Skip to main content

SONN and MLP Based Solutions for Detecting Fluctuating Targets with Unknown Doppler Shift in Gaussian Interference

  • Conference paper
Advances in Computational Intelligence (IWANN 2013)

Abstract

SONN and MLP based detection schemes are designed for approximating the Neyman-Pearson, NP, detector for detecting fluctuating targets with unknown Doppler shift in Gaussian interference. The optimum NP detector conveys a complex integral, so sub-optimum approaches based on the Constrained Generalized Likelihood Ratio, CGLR, are proposed as reference solutions. Detectors based on a single MLP, a single SONN, and mixtures of them are studied, and their detection capabilities and computational costs evaluated. Results show that the detector based on a mixture of SONNs is able to approximate the CGLR, outperforming the other proposed solutions, with lower computational cost.

An Erratum for this chapter can be found at http://dx.doi.org/10.1007/978-3-642-38679-4_66

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Trees, H.L.: Detection, estimation, and modulation theory, vol. 1. Wiley (1968)

    Google Scholar 

  2. Aloisio, V., di Vito, A., Galati, G.: Optimum detection of moderately fluctuating radar targets. IEE Proc. Radar, Sonar and Navigation 141(3), 164–170 (1994)

    Article  Google Scholar 

  3. di Vito, A., Naldi, M.: Robustness of the likelihood ratio detector for moderately fluctuating radar targets. IEE Proceedings on Radar, Sonar and Navigation 146(2), 107–112 (1999)

    Article  Google Scholar 

  4. Nayebi, M.M., Aref, M.R., Bastani, M.H.: Detection of coherent radar signals with unknown Doppler shift. IEE Proc. Radar, Sonar and Navigation 143(2), 73–86 (1996)

    Article  Google Scholar 

  5. Jarabo-Amores, P., Rosa-Zurera, M., Gil-Pita, R., Lopez-Ferreras, F.: Study of Two Error Functions to Approximate the Neyman-Pearson Detector Using Supervised Learning Machines. IEEE Tran. Signal Processing 57(11), 4175–4181 (2009)

    Article  MathSciNet  Google Scholar 

  6. Gandhi, P., Ramamurti, V.: Neural networks for signal detection in non-Gaussian noise. IEEE Trans. Signal Process. 45(11), 2846–2851 (1997)

    Article  Google Scholar 

  7. Casasent, D., Chen, X.: Radial Basis Function Neural Network for Nonlineal Fisher Discrimination and Neyman-Pearson Classification. IEEE Trans. Aerosp. Electron. Syst. 16(56), 529–535 (2003)

    Google Scholar 

  8. Mata-Moya, D., Jarabo-Amores, P., Martin de Nicolas-Presa, J.: High Order Neural Network Based Solution for Approximating the Average Likelihood Ratio. In: Proc. of IEEE Statistical Signal Processing Workshop (SSP), pp. 657–660 (2011)

    Google Scholar 

  9. Davenport, M.A., Baraniuk, R.G., Scott, C.D.: Tuning Support Vector Machines for Minimax and Neyman-Pearson Classification. IEEE Tran. Pattern Analysis and Machine Intelligence. 32(10), 1888–1898 (2010)

    Article  Google Scholar 

  10. de la Mata-Moya, D., Jarabo-Amores, P., Vicen-Bueno, R., Rosa-Zurera, M., López-Ferreras, F.: Neural Network Detectors for Composite Hypothesis Tests. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 298–305. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Mata-Moya, D., Jarabo-Amores, P., Rosa-Zurera, M., Nieto-Borge, J.C., Lopez-Ferreras, F.: Combining MLPs and RBFNNs to Detect Signals With Unknown Parameters. IEEE Transactions on Instrumentation and Measurement 58(9), 2989–2995 (2009)

    Article  Google Scholar 

  12. Eaves, J.L., Reedy, E.K.: Principles of modern radar. Van Nostrand Reinhold (1987)

    Google Scholar 

  13. Cybenko, G.: Approximation by supeerpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 2, 303–314 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. El-Jaroudi, A., Makhoul, J.: A New Error Criterion for Posterior Probability Estimation With Neural Nets. In: Proc. Int. Conf. on Nerual Networks, IJCNN, pp. 185–192 (1990)

    Google Scholar 

  15. Nguyen, D., Widrow, B.: Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights. In: Proc. of the Int. Conf. on Nerual Networks, IJCNN, pp. 21–26 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mata-Moya, D., Jarabo-Amores, P., del-Rey-Maestre, N., Bárcena-Humanes, J.L., Martín-de-Nicolás, J. (2013). SONN and MLP Based Solutions for Detecting Fluctuating Targets with Unknown Doppler Shift in Gaussian Interference. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38679-4_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38678-7

  • Online ISBN: 978-3-642-38679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics