.: The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196, 479–493 (1968)

    Google Scholar 

  5. Marg, E., Rudiak, D.: Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optom. Vis. Sci. 71, 301–311 (1994)

    Article  Google Scholar 

  6. Gothe, J., Brandt, S.A., Irlbacher, K., Roricht, S., Sabel, B.A., Meyer, B.-U.: Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain 125, 479–490 (2002)

    Article  Google Scholar 

  7. Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., O’Rourke, D.K., Vallabhanath, P.: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(pt. 2), 507–522 (1996)

    Article  Google Scholar 

  8. Veraart, C., Wanet-Defalque, M.-C., Gerard, B., Vanlierde, A., Delbeke, J.: Pattern recognition with the optic nerve visual prosthesis. Artif Organs 27, 996–1004 (2003)

    Article  Google Scholar 

  9. Humayun, M.S., Weiland, J.D., Fujii, G.Y., Greenberg, R., Williamson, R., Little, J., Mech, B., Cimmarusti, V., Van Boemel, G., Dagnelie, G., de Juan, E.: Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res. 43, 2573–2581 (2003)

    Article  Google Scholar 

  10. Rizzo III, J.F., Wyatt, J., Loewenstein, J., Kelly, S., Shire, D.: Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis. Sci. 44, 5355–5361 (2003)

    Article  Google Scholar 

  11. Cowey, A., Walsh, V.: Magnetically induced phosphenes in sighted, blind and blindsighted observers. Neuroreport 11, 3269–3273 (2000)

    Article  Google Scholar 

  12. Fernandez, E., Alfaro, A., Tormos, J.M., Climent, R., Martinez, M., Vilanova, H., Walsh, V., Pascual-Leone, A.: Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res. Brain Res. Protoc. 10, 115–124 (2002)

    Article  Google Scholar 

  13. Zhang, L., Chai, X., Ling, S., Fan, J., Yang, K., Ren, Q.: Dispersion and accuracy of simulated phosphene positioning using tactile board. Artif Organs 33, 1109–1116 (2009)

    Article  Google Scholar 

  14. Microsoft, Kinect (2010), http://www.xbox.com/en-us/kinect/

  15. PrimeSense (2010), http://www.primesense.com/

  16. Andrew, D.: Using a depth camera as a touch sensor. In: Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, pp. 69–72 (2010)

    Google Scholar 

  17. Benavidez, M., Jamshidi, P.: Mobile robot navigation and target tracking system. In: Proceedings of the 6th International Conference on System of Systems Engineering: SoSE in Cloud Computing, Smart Grid, and Cyber Security, pp. 299–304 (2011)

    Google Scholar 

  18. Bainbridge-Smith, A., Stowers, J., Hayes, M.: Altitude control of a quadrotor helicopter using depth map from microsoft kinect sensor. In: Proceedings of the IEEE International Conference on Mechatronics, pp. 358–362 (2011)

    Google Scholar 

  19. Bo, A.P.L., Hayashibe, M., Poignet, P.: Joint angle estimation in rehabilitation with inertial sensors and its integration with kinect. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2011, pp. 3479–3483 (2011)

    Google Scholar 

  20. Chang, Y.-J., Chen, S.-F., Huang, J.-D.: A kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32(6), 2566–2570 (2011)

    Article  Google Scholar 

  21. OpenNI (2011), https://github.com/OpenNI/OpenNI

  22. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors (Basel) 12(2), 1437–1454 (2012)

    Article  Google Scholar 

  23. Dobelle, W.H., Mladejovsky, M.G.: Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J. Physiol. 243, 553–576 (1974)

    Google Scholar 

  24. Dobelle, W.H.: Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 46(1), 3–9 (2000)

    Article  Google Scholar 

  25. Everitt, B.S., Rushton, D.N.: A method for plotting the optimum positions of an array of cortical electrical phosphenes. Biometrics 34, 399–410 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soto-Sanchez, C., Olmedo-Payá, A., de Santos-Sierra, D., Agullo, C., Fernández, E. (2013). A Novel Approach for Quantitative Analysis of 3D Phosphenes. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Models in Computation and Biology. IWINAC 2013. Lecture Notes in Computer Science, vol 7930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38637-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38637-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38636-7

  • Online ISBN: 978-3-642-38637-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics