
Maintaining Security Requirements of Software

Systems using Evolving Crosscutting

Dependencies

Saad Bin Saleem
1
 Lionel Montrieux

1
Yijun Yu

1
 Thein Than Tun

1
 and Bashar

Nuseibeh
1, 2

1
Centre for Research in Computing, The Open University, United Kingdom

2
Lero – The Irish Software Engineering Research Centre, Ireland

Abstract
Security requirements are concerned with protecting assets of a system from harm.

Implemented as code aspects to weave protection mechanisms into the system, se-

curity requirements need to be validated when changes are made to the programs

during system evolution. However, it was not clear for developers whether exist-

ing validation procedures such as test cases are sufficient for security and when

the implemented aspects need to adapt. In this chapter, we propose an approach

for detecting any change to the satisfaction of security requirements in three steps:

(1) identify the asset variables in the systems that are only accessed by a join-point

method; (2) trace these asset variables to identify both control and data dependen-

cies between the non-aspect and aspect functions; and (3) update the test cases ac-

cording to implementation of these dependencies to strengthen the protection

when a change happens. These steps are illustrated by a case study of a meeting

scheduling system where security is a critical concern.

1. Introduction

Security requirements are about protecting assets of a system from the harms

caused by malicious attackers [1]. As one of well-known crosscutting concerns,

changes to security implementation can often lead to failures to satisfy other re-

quirements in the system. Implementing security requirements as security aspects

could help modularise the protection mechanisms that would otherwise clutter the

non-security functions of the system [1]. However, any part of the system includ-

ing both aspect and non-aspect functions can change, making it difficult to main-

tain the satisfaction of security requirements. Here we use aspect functions to refer

the advising functions inside the aspect and we use the join-point function to refer

to where the aspect is weaved.

An example is shown in Figure 1: the class diagram of a secure meeting sched-

uler system. In this system, the Permissions aspect implements a security re-

2

quirement. The purpose of this security requirement is to ensure that only the au-

thorised users could be allowed to view/edit relevant information about the meet-

ing rooms. The aspect crosscuts the join-point methods bookMeeting in the

Meeting class and showAvailableRoom in the Room class. Through a test

case, the satisfaction of this security requirement is checked that only an author-

ised user can book a meeting or list available room(s), and an unauthorised user

cannot do so. When change happened to any function, usually one has to update

the test case in order to check the satisfaction of the same security requirement.

The difficulty here is that such an update could be ad hoc because most of the time

the security requirements are stated at a higher level of abstraction and are tested

implicitly by the test cases

Figure 1: The class model of a Secure Meeting Scheduler system

3

In this chapter, we propose an approach for detecting any change to the satis-

faction of security requirements in three steps: (1) identify the asset variables in

the systems that are only accessed by a join-point method; (2) trace these asset

variables to identify both control and data dependencies between the non-aspect

and the aspect functions; (3) update the test cases according to these dependencies

to strengthen the protection when a change happens. An asset variable refers to a

variable in the code that is being protected by the security aspect. For example,

Equipment.name and Room.name are asset variables in the meeting

scheduler system. The main contributions of this work are two-folds:

1. We explicitly represent the security requirement as assets’ protections in con-

crete test obligations or test cases;

2. We update such test obligations by making use of the change impact analysis

on the assets variables and protection conditions.

The proposed steps will be illustrated by a small case study of a meeting

scheduling system where security is an important concern. The remainder of the

chapter is organised as follows. Section 2 discusses related work and background

before explaining our approach in detail. Section 3 presents our dependency anal-

ysis framework that focuses on the satisfaction of security requirements before

and after the code has changed. Section 4 details the application of this framework

to a case study that exposes interesting research challenges. Finally, we conclude

in Section 5 with an outlook for the future research directions.

2. Background

Before explaining our framework, we first discuss some related work in the ar-

ea of aspect-oriented requirements (early aspects), evolving security requirements

and dependency analysis.

2.1 Aspect-oriented and evolving security requirements

Rashid et al [2] proposed the concept of “early aspects” as a form of crosscut-

ting concerns in requirements. The notion of eliciting or identifying early aspectu-

al requirements seeks to prevent the introduction of crosscutting concerns at a later

design and implementation stage. There are many possible definitions of security

requirements as discussed by Mellado et al [3]. However, in this work we adopt

the same definition of security aspects as in [1], where it is defined as the way to

protect the assets of the system because of cross cutting relationship between the

threat descriptions and functional requirements. Here threat descriptions are the

set of concerns to define relationship between the threats and system objects. Sim-

4

ilarly, we adopted the definition of security requirements as in [4], which is de-

fined as the way to protect important assets of the system from the harm caused by

the malicious attacker. As we consider the requirements and aspects in the prob-

lem world rather than in the solution world, therefore we adopted the Haley’s def-

initions. However in this work our focus is on the change impact analysis with re-

spect to implementation of the security aspects.

Security-related code tends to be scattered throughout many classes, and struc-

turally separating security concerns, e.g. access control, was a challenge until the

proposal of Aspect Oriented Programing (AOP) paradigm. There are many ap-

proaches proposed to solve the problem of separating security concerns using Ob-

ject Oriented Programming (OOP) paradigm that includes modularizing different

concerns. However, the problem of when and where to call a security mechanism

was not satisfactorily solved using the OOP paradigm. A security implementation

often calls other modules inside the system. The internal encryption mechanism is

an example of such a system, where key selection depends on the communication

channel. Therefore, it is hard to update all the system calls in response of change

requests when lines of code are in the thousands. The AOP is a solution to this

problem that not only specifies the behaviour of a specific concern but also binds

the relevant applications. Win et al [5] conducted case studies on a Personal In-

formation Management System (PIM) and FTP-server to implement security re-

quirements using aspect technology. They have confirmed that implementing se-

curity using AOP is useful to explicitly separate the security logic from the

application logic. In this way, it is much easier for developer to take care of the

applications part and security experts to check that whether a security policy is

correctly implemented. Second, separating module (aspect), and binding (point-

cut) helps to cope with unanticipated changes. The aspect and point-cut are con-

cepts used in the AspectJ, which is a Java extension of the AOP. A similar study

has been conducted by the Viega et al [6] to check the benefits of writing secure

code using AOP extension of the C-programming. They also reported that using

AOP is very useful to design security into the application without mixing the secu-

rity and application logic. Hence, the existing literature supports aspectual imple-

mentation of security is better than the non-aspectual implementation. Therefore,

based on this fact we are using aspectual implementation of security in our study.

Haley et al described functional requirements and threat descriptions as two

types of concerns to derive security requirements using aspect oriented techniques

[1]. The functional requirements are set of concerns those help in understanding

the different objects in the system to perform an operation. On the other hand,

threat descriptions describe relationships between threats and objects. In case of

the security requirement, the objects are assets those need to be protected. In this

study, we are using the term asset variable to refer asset objects because assets are

implemented as variables in the system code. Second, in this study we are doing

change impact analysis at the code level rather than at the design level. Therefore,

it makes more sense to call these asset implementations as asset variables. We

named the locations of system where an object (asset) is implemented and a secu-

rity mechanism is called to protect this asset as join-point functions. Similarly, we

5

name the functions where assets and security mechanisms are not called as non-

join points functions. This convention of name is in-line with the Haley’s defini-

tion that join points are locations where objects are shared among functional re-

quirements and threat descriptions.

 Many forms of early aspects models have been proposed, including goals [10]

and problem frames [1], the targeted requirements are goal or problem-oriented

models. Yu et al [7] identify aspectual requirements from soft-goals, on the other

hand Haley et al [1] identify them using problem frames. It is worth noting that

most early aspects frameworks treat security requirements as one of the non-

functional requirements. However, Haley et al [1] define the point-cuts of security

aspects specifically based on the definition of security requirements [4], i.e., pro-

tecting assets from harms of malicious attacks. They also suggested that security

requirements can be expressed as trust assumption made by the domain expert

about security of the system. Recently Franqueira et al [8] have extend the security

requirements argumentation process of Haley et al [4] to strengthen the trust as-

sumptions by conducting risks assessment.

The idea of tracing and validating security aspects using requirements-driven

approach is not new by itself, as Niu et al [9] have demonstrated the feasibility to

support the whole aspect development lifecycle using the goal-oriented approach.

However, our work reported here is different in that we focus on change impact

analysis of security aspects. Unlike the runtime-monitoring framework proposed

by Salifu et al [10], in this work we concentrate on the analysis at the development

time. Nhlabatsi et al [11] survey the literature on security requirements and soft-

ware evolution, where the management of evolving security requirements is identi-

fied as an outstanding research issue.

2.2 Existing security dependency analysis frameworks

The term dependency refers to a relationship among different elements of a

program or between two different programs relying on each other to perform a

particular task. Such dependencies play an important role in program execution

and are classified into data and control dependencies [12]. A data dependency ex-

ists when the output of a program becomes the input for another program. On the

other hand, a control dependency is related to the ordering and conditions of the

execution of the program. Ferrante et al., have introduced the Program Dependen-

cy Graph (PDG) to represent the relationship between different programs based on

the data and control dependencies [13]. Similarly, Pugh have proposed an ap-

proach to remove false data dependencies to prevent program transformation [14]

and later improved the approach by using integer programming [15]. Both of the

proposed approaches aim to improve the program understanding, for instance,

when analysing changes to the programs. A security requirement dependency is

defined as a relationship between the aspect and non-aspect functions to protect an

asset variable of a program.

6

In the field of network security, Yau and Zhang [16] refer network security

dependency as a relationship between two nodes in the network when a program

or service intruded by an attacker in one node helps to attack the other node.

Therefore, they consider that it is important to identify such security dependency

relationships among all the nodes. Johansson [17] have introduced that security

dependency exists between two nodes of a network when they depend each other

for their security. He categorises them into acceptable and unacceptable depend-

encies: an acceptable dependency means that a less sensitive system of a network

depends on the more sensitive system for its security, an unacceptable dependency

is referred as a relationship when the more sensitive system depends on the less

sensitive system for its security. For example, it is acceptable, if a workstation de-

pends on a domain controller for its security. A domain controller depending on a

workstation for its security is unacceptable. However, these works are not at the

program level; therefore they are not directly applicable to the scope of security

program aspects. However, all these works stressed the need to manage program

dependencies, which is also true for security implementation to avoid the risk of

attack on the entire system in case of attack on one vulnerable module. Therefore

managing security dependencies at the program level is equally important to min-

imize the risk of system wide attacks.

To the best of our knowledge, there is still a need to perform dependency anal-

ysis of evolving security requirements that are implemented using security as-

pects.

3. A Dependency Analysis Framework for Security Aspects

An overview of our proposed framework is presented in Figure 2, showing in-

puts, outputs and the three steps.

7

Figure 2: An overview of our SD framework in three steps

The inputs to the SDF include (1) a system that already has the security re-

quirements implemented as a list of security aspects, (2) a set of test cases that

check the satisfaction of security requirements; (3) a set of changes to the imple-

mentation of the system. The outputs from the SDF include both (1) a set of up-

dated test cases, and (2) a list of updated security aspects that may enhance the

protections.

Specifically, the framework can be seen as three consecutive steps: initially (1)

the concrete assets to be protected are identified from the differences between

join-point and non-join-point functions. Without weaving the protection into the

join-points, one may assume that certain assets are unprotected. Therefore their

8

identification can be helped by existing join-point control-flows; (2) from these

identified asset variables, program slicing [18] can be performed to obtain the con-

trol and data dependencies that may leads to the unwanted exposure of these asset

variables due to the changes to the functions; and finally (3) from these analysed

dependencies, the test cases and security aspects are inspected to check whether

the exposed asset values are covered by the new test obligations or by extending

the scope of protection through an updated point-cut.

public class Employee {

 public String person;

public int age;

 public int salary;

 public Employee(String person) {

 this.person= person;

this.age = 0;

this.salary =0;

 }

 public int getSalary() {

 if(age<60){

 salary=100000 + 5000 * (age - 60);

 } else if(age>=60){

 salary=100000;

 }

 return salary;

 }

}

public class User {

 public String userName;

 public boolean authorized;

public User(String userName, boolean authorized) {

 this.userName = userName;

 this.authorized = authorized;

 }

public int obtainSalary(Employee person) {

 return person.getSalary();

 }

boolean hasPermissions() {

 return authorized;

}

}

public aspect CheckPermission {

pointcut p(): (call(public int Employee.getSalary())

&&args());

 int around(): p() {

if (((User)thisJoinPoint.getThis()).hasPermissions())

{

 return proceed();

 } else {

 return -1;

 }

 }

9

}

Figure 3: Listings of the running example: the Employee and User clas-

ses and the CheckPermission aspect

The detail of each step is demonstrated through a running example consisting

of three classes (i.e., Employee, User and Role), one aspect (i.e., Check-

Permission) and one test case (i.e., SRTestCase).

The implementation of all these classes is shown in Figure 3. The class Em-

ployee has instance variables age, salary and a method getSalary() to

get the value of the salary according to person’s age. Similarly, the class User

has two variables userName, authorized and two methods access (),

has Permissions (). The aspect CheckPermission is implemented to

run whenever a getSalary() function is called; the advice part of the aspect

runs around the getSalary() function call and returns the control to calling

methods when the user has the right permissions as indicated by the truth value re-

turned from the implemented hasPermissions() function. Otherwise, the ad-

vice code aborts the further execution of the program.

In this running example, the security requirement to be maintained is “to pro-

tect the salary from the unauthorised users to view or to change”. The test case in

Figure 4 checks whether the security requirement is correctly implemented.

import static org.junit.Assert.*;

import org.junit.Test;

public class SRTestCase {

@Test

 public void testSecurity() {

 User user = new User("Saad", false);

assertEquals(-1, user.obtainSalary(new Employ-

ee("Lionel")));

 user.authorized = true;

 assertTrue(-1 != user.obtainSalary(new Employ-

ee("Lionel")));

 }

}

Figure 4: The security implementation validated as a unit test

The first type of change considered here is (C1) which is due to introduction of

a new requirement in the program. For example the system context is changed and

now salary is calculated based on the new retirement age “65”. This change

should be reflected in the program by modifying age constant variable from

“60” to “65”. The second type of change (C2) is about updating existing imple-

mentation of the system. For example, the setAge()method in Employee class

needs to be updated to reflect salary calculation according to the new age. The

third type of change (C3) is about a scenario when a new security mechanism is

introduced in the system. For example now the system security is checked using

the direct access control (by user permission) to the indirect role-based access con-

10

trol (by user-role-permission). Given these inputs, one can analyse whether these

changes could lead to the security requirement not being satisfied anymore.

The first step of our proposed approach is applied as follows. The join point be-

ing protected by the advice in the CheckPermission aspect is Employ-

ee.getSalary()whereby salary is identified as an asset variable to be pro-

tected from viewing or changing by unauthorized users, e.g., when it is called by

the obtainSalary() method.

After identifying the asset variable, in the second step we analyse both the data

and control dependencies: Employee.age and User.authorized are found

between the aspect (User.obtainSalary, CheckPermisson.around)

and non-aspect functions (Employee.getSalary, Us-

er.hasPermissions) respectively. The guard condition for the getSala-

ry() computes User.authorized, i.e., a control dependency; the computa-

tion of salary itself makes use of the variable Employee.age, thus a data

dependency.

In the third step, we need to combine the program dependencies with the fol-

lowing proposed changes to tell whether there is a need to update the security as-

pect.

3.1 Change due to a new system requirement (C1)

For the change of the retirement age (see the underlined parts in Figure 5), a

change to the computation of the asset Employee.getSalary() is detected

because of the data dependencies. Although it has to do with integrity, however,

this change will not be detected as a threat to the asset for malicious access (au-

thorisation). Therefore there is no need to update the CheckPermission aspect

or the corresponding SRTestCase test case.

public class Employee {

 public int getSalary() {

 if(age<65){

 salary=100000 + 5000 * (age - 65);

 } else if(age>=65){

 salary=100000;

 }

 return salary;

 }

}

Figure 5: C1: Change to the Employee class

3.2 Change due to an update of existing implementation (C2)

On the other hand, if a user has the permission to modify the Employee.age, as

suggested by adding a method to update Employee.age, e.g., by using the

setAge() method in Figure 6.

/* New function setAge is added to the Employee class*/

11

public class Employee {

public void setAge(int ageArg){

 this.age=ageArg;

 }

}

public class User {

 public String userName;

 public boolean authorized;

 Role userrole;

 public User(String userName, Role userRole) {

 this.userName = userName;

 this.userrole=userRole;

 }

 public int obtainSalary(Employee person) {

 person.setAge(40);

 return person.getSalary();

 }

}

Figure 6: C2: Change to the User class

In this case, although the Employee class is not changed, it is mandatory to pro-

tect the Employee.age by the same level of permissions. Therefore it is re-

quired to update the pointcut expression in the CheckPermission aspect as

follows:
pointcut p():(call(public * Employee.getSalary() || public * Employ-

ee.setAge())&& args());

3.3 Change due to a new security mechanism (C3)

The third example change introduces role-based access control into the system by

modifying the User.hasPermission() method, as shown in Figure 7.

public class Role {

 public String role;

 public boolean authorized;

 public Role(String role, boolean authorized) {

 this.role=role;

 this.authorized=authorized;

 }

 boolean hasPermissions(){

 return this.authorized;

 }

}

public class User {

12

 boolean hasPermissions() {

 return userrole.hasPermissions();

}

}

Figure 7: C3: Change according to role-based access control mechanism

public class SRTestCase {

@Test

 public void testSecurity() {

 Role student = new Role("Student", false);

 User userRightRole = new User("Saad",student);

assertEquals(-1, userRightRole.obtainSalary(new Em-

ployee("Lionel")));

Role professor = new Role("Professor", true);

 User userWrongRole = new User("Saad",professor);

assertTrue(-1 != userWrongRole.obtainSalary(new Em-

ployee("Lionel")));

 }

}

Figure 8: C3: change to the test case is required

Here, the control dependency to hasPermissions() has changed because

the system is now giving access based on the user’s role. Although this change

does not influence the interface between the CheckPermission aspect and the

join points, it requires the test case SRTestCase to check the satisfaction of se-

curity requirement differently, as shown in Figure 8.

In summary, we have shown that analysis of the data dependencies on the asset

variables and the control dependencies on the protection condition results in the

identification of changes in the security aspects or the security test cases. In the

following section, we show an application of the methodology to a case study in

order to discuss some general issues.

4. Application to the Meeting Scheduler system

Since the common case study does not provide source code, we could not use it

for our proposed approach. To illustrate our approach, we have used the Meeting

Scheduler system exemplar case study, extended with the security requirements.

This case study is selected because of simplicity and sufficiency to represent the

problem [19]. We handle the Meeting Scheduling problem for the members of the

Computing department of the Open University based the Jennie Lee Building

(JLB). It involves the physical and social contexts of the members of the depart-

ment. The roles of the people include faculty members, fulltime PhD students,

secretaries, course team members, tutors and research fellows, etc. For simplicity,

13

in this study only these regular roles of stakeholders are considered to interact

with the system, other roles such as visitors are not considered. Since laptops and

USB keys are assets in the meeting rooms of the building, security measures have

been taken to protect the open-plan areas and the meeting rooms. Great care has

been taken to ensure that the measures do not hinder people performing their jobs.

By looking at the meeting scheduler problem in JLB and interviewing the stake-

holders inside the building, one can construct a secure meeting scheduling system.

 Figure 1shows a simplified class diagram of the secure Meeting Sched-

uler system design. The Protection class is part of the Permissions aspect

in the design, which crosscuts the showAvailableRoom and createRoom

join-point functions. Both functions share a common asset variable: the infor-

mation of available meeting rooms inside the building (Room.roomList). In

this example, the Permissions aspect verifies that the users have the right

permissions before they access any information relevant to the meeting rooms.

Any change to the advising function checkValidPermisions, or to the join-

points functions must be inspected against the implementation of the security re-

quirement. The security requirement is to protect the information of available

rooms from the access of unauthorised potentially malicious attackers. Otherwise,

either the system would not function anymore or all the users would have permis-

sions to access relevant information about meetings rooms.

Suppose the Permissions aspect is originally implemented by checking the

username and password against a predefined list of access control (Us-

er.userList). A change (C’’1) has happened such that not only the available

meeting room, but also valuable equipment such as projectors are considered as

the assets (Equipment.equipmentList).

Another change (C’’2) is to do with introducing Role Based Access Control

(RBAC) (User.roleList) to the users. To analyse whether the current imple-

mentation can still satisfy the security requirement or not, we applied the depend-

ency analysis methodology as follows.

First we identified the asset variables Room.roomList and Equip-

ment.equipmentList from the join-point functions showAvailable-

Room, createRoom and createEquipment. In the second step, we identi-

fied data dependencies reading room information between Room.readRoom

and Equipment.readEquipment. In this case, the equipment is inside a

room, therefore we always need to read the room information to know the where-

abouts of the equipment. Similarly, we identified the control dependency be-

tween User.userList and User.roleList because assignment of a role

to a user depends on the condition that the user must be valid. In this way, system

always checks the validity of the user before checking his/her role. These depend-

encies could be exploited by malicious attackers when change happened to the as-

set variables. In this case study, the Equipment.name, Room.name and

Meeting.name are classified as asset variables.

After the proposed change C’’1, createEquipment was added into the system,

making it necessary to include it into the scope of protection as well. The original

implementation of the Permissions aspect worked perfectly for both cre-

14

ateEquipment and createRoom functions. However, when C’’2 happened,

it was found that the security requirement for the showAvailableRoom func-

tion was not fulfilled. The reason is that different users now have different roles

and the Permissions aspect did not consider the roles of users while giving ac-

cess to the system. It means the Permissions aspect still relies on the control

dependency User.userList instead of User.roleList in case of change

from access list to RBAC protection mechanism. This change to the protection

mechanism is not reflected in the system; therefore the control dependency Us-

er.userList leads to the exposure of asset variables Room.roomList and

Equipment.equipmentList. In an initial attempt, function call to check the

roles of user was made inside the showAvailableRoom join-point function.

However, the change was not effective because createEquipment and cre-

ateRoom are not directly involved with RBAC.

After this change, however, the system did not show available rooms and still the

system security requirement is not satisfied according to security requirement test-

case. Actually, still the change was made to only the join-point function show-

AvailableRoom. To respond to the change for satisfying the security require-

ment, the advising function of the Permissions aspect and the other join-points

should be changed as well. Not only the join-point and advising function but also

this change in security requirement should be tested by a new unit test case. Later

to reflect the change, we removed the RBAC check from inside the showAvail-

ableRoom function, and updated the Permissions aspect with the RBAC

check instead. In this way, the new check in permission aspect depends on the

User.roleList variable instead of depending on User.userList. Simi-

larly, the security requirement’s test-case is also updated by checking the permis-

sions based on the role rather than based on the users.

5. Conclusion

In this chapter, we have illustrated the need for a systematic approach to handle

changes made to security-critical programs, using a running example and our

meeting scheduler case study. There are two main observations: (1) Change can

happen to any part of the system, including both the aspect and non-aspect part of

the implementation. When a change happens, the validation procedure (test cases)

for the security requirements may need to be updated even if the security require-

ments have not changed; (2) both control and data dependencies can have impact

on the validation of security requirements. Therefore it is important to check

whether the implementation of security aspects can catch the problematic changes,

for instance, the point-cut expressions that need to be updated in order to include

more changing functions into the scope.

In future, we aim to automate some part of the analysis so that it is possible to

reduce the workload for the developers when the system is changed frequently.

Also we aim to apply the framework to a substantially larger case study in the

15

public domain so that our findings can be generalised and shown to be useful for

security practitioners.

References

1. Haley, C.B., Laney, R.C., Nuseibeh, B.: Deriving security requirements from crosscutting

threat descriptions. Proceedings of the 3rd international conference on Aspect-oriented

software development. pp. 112–121. ACM, New York, NY, USA (2004).

2. Rashid, A., Sawyer, P., Moreira, A., Araujo, J.: Early aspects: a model for aspect-oriented

requirements engineering. Requirements Engineering, 2002. Proceedings. IEEE Joint In-

ternational Conference on. pp. 199 – 202 (2002).

3. Mellado, D., Blanco, C., Sánchez, L.E., Fernández-Medina, E.: A systematic review of se-

curity requirements engineering. Computer Standards & Interfaces. 32, 153–165 (2010).

4. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Security Requirements Engineering:

A Framework for Representation and Analysis. Software Engineering, IEEE Transactions

on. 34, 133 –153 (2008).

5. Win, B.D., Joosen, W., Piessens, F.: Developing Secure Applications through Aspect-

Oriented Programming. Aspect-Oriented Software Development. pp. 633–650. Addison-

Wesley (2002).

6. Viega, J., Bloch, J.T., Ch, P.: Applying Aspect-Oriented Programming to Security. Cutter

IT Journal. 14, 31–39 (2001).

7. Yu, Y., Leite, J.C.S. do P., Mylopoulos, J.: From Goals to Aspects: Discovering Aspects

from Requirements Goal Models. Proceedings of the Requirements Engineering Confer-

ence, 12th IEEE International. pp. 38–47. IEEE Computer Society, Washington, DC, USA

(2004).

8. Franqueira, V.N.L., Tun, T.T., Yu, Y., Wieringa, R., Nuseibeh, B.: Risk and argument: a

risk-based argumentation method for practical security, http://re11.fbk.eu/accepted.

9. Niu, N., Yu, Y., González-Baixauli, B., Ernst, N., Sampaio do Prado Leite, J.C., Mylopou-

los, J.: Aspects across Software Life Cycle: A Goal-Driven Approach. In: Katz, S., Ossher,

H., France, R., and Jézéquel, J.-M. (eds.) Transactions on Aspect-Oriented Software De-

velopment VI. pp. 83–110. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).

10. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying Monitoring and Switching Problems in Con-

text. Requirements Engineering Conference, 2007. RE ’07. 15th IEEE International. pp.

211 –220 (2007).

11. Nhlabatsi, A., Nuseibeh, B., Yu, Y.: Security Requirements Engineering for Evolving

Software Systems. International Journal of Secure Software Engineering. 1, 54–73 (2010).

12. Wilde, N.: Understanding Program Dependencies. (1990).

13. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in

optimization. ACM Trans. Program. Lang. Syst. 9, 319–349 (1987).

14. Pugh, W., Wonnacott, D.: Eliminating false data dependences using the Omega test.

SIGPLAN Not. 27, 140–151 (1992).

15. Pugh, W., Wonnacott, D.: Going Beyond Integer Programming with the Omega Test to

Eliminate False Data Dependences. IEEE Trans. Parallel Distrib. Syst. 6, 204–211 (1995).

16

16. Yau, S.S., Zhang, X.: Computer Network Intrusion Detection, Assessment And Prevention

Based on Security Dependency Relation. 23rd International Computer Software and Appli-

cations Conference. p. 86–. IEEE Computer Society, Washington, DC, USA (1999).

17. Island Hopping: Mitigating Undesirable Dependencies - TechNet Magazine Blog - Site

Home - TechNet Blogs, http://blogs.technet.com/b/tnmag/archive/2008/02/27/island-

hopping-mitigating-undesirable-dependencies.aspx.

18. Weiser, M.: Program Slicing. Software Engineering, IEEE Transactions on. SE-10, 352 –

357 (1984).

19. Van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-directed elaboration of require-

ments for a meeting scheduler: problems and lessons learnt. Proceedings of the Second

IEEE International Symposium on Requirements Engineering. p. 194–. IEEE Computer

Society, Washington, DC, USA (1995).

Index

acceptable dependency, 6

aspect functions, 1

asset variable, 3

control dependency, 5

data dependency, 5

dependency, 5

early aspects, 3

functional requirements, 4

join-point functions, 4

network security dependency, 6

non-join points functions, 5

security aspects, 3

security requirement dependency, 5

Security requirements, 1

threat descriptions, 3

unacceptable dependency, 6

