
Aspect Interactions:
A Requirements Engineering Perspective

Thein Than Tun1, Yijun Yu1, Michael Jackson1, Robin Laney1, and
Bashar Nuseibeh1,2

Abstract The principle of Separation of Concerns encourages developers to divide
complex problems into simpler ones and solve them individually. Aspect-Oriented
Programming (AOP) languages provide mechanisms to modularize concerns that af-
fect several software components, by means of joinpoints, advice and aspect weav-
ing. In a software system with multiple aspects, a joinpoint can often be matched
with advice from several aspects, thus giving rise to emergent behaviours that may
be unwanted. This issue is often known as the aspect interaction problem. AOP lan-
guages provide various composition operators: the precedence operator of AspectJ,
for instance, instructs the aspect weaver about the ordering of aspects when ad-
vice from several of them match one joinpoint. This ordering of conflicting aspects
is usually done at compile-time. This chapter discusses a type of problem where
conflicting aspects need to be ordered according to runtime conditions. Extending
previous work on Composition Frames, this chapter illustrates an AOP technique
to compose aspects in a non-intrusive way so that precedence can be decided at
runtime.

1 Introduction

Software systems are typically required to satisfy multiple concerns of several stake-
holders. Users may want a software system to be responsive, and the computer in-
terface to be intuitive. Sponsors of the software system may want the information to
be handled securely. Programmers who maintain the software system may want to
work with a program design that is easy to modify. The principle of Separation of
Concerns encourages developers to address these concerns of performance, usabil-
ity, security and maintainability individually. Yet, when composed together, these
concerns make different and often conflicting demands on the system architecture,

1Department of Computing, The Open University, UK, e-mail: {t.t.tun, y.yu, m.jackson, r.c.laney,
b.nuseibeh}@open.ac.uk ·2Lero, Irish Software Engineering Research Centre, Limerick, Ireland

1

2 Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney, and Bashar Nuseibeh

the program design, and other software artefacts. Aspect-Oriented Programming
(AOP) languages provide mechanisms for implementing, in a modular fashion, con-
cerns that cut across several components. Towards this end, AOP languages provide
mechanisms for joinpoints, advice and aspect weaving, which have been explained
and illustrated in [13].

The issue of feature interaction is well known in telecommunication and other
software systems [1, 7, 4]. Generally, software features are thought to interact when
features that individually satisfy the user requirements, when composed together,
produce unwanted behaviour. The interactions are often due to conditions such as
non-determinism, divergence and interference. When resolving such feature inter-
actions, compile-time mechanisms are often over-restrictive in the sense that the
composition has to be decided at compile-time and it cannot respond to runtime
conditions.

For instance, in a smart home application [7], the security and climate control
features may interact when the security feature shuts the window because the home
owners are away but the climate control feature opens the window to allow fresh air
in. This condition is known as divergence.

A similar issue can be observed in aspect composition. A program that has to
satisfy multiple concerns may have a joinpoint that could be matched with advice
from several aspects, corresponding with the concerns the component has to satisfy.
When these aspects are composed, the weaver is free to choose the ordering of the
aspects if the developer does not specify the desired ordering. Divergence here can
be illustrated by the following main program and the two aspects in the syntax of
AspectJ 6 (simply AspectJ henceforth).

/ / The main program Window . j a v a
p u b l i c c l a s s Window {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
System . o u t . p r i n t l n (”Window has now s t a r t e d . ”) ;

}
}

/ / S e c u r i t y F e a t u r e . a j
p u b l i c a s p e c t S e c u r i t y F e a t u r e {

a f t e r () r e t u r n i n g : e x e c u t i o n (∗ main (. .)) {
System . o u t . p r i n t l n (” S e c u r i t y F e a t u r e : Window i s now

s h u t b e c a u s e i t i s n i g h t now . ”) ;
}

}

/ / C l i m a t e F e a t u r e . a j
p u b l i c a s p e c t C l i m a t e F e a t u r e {

a f t e r () r e t u r n i n g : e x e c u t i o n (∗ main (. .)) {
System . o u t . p r i n t l n (” C l i m a t e F e a t u r e : Window i s now

opened b e c a u s e i t i s h o t i n d o o r s . ”) ;
}

}

Running the program could produce a seemingly random ordering of the two
aspects. In one run of the program, the following output is produced, although an-

Aspect Interactions: A Requirements Engineering Perspective 3

other valid ordering of aspects is also possible. Such uncontrolled behaviour may be
unwanted, and therefore can be seen as a form of aspect interaction.

Window has now started.
SecurityFeature: Window is now shut because it is night now.
ClimateFeature: Window is now opened because it is hot indoors.

If a particular ordering of these aspects is desired, for instance, if the climate
feature is always more important than the security feature, then the precedence of
these aspects has to be declared. Since the advice of these aspects are applied after
the execution of the main method, the so-called ‘after’ advice, they need to be listed
in ascending order of priority.

/ / ComposeAspects . a j
p u b l i c a s p e c t ComposeAspects {

d e c l a r e precedence : S e c u r i t y F e a t u r e , C l i m a t e F e a t u r e ;
}

The program now resolves the aspect interaction and always produce the desired
ordering of the aspects, namely that the climate control aspect is always executed
before the security aspect:

Window has now started.
ClimateFeature: Window is now opened because it is hot indoors.
SecurityFeature: Window is now shut because it is night now.

This style of resolving aspect interactions is over-restrictive because once the
precedence is defined at compile-time, it cannot be changed easily in order to re-
spond to runtime conditions. The ordering of the security and climate control fea-
tures in the example above cannot be changed at runtime, for instance.

In our previous work on feature composition, we have formalized the notion of
Composition Frames which monitor the features being composed, and depending
on the requirements and runtime conditions, determine the ordering of features [9].
This style of composition is more flexible and can be extended to aspect composi-
tion.

In this chapter, we show that features can be treated as aspects, and feature com-
position as aspect composition. We then discuss how Composition Frames can be
used to compose aspects and resolve aspect interactions at runtime. We present a
way to implement the aspect composition as a distinct crosscutting concern that can
be treated as a separate aspect. We show that this approach to composing aspects at
runtime is generic and non-intrusive.

2 Preliminaries

This section illustrates the notion of feature interaction using a simple problem from
a smart home application [7] before discussing how Composition Frames can be
used to resolve the feature interaction problem.

4 Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney, and Bashar Nuseibeh

a:TiP! {NightStarts, NightEnds}
b:SF! {tiltIn, tiltOut}
c:W! {WindowOpen}

d:TiP! {CurrentTime}

Fig. 1 Problem diagram for the security feature

2.1 Feature Interaction: An Example

Let us consider again a simple smart home application with two features, both of
which control a motorized window that can be opened and shut. The security fea-
ture has a requirement for keeping the window shut at night. The requirement for the
temperature feature is to keep the window opened when it is hot, meaning when the
indoor temperature is higher than the required temperature and at the same time, the
outdoor temperature is lower than the indoor temperature. An important characteris-
tic of smart home applications is that their features may be developed independently
by manufacturers. Therefore, conflicts between features may have to be detected and
resolved at runtime.

When analyzing the requirements for these two features, we use problem dia-
grams [5] to show the relationship between three descriptions: (i) user requirements,
(ii) problem world domains which make up the context of the software and (iii) spec-
ifications of the behaviour of the running software. The relationship between these
descriptions is intended to indicate that the specifications, in the described context,
will satisfy the requirements.

Fig. 1 shows the problem diagram for the security feature, where the requirement
is denoted by a dotted oval, problem world domains are denoted by plain rectangles
and the specification is denoted by a rectangle with two vertical stripes. The require-
ment SR says that the window should be kept shut at night.

The problem world domains are entities in the world that the program must inter-
act with, such as Time Panel and Window, in satisfying the requirement SR. The
solid lines (a and b) are domain interfaces representing shared variables and events
between the domains and the machine involved. At the interface a, the variables
NightStarts and NightEnds are controlled by Time Panel (as denoted by TiP!),
and can be observed by the security feature. Descriptions of other interface labels
can be read in the same way.

Assuming that NightStarts and NightEnds are variables for non-negative inte-
gers between 0 and 2400, when NightStarts < CurrentTime and CurrentTime <
NightEnds, it is night; otherwise, it is day. At the interface b, the security feature
can fire two events tiltIn and tiltOut, and these events can be observed by the win-
dow. The property of Window is such that when tiltOut is observed, the window
is open, meaning that WindowOpen is true. Likewise, when tiltIn is observed, the
window is shut (WindowOpen is false). Dotted lines (c and d) denote requirement

Aspect Interactions: A Requirements Engineering Perspective 5

f:TeP! {NiceTemp, OutTemp,
InTemp}

b:CCF! {tiltIn, tiltOut}
c:W! {WindowOpen}

e:TeP! {TooHot}

Fig. 2 Problem diagram for the temperature feature

phenomena. The requirement is a desired relationship between the current time and
the state variable of the window, namely that when NightStarts <CurrentTime and
CurrentTime < NightEnds is true, WindowOpen should be false.

One description of the specification Security Feature is to fire the event tiltIn
whenever it is night, and to ensure that tiltOut is not fired until the night ends. The
relationship between the three descriptions is as follows: If the behaviour of the win-
dow and the time panel is as stated, the specification Security Feature satisfies the
requirement SR. This simple specification, of course, ignores a number of issues:
for instance, it does not check whether the window is already shut when night starts,
or how long it takes for the window to fully open. Let us ignore such issues in our
discussion.

The problem diagram for the temperature feature, shown in Fig. 2 is similar to
the diagram in Fig. 1. The requirement here is that if it is too hot indoors, mean-
ing that the desired temperature (NiceTemp) and the indoors and outdoors tem-
peratures (OutTemp and InTemp) are in a certain relationship, the window should
be kept open. The temperature readings are controlled by the temperature panel,
and the temperature feature can observe them. One description of the specifica-
tion Temperature Feature is to fire the tileOut event whenever the conditions
NiceTemp < InTemp and OutTemp < InTemp hold and to ensure that the tiltIn
is not fired as long as that relation remains true.

Notice that the two requirements above do not say anything about what to do dur-
ing the daytime, and when it is not hot indoors. However, if the inside temperature
is higher than the desired temperature, and the outside temperature is lower than the
inside temperature, the window should be opened even if the outside temperature is
higher than the desire temperature (thus not possible to possible achieve the required
temperature just by opening the window).

Composing these two features can lead to a divergent behaviour under certain
conditions. During a hot night, according to the temperature feature, the window
should be open, but according to the security feature, the window should be shut. It
is important to note that although the temperature feature will not close the window
by firing the tiltIn event, it cannot stop the security feature from firing the same
event during the hot night. Likewise, although the security feature will not open the
window by firing the tiltOut event, it cannot stop the temperature feature from firing
the same event during the hot night. In other words, an individual feature cannot
have an exclusive control of the window over a length of time.

6 Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney, and Bashar Nuseibeh

d:TiP! {CurrentTime}
a:TiP! {NightStarts, NightEnds}
e:TeP! {TooHot}
f:TeP! {NiceTemp, OutTemp, InTemp}
a’:SC! {NightStarts, NightEnds}
b’:SF! {tiltIn, tiltOut, ShutUntil}
f’:SC! {NiceTemp, OutTemp, InTemp}
b”:TF! {tiltIn, tiltOut, OpenUntil}
b:SC! {tiltIn, tiltOut}
c:W! {WindowOpen}

Fig. 3 Composition of the security and temperature features

Furthermore, if a precedence operator is applied in the composition of these two
features, one of the two features will always have priority over the other. This might
be over-restrictive. It is sometimes desirable for the system to allow the user to in-
dicate at runtime how the features should be ordered. Finally, in order to separate
the concerns of individual features from the concern of composition, the two speci-
fications should not be modified in order that they find out what the other feature is
doing before carrying out their own actions. Our previous work on feature interac-
tion shows that Composition Frames are suitable for such feature composition.

2.2 Resolving Feature Interaction using Composition Frames

As shown in Fig. 3, the two features can be composed by introducing the new
software component SmartHome Controller, which is obtained by merging two
wrappers that sit at the interfaces a and b of the security feature in Fig. 1 and the
interfaces d and b of the temperature feature in Fig. 2 (see [15] for wrapper trans-
formation rules). In effect, SmartHome Controller intercepts the information and
events going in and coming out of the two features.

The variable ShutUntil is used by the security feature to indicate the time point
until which it does not want other features to open the window. In principle, the value
of ShutUntil is be determined by the value of NightEnds. The variable OpenUntil
is used by the temperature feature to indicate the time point until which it does not
want other features to shut the window. In principle, this is the first time point when
InTemp is equal to NiceTemp. However, the temperature feature cannot know in
advance how long the room will remain too hot. Therefore, it may have to set this
time on a periodic basis.

Aspect Interactions: A Requirements Engineering Perspective 7

Again, notice that each of the features does not prevent another feature from
opening or shutting the window. Each feature only declares what it wants other fea-
tures not to do within a certain duration. ShutUntil and OpenUntil will then be used
by the SmartHome Controller to mediate when conflicts arise. Broadly speaking,
a conflict occurs when two features attempt to maintain two contradictory proper-
ties. As discussed in [9], the values of ShutUntil and OpenUntil can be derived as
part of the specification of the two features by means of the Prohibit predicate.

Runtime Precedence defines several ways in which conflicts can be resolved:
we will call them the semantics of the composition operator. Although they can be
defined more generally and precisely [9], we will focus on the specific example here.

• No Control: In this composition, the requirements for the security and tempera-
ture features should each be met at times when they are not in conflict; but when
conflicts occur, any emergent behaviour is acceptable. It allows, for example, the
window to oscillate in a partly open position. None of the requirements of the
two features may be satisfied.

• Exclusion: In this composition, the requirements for the security and temper-
ature features should each be met at times when they are not in conflict; but
when conflicts occur, the requirement of the feature that started first should have
priority. For example, if the security feature shuts the window before the tem-
perature feature needs to open it, the temperature feature will not be able to shut
the window until the security requirement has been satisfied. This exclusion is
symmetrical.

• Exclusion with Priority. In this composition, the exclusion is asymmetrical, for
instance, in favour of the security requirement. It means that the security feature
can shut the window during the time in which the temperature feature wants the
window open. The temperature feature, however, cannot open the window if the
security feature wants it shut.

Other possible semantics include exclusion with event-level priority [9]. The re-
quirement RC in Fig. 3 says that the window should be opened and shut according
to the Runtime Precedence option the user of the smart home application has
selected.

If the security and the temperature features are implemented as aspects, and if
there is no definition of the ordering of these aspects using the precedence operator,
the weaver will produce the “no control” behaviour defined above. The precedence
operator of AspectJ can produce the composition similar to the behaviour defined
by the “exclusion with priority” option. We now show how the “exclusion” option
can be implemented using the aspect-oriented technique.

3 The Proposed Approach: Runtime Composition of Aspects

In this proposed approach, the problem world domains are implemented first as Java
components, forming the base system. Features are then implemented as aspects

8 Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney, and Bashar Nuseibeh

which weave into the base system of the problem world domains. This separation of
aspects from the base system fits well with the separation of specifications from the
problem world domains because like aspects, specifications can interface with mul-
tiple components, as highlighted in Fig. 3. Composition of the features is regarded
as a separate concern that is implemented as an aspect in its own right.

3.1 Implementing the Problem World Domains

The problem world domains such as Window can be implemented in a straightfor-
ward way. We can simply define a singleton class for each of the domains, and their
variables as class variables and events as methods. (Full listings of all programs in
this section are provided in [14].)
c l a s s Window {

s t a t i c boolean WindowOpen ;
Window () {

/ / code f o r i n i t i a l i z i n g t h e window
WindowOpen = f a l s e ;

}

p u b l i c vo id t i l t O u t () {
/ / code f o r open ing t h e window
WindowOpen = t rue ;

}

p u b l i c vo id t i l t I n () {
/ / code f o r s h u t t i n g t h e window
WindowOpen = f a l s e ;

}
}

Other problem world domains are implemented in a similar fashion, but they are
omitted here for space reasons. In the main method of the ProblemWorldDomains
class, classes for window, time panel, temperature panel and runtime precedence are
instantiated and initialized, as shown below.
p u b l i c c l a s s ProblemWorldDomains {

s t a t i c Window win = new Window () ;
s t a t i c T e m p e r a t u r e P a n e l TeP = new T e m p e r a t u r e P a n e l () ;
s t a t i c TimePanel TiP = new TimePanel () ;
s t a t i c Runt imePrecedence rp = new Runt imePrecedence () ;

p u b l i c s t a t i c vo id main (S t r i n g a r g s []) {
win . s h o w S t a t u s () ;
TiP . N i g h t S t a r t s =2000;
TiP . NightEnds =600;
TeP . NiceTemp = 1 5 ;
rp . O p t i o n s = 1 ;

}
}

Aspect Interactions: A Requirements Engineering Perspective 9

3.2 Implementing the Features

At runtime, features such as the security and temperature features will be long-
running and concurrent processes. Therefore, these features are implemented as
threads. In principle, some features could be implemented without using aspects.
However, to illustrate the problem of aspect interaction, both features our example
are implemented using aspects.

p u b l i c a s p e c t S e c u r i t y F e a t u r e {
s t a t i c long s h u t U n t i l ;
c l a s s Spec implements Runnable {

Thread r u n n e r ;
Window win ;
TimePanel t i P a n e l ;

p u b l i c Spec (S t r i n g threadName , Window w1 , TimePanel t p 1) {
r u n n e r = new Thread (t h i s , threadName) ;
win = w1 ;
t i P a n e l = t p 1 ;
/ / −1 i n d i c a t e s t h a t no need t o keep t h e window s h u t
s h u t U n t i l =−1;
r u n n e r . s t a r t () ;

}

p u b l i c vo id run () {
whi le (t rue) {

i f (c u r r e n t T i m e > t i P a n e l . N i g h t S t a r t s &&
c u r r e n t T i m e < t i P a n e l . NightEnds) {

/ / I t i s n i g h t now , so t h e window s h o u l d be s h u t
/ / and s h o u l d n o t be opened u n t i l t i P a n e l . Nigh tEnds
win . t i l t I n () ;
s h u t U n t i l = t i P a n e l . NightEnds ;
/ / do n o t h i n g u n t i l t i P a n e l . Nigh tEnds

}
s h u t U n t i l =−1;

}
}

}

p o i n t c u t getWinRefs () : e x e c u t i o n (∗ main (. .)) ;
a f t e r () : ge tWinRefs () {

Spec SF =new Spec (” S e c u r i t y F e a t u r e ” ,
ProblemWorldDomains . win ,
ProblemWorldDomains . TiP) ;

}
}

The aspect above implements the security feature by instantiating a new thread
as soon as the main method has been executed. The program then gets hold of the
references to the window object win and the time panel object TiP from the main
method. The aspect also declares the variable shutUntil to indicate the time point
until which the program wants the window to be shut. When the thread starts run-

10 Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney, and Bashar Nuseibeh

ning, it continuously checks whether the current time is between NightStarts
and NightEnds. Notice that the variable currentTime has to be declared
and assigned appropriate values in a format compatible with NightStarts and
NightEnds. If the current time is within the range, then the tiltIn method is called
and the value of shutUntil is set to NightEnds.

It is worth emphasizing that the security feature does not stop the temperature
feature calling the tiltOut method during the night. The temperature feature is im-
plemented likewise: it opens the window when it is too hot and indicates the length
of time it wishes to keep the window open by setting the value of openUntil.
Since the two features are largely independent, they do not communicate with each
other about what they do not want the other feature to do. This is in line with the
principle of separation of concerns: individual features are not concerned with how
they will be composed together.

Notice if the security and temperatures are implemented as singleton classes then
the variables shutUntil and openUntil are to be treated as class variables.

This completes the implementation of the temperature and security features. If
these programs are run, the ordering of the two features is entirely random, and will
satisfy the “no control” option discussed above.

3.3 Implementing Composition Frames

The composition controller SmartHomeController is implemented by a separate
aspect. This new aspect monitors the method calls made by the security and tem-
perature features, and examines the openUntil and shutUntil to see whether
calls to the tiltOut and tiltIn methods should proceed. As indicated in Fig. 3
the controller will rely on the runtime precedence option selected by the user. If the
user wants the “exclusion” option, for instance, the tiltOut method call will be
delayed until the time point shutUntil has passed, and the tiltIn method call
will be delayed until the time point openUntil has passed. These delays could be
achieved by putting the threads to sleep.

p u b l i c a s p e c t Smar tHomeCon t ro l l e r {
p o i n t c u t d e l a y T i l t I n () : c a l l (void t i l t I n (. .)) ;
b e f or e () : d e l a y T i l t I n () {

/ / t h e window i s a b o u t t o t i l t I n
i f (T e m p e r a t u r e F e a t u r e . o p e n U n t i l > 0) {

/ / b u t t h e window s h o u l d remain open
i f (ProblemWorldDomains . rp . O p t i o n s == 1) {

/ / t h e u s e r has s e l e c t e d t h e e x c l u s i o n o p t i o n
/ / w a i t u n t i l T e m p e r a t u r e F e a t u r e . o p e n U n t i l has p a s s e d

}
}

}

p o i n t c u t d e l a y T i l t O u t () : c a l l (void t i l t O u t (. .)) ;
b e f or e () : d e l a y T i l t O u t () {

Aspect Interactions: A Requirements Engineering Perspective 11

/ / t h e window i s a b o u t t o t i l t O u t
i f (S e c u r i t y F e a t u r e . s h u t U n t i l > 0) {

/ / b u t t h e window s h o u l d remain s h u t
i f (ProblemWorldDomains . rp . O p t i o n s == 1) {

/ / t h e u s e r has s e l e c t e d t h e e x c l u s i o n o p t i o n
/ / w a i t u n t i l S e c u r i t y F e a t u r e . s h u t U n t i l has p a s s e d

}
}

}
}

The above program also provides a template for the implementation of the ex-
clusion with priority option. For instance, if we want to give priority to the security
feature over the temperature feature, there is no need to delay calls to tiltIn, and only
calls to tiltOut should be examined for a possible delay.

3.4 Comparing Precedence Operator with Composition Frames

The precedence operator of AspectJ is, in a sense, similar to Composition Frames,
in particular to the exclusion with priority option. The similarity lies in the fact that
they both provide mechanisms for ordering aspects. There are, however, notable
differences.

First, the precedence operator has only one semantic, and the operator is applied
at compile-time. Composition Frames provide a multitude of possible semantics, of
which we have discussed three in this chapter but there are more [9]. Operators of
Composition Frames are applied mostly at runtime, although they can also achieve
the effect of compile-time composition. In this sense, Composition Frames can be
seen as an extension of the precedence operator.

Second, the precedence operator is applicable only when there is a joinpoint
matching with advice from multiple aspects. The pointcuts in our composition oper-
ator can be defined on multiple joinpoints. In the smart home example, pointcuts are
defined on tiltOut and tiltIn, and they are matched with different aspects for delaying
the events involved. In order for the precedence operator to work in the smart home
example, tiltOut and tiltIn have to be covered by a single pointcut definition, while
providing two aspects for dealing with different events. Such a design is feasible
but introduces unnecessary complications. When used judiciously, the precedence
operator works well as a simple compile-time operator, whilst Composition Frames
provide a richer set of runtime composition operators.

3.5 Fairness in Exclusion

In our implementation of the temperature and security specifications, we have used
the Java thread mechanism to design them as long-running and concurrent pro-

12 Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney, and Bashar Nuseibeh

cesses. The thread mechanism offers an added advantage when delaying method
calls: the thread can simply be put to sleep for a certain duration. For example, the
temperature thread wanting to open the window can be put to sleep until the night
ends. However, the sleep mechanism of Java cannot guarantee that once the night
finishes, the temperature feature will definitely open the window: in fact, it is quite
possible that the security feature requests to keep the window shut again before
the temperature feature closes it and that the request is successful, thus effectively
blocking the temperature feature. If fairness of access is important in the application,
then the thread synchronisation facility of Java may have to be used.

4 Common Case Study: Discussion

Our approach is applicable when there are interacting aspects and features and the
software system needs to resolve them at runtime in order to continue to satisfy
the requirements as far as possible. In the Crisis Management System (CMS) [6],
there are several requirements, which under certain runtime conditions will make
conflicting demands on the system.

For instance, although it may be possible to satisfy the statistic logging require-
ment and the real-time requirement individually and their composition most of the
time, there may be runtime conditions when it is not possible to log all data access,
and provide information about an on-going crisis at intervals not exceeding 30 sec-
onds. In such cases, the users may want to give priority to one requirement over
another in order to maintain a satisfactory level of requirement satisfaction.

Likewise, one requirement for multi-access in CMS states that the system should
support management of at least 100 crises at a time. Perhaps not all crises are equally
important at all times: some could be more important than others in terms of the level
of security they require. Again, in such cases, requirements for certain crises may
have higher priority over others.

Our approach for resolving interactions between aspects at runtime could be
helpful in such cases.

5 Related Work

The ideas presented in this chapter are related to several strands of research work.
However, giving a systematic review of all related work is beyond the scope of the
chapter. Instead, the following discussions provide a brief overview of some of the
work.

Composition Frames: Jackson [5] introduces the conceptual framework of
Problem Frames. Laney et al. [8] first use Composition Frames to compose require-
ments and resolve conflicts before formalizing the composition in [9]. We deploy
Composition Frames as a kind of architectural wrapper in order to evolve a feature-

Aspect Interactions: A Requirements Engineering Perspective 13

rich software system [15]. This chapter discusses the synergy between Composition
Frames and aspect-oriented programming with respect to managing feature interac-
tion and managing aspect interaction. Both approaches are based on the principle of
separation of concerns, but offer different ways of composing features and aspects.

Feature Interaction: The problem of feature interactions is a long-standing
problem in software engineering. Although they were first observed in telecom-
munication software systems [2], they are now considered to be a more general
problem affecting many modern software systems [1, 7, 4]. Sanen et al. [12] high-
light the issue of aspect interaction and contribute a scheme to classify and record
aspect interactions. This chapter provides a general mechanism to resolve aspect
interactions at runtime.

Aspect Interaction: Mussbacher et al. [10] propose an approach for detecting
aspect interactions, in which aspects are first annotated with domain-specific mark-
ers. These markers are then mapped to a goal model showing how markers influ-
ence each other before conflicting markers and their associated aspects are detected.
Other approaches to detecting feature interactions, as well as the difficulties faced
by these approaches, are discussed by Velthuijsen [16]. The approach presented in
this chapter focuses on resolving, rather than detecting, aspect interactions.

Requirement Interaction: Similar to our approach, Chitchyan et al. [3] consider
the problems with using syntactic operators when composing requirements written
in a natural language. They propose a new language for documenting textual re-
quirements and their composition. Various formulations of the temporal composi-
tion operators in their work are similar to the three semantics of the composition
operator given in this chapter. Weston et al. [17] present a formalisation of a simi-
lar semantics-based approach to resolving requirements conflicts. However, our ap-
proach is aimed at resolving conflicting aspects at runtime, rather than resolving
conflicting requirements at design time.

Dynamic Aspect Weaving: There are a number of approaches to weaving as-
pects at runtime. Popovici et al. [11] suggest that they can be divided into compile-
time, load time and runtime approaches, and provide a framework for runtime aspect
weaving. Although the problems addressed by their approach and ours are similar,
their work requires modification of the Java Virtual Machine in order to load and
unload aspects at runtime, and there is a performance penalty every time an aspect
is weaved or unweaved. Our implementation uses only the standard AspectJ con-
structs. While their approach offers a way to resolve aspect interactions by weaving
and unweaving aspects at runtime, the variety of composition semantics in our ap-
proach is more flexible. For instance, exclusion can be achieved without unweaving
and weaving aspects at runtime. However in our approach, aspects have to be known
at compile time: their approach does not have this limitation.

Locking Access to Shared Variable: There is a long history of research on con-
trolling access to shared variables by concurrent programs. Hoare-style monitors are
a case in point. Typically in such cases, a lock has to be introduced in order to indi-
cate when a given program can or cannot access the shared variable. The variables
openUntil and shutUntil in our example are similar to locks, but these locks
cannot be observed, let alone be enforced, by the window. Composition Frames

14 Thein Than Tun, Yijun Yu, Michael Jackson, Robin Laney, and Bashar Nuseibeh

make use of these locks, together with runtime conditions and user preference to
resolve the conflicts. This mechanism provides a neat way to separate concerns of
the individual aspects from the concern of their composition.

6 Conclusion

In this chapter, we have described that aspect-oriented software systems that are de-
signed to satisfy multiple requirements may have joinpoints, each of which can be
matched with advice from several aspects. In such cases, aspect weavers, such as the
one in AspectJ, are free to choose the ordering of aspects. If a particular ordering
of aspects is needed, the developer can specify the ordering using the precedence
operator, which is used by the weaver to determine the ordering at compile-time.
Since the ordering specified by the precedence operator cannot be changed at run-
time, the composition of aspects can be over-restrictive, and unresponsive to runtime
conditions.

In previous work on detection and resolution of feature interactions, Composi-
tion Frames have been proposed and formalized as a way to compose features and
resolve feature interactions at runtime. Extending the work, we have now proposed
that Composition Frames can be used to compose aspects and resolve aspect interac-
tions at runtime. The proposed approach has been illustrated with an aspect-oriented
implementation of a simple example from the smart home application.

In our implementation, the problem world domains are first implemented as
classes in the base system. Features are implemented as aspects that access class
variables and call methods of classes. When aspects access shared variables, per-
haps implicitly through method calls, they indicate the length of time for which
they want exclusive access to the shared variables. The length of time can often
be derived as part of the feature specifications. Respecting the principle of separa-
tion of concerns, aspects do not communicate with each other about their intention
for exclusive access. Composition Frames are implemented as distinct aspects that
monitor method calls by other aspects and when an interaction is detected, attempt
to resolve the interaction. Composition Frames provide a number of semantics by
which the aspects can be composed at runtime and in a way responsive to runtime
conditions. This gives developers additional mechanisms for composing aspects.

Acknowledgements Feedback from the anonymous review process has helped improve this chap-
ter. This work is partially funded by a Microsoft Software Engineering Innovation Foundation
(SEIF) Award, by Science Foundation Ireland grant 10/CE/I1855 and by the European Research
Council.

Aspect Interactions: A Requirements Engineering Perspective 15

References

1. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a critical re-
view and considered forecast. Comput. Netw. 41, 115–141 (2003). DOI 10.1016/S1389-
1286(02)00352-3

2. Cameron, E., Griffeth, N., Lin, Y.J., Nilson, M., Schnure, W., Velthuijsen, H.: A feature-
interaction benchmark for in and beyond. Communications Magazine, IEEE 31(3), 64 –69
(1993). DOI 10.1109/35.199613

3. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-based composition for aspect-
oriented requirements engineering. In: Proceedings of the 6th international conference on
Aspect-oriented software development, pp. 36–48. ACM, NY, USA (2007)

4. Hall, R.J.: Fundamental nonmodularity in electronic mail. Automated Software Engineering
12(1), 41–79 (2005)

5. Jackson, M.: Problem Frames: Analyzing and structuring software development problems.
ACM Press & Addison Wesley (2001)

6. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis management systems: a case study for aspect-
oriented modeling. Transactions on aspect-oriented software development VII pp. 1–22 (2010)

7. Kolberg, M., Magill, E.H., Wilson, M.: Compatibility issues between services supporting net-
worked appliances. IEEE Communications Magazine 41(11), 136–147 (2003)

8. Laney, R., Barroca, L., Jackson, M., Nuseibeh, B.: Composing requirements using problem
frames. In: Proceedings of 12th IEEE International Conference Requirements Engineering
(RE’04), pp. 122–131. IEEE Computer Society (2004)

9. Laney, R.C., Tun, T.T., Jackson, M., Nuseibeh, B.: Composing features by managing incon-
sistent requirements. In: L. du Bousquet, J.L. Richier (eds.) ICFI, pp. 129–144. IOS Press
(2007)

10. Mussbacher, G., Whittle, J., Amyot, D.: Semantic-based interaction detection in aspect-
oriented scenarios. In: RE, pp. 203–212. IEEE Computer Society (2009)

11. Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented programming. In:
Proceedings of the 1st international conference on Aspect-oriented software development,
AOSD ’02, pp. 141–147. ACM, New York, NY, USA (2002)

12. Sanen, F., Truyen, E., Joosen, W., Jackson, A., Nedos, A., Clarke, S., Loughran, N., Rashid,
A.: Classifying and documenting aspect interactions. In: Y. Coady, D.H. Lorenz, O. Spinczyk,
E. Wohlstadter (eds.) Proceedings of the Fifth AOSD Workshop on Aspect, Components, and
Patterns for Infrastructure Software, pp. 23–26 (2006)

13. The AspectJ Team: The AspectJ Programming Guide. Xerox Corporation (2001). URL
http://www.eclipse.org/aspectj/doc/next/progguide/index.html

14. Tun, T.T.: Aspect compoistion using composition frames: Java program listings. Tech. Rep.
TR2012/09, The Open University (2012)

15. Tun, T.T., Trew, T., Jackson, M., Laney, R.C., Nuseibeh, B.: Specifying features of an evolving
software system. Softw., Pract. Exper. 39(11), 973–1002 (2009)

16. Velthuijsen, H.: Issues of non-monotonicity in feature-interaction detection. In: K.E. Cheng,
T. Ohta (eds.) FIW, pp. 31–42. IOS Press (1995)

17. Weston, N., Chitchyan, R., Rashid, A.: A formal approach to semantic composition of aspect-
oriented requirements. In: Proceedings of the 2008 16th IEEE International Requirements
Engineering Conference, pp. 173–182. IEEE Computer Society, Washington, DC, USA (2008)

