Skip to main content

Testing the Generalization of Feedforward Neural Networks with Median Neuron Input Function

  • Conference paper
  • 1754 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7894))

Abstract

In this paper, we present a preliminary experimental study of the generalization abilities of feedforward neural networks with median neuron input function (MIF). In these networks, proposed in our previous work, the signals fed to a neuron are not summed but a median of input signals is calculated. The MIF networks were designed to be fault tolerant but we expect them to have also improved generalization ability. Results of first experimental simulations are presented and described in this article. Potentially improved performance of the MIF networks is demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S., Murata, N., Muller, K.-R., Finke, M., Yang, H.H.: Asymptotic statistical theory of overtraining and cross-validation. IEEE Transactions on Neural Networks 8(5), 985–996 (1997)

    Article  Google Scholar 

  2. Bartlett, P.: For valid generalization the size of the weights is more important than the size of the network. In: Advances in Neural Information Processing Systems, vol. 9, p. 134. The MIT Press (1997)

    Google Scholar 

  3. Baum, E.B., Haussler, D.: What size net gives valid generalization? Neural Computation 1, 151–160 (1989)

    Article  Google Scholar 

  4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)

    Google Scholar 

  5. Caruana, R., Lawrence, S., Lee Giles, C.: Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping. In: Proc. Neural Information Processing Systems Conference, pp. 402–408 (2000)

    Google Scholar 

  6. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)

    Google Scholar 

  7. Hagan, M.T., Menhaj, M.B.: Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. on Neural Networks 5(6), 989–993 (1994)

    Article  Google Scholar 

  8. Liano, K.: Robust error measure for supervised neural network learning with outliers. IEEE Transactions on Neural Networks 7, 246–250 (1996)

    Article  Google Scholar 

  9. MacKay, D.: A Practical Bayesian Framework for Backprop Networks. Neural Computation 4(3), 448–472 (1992)

    Article  Google Scholar 

  10. Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  11. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996)

    Book  MATH  Google Scholar 

  12. Prechelt, L.: Early stopping - But when? In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 55–69. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks (ICNN), San Francisco, pp. 586–591 (1993)

    Google Scholar 

  14. Rusiecki, A.: Robust MCD-based backpropagation learning algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 154–163. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Rusiecki, A.: Fast Robust Learning Algorithm Dedicated to LMLS Criterion. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 96–103. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Rusiecki, A.L.: Fault tolerant feedforward neural network with median neuron input function. Electronics Letters 41(10), 603–605 (2005)

    Article  Google Scholar 

  17. Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K.: Some issues about the generalization of neural networks for time series prediction. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005, Part II. LNCS, vol. 3697, pp. 559–564. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rusiecki, A. (2013). Testing the Generalization of Feedforward Neural Networks with Median Neuron Input Function. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38658-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38657-2

  • Online ISBN: 978-3-642-38658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics