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Abstract. The prediction and management of wind power ramps is cur-
rently receiving large attention as it is a crucial issue for both system
operators and wind farm managers. However, this is still a problem far
from being solved and in this work we will address it as a classifica-
tion problem working with delay vectors of the wind power time series
and applying local Mahalanobis K-NN search with metrics derived from
Anisotropic Diffusion methods. The resulting procedures clearly outper-
form a random baseline method and yield good sensitivity but more work
is needed to improve on specificity and, hence, precision.
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wind power ramps.

1 Introduction

The growing presence of wind energy is raising many issues in the operation of
electrical systems, some of them can be conceivably addressed through the ap-
plication of Machine Learning (ML) techniques. One important example that we
shall deal with in this paper is the prediction of wind ramps, i.e., sudden, large
increases or decreases of wind energy production over a limited time period [8].
In fact, algorithms to detect possible ramps and raise alerts about them are of
obvious interest to system operators and wind farm managers to support wind
farm control, to decide how much energy should be dispatched or to modify gen-
eration schedules. However, there are still few methodologies for ramp prediction
and even there is not a standard ramp definition yet, making this topic a wide
open research area.

From a ML point of view, two approaches to wind ramp detection with dif-
ferent final goals have been proposed in the literature. If we want to determine
not only the starting of a ramp but also its magnitude, regression models are the
natural choice. This approach has been followed, for example, in [11], that applies
multivariate time series prediction models and uses mean absolute prediction er-
ror and standard deviation as accuracy measures. In [3] probabilistic numerical
weather prediction systems are used to associate uncertainty estimates to wind



energy predictions and to provide risk indices to warn about possible large devi-
ations and ramp events. On the other hand, we can pursue a classification-based
approach to predict wind ramps through event detection models. Examples of
this are [4] or [7], that try to locate ramp presence some hours before or after
the wind energy forecasts, given some time into the future.

In this work we will also consider ramp detection as a classification problem
but we will seek to provide for each hour a forecast on whether a ramp is about
to start, which differs from the few available state-of-the-art results and makes
them non comparable. Our overall approach is to relate the conditions at a given
hour to similar conditions in the past and to somehow derive a ramp forecast
from what happened in these previous similar situations. More precisely, we
can consider for each hour ¢ a certain feature vector X; that should adequately
represent wind energy behavior up to time ¢ and find a subset of K past vectors
X, close to X; in an appropriate metric. There is a growing number of options
to choose data that characterize X; but in this work we shall simply consider
the wind energy production time series as the only such information and X
will be a delay vector built from the last D wind energy production values,
Xi = (pt—pi1,---,pt—1,p¢)T . This is certainly not an optimal choice, as the well-
known chaotic behavior of the weather implies that past behavior of wind energy
up to time ¢ has only a weak influence on its behavior after ¢t. However, ramps
are also local phenomena and, in any case, our approach can easily accommodate
the use of more relevant information. For instance, the quality of wind energy
prediction is steadily improving and can easily be incorporated to the procedures
pursued here.

Going back to our approach, the most relevant issue is the definition of the
metric to be used to compare X; with previous values. To do so, we will work
in an Anisotropic Diffusion context. In general, diffusion methods assume that
sample values, the D-dimensional delay vectors X; in our case, lie in a manifold
M whose geometry corresponds to a diffusion distance associated with a Markov
process. Then, the relationship between the spectral properties of the Markov
chain and the manifold geometry allows the definition of a Diffusion Map into a
lower dimensional space in such a way that Euclidean distance in the projected
space corresponds to the diffusion metric on M. However, this requires a com-
putationally very costly eigenanalysis of the Markov transition matrix and we
will pursue here an alternative Anisotropic Diffusion model which assumes that
the sample data points are the result of the application of an unknown map f to
the latent variables [; that govern the X; data and that follow a particular inde-
pendent stochastic It6 process. This allows to estimate the Euclidean distance
in the inaccessible [ space through local Mahalanobis distances in the sample
manifold M without having to go through any costly eigenanalysis.

Wind power clearly has a time structure and if we assume weather and,
thus, wind power as governed by a latent variable model, the wind ramp detec-
tion problem fits nicely in the Anisotropic Diffusion framework. In this paper
we will explore this approach and, as we shall see, our methods clearly improve
on a baseline random model and have good sensitivity. However, specificity and,



hence, precision must be improved. Moreover, while slightly better, the Maha-
lanobis models still give results similar to those achieved using a simple Euclidean
metric. Still, there is a clear room from improvement. In fact, it is well known
that delay vectors are a too crude representation of the wind power time series
and that they cannot be used, for instance, for forecasting future power values.
We will briefly discuss this at the end of the paper, that is organized as fol-
lows. In Sect. 2 the diffusion theory framework is introduced and in Sect. 3 the
wind ramp detection problem is presented and our prediction methods proposed.
Sect. 4 contains the numerical experiments and, finally, Sect. 5 ends this paper
with a brief discussion and some conclusions and hints for further work.

2 Diffusion Methods Review

We give first a simplified review of standard Diffusion Methods (DMs) fol-
lowing the notation of [10]. The first step is to build a complete connectivity
graph G where the original points are the graph nodes and where the weight
distances reflect the local similarity between two points X;, Xj, i.e., we have
w; j = We(Xi, X;) = h(p(Xi, X;)?/o) , where h is a function with exponential de-
cay, such as a Gaussian kernel, p is some metric and o is a parameter that defines
the “locality” of a neighborhood. Weights are then normalized as K = D™'W,
with D;; = Zj w;; the graph degree (D is a diagonal matrix). K is then a
Markov matrix that can be iterated to generate a Markov process with tran-
sition probabilities P;(X;, X;). This can in turn be used to define the spectral
distance

Du(Xi, X;) = 1PUXi ) = PG I, = /S|P, Xe) — PUXG, X2

that express the similarity after ¢ steps between two diffusion processes starting
from X; and X;. While it is rather hard to compute this distance, it turns out
that the eigenfunctions {¥;} of the operator K coincide with the eigenfunctions
{®;} of the graph Laplacian (see [2,5]), which is defined as

L=D WD % -[=D:KD % 1.

This can be used to show that D,(X;, X;) coincides with Euclidean distance in
the DM space.

The study of DMs has opened a world of possibilities in dimensionality reduc-
tion [5], clustering [2] or function approximation [10]. However, the eigenanalysis
needed to compute the DMs is still quite costly computationally and, moreover,
their application to new patterns is not straighforward and requires the use of a
Nystrom approximation.

We will focus our attention here on the anisotropic version of these meth-
ods [9], which fits nicely to the problem we want to solve. The starting point
is to assume that the sample is generated by a non linear function f acting on
some d-dimensional parametric features [; that follow an It6 process

dii = o ()dt + b (dw?, j=1,...,d,



where a7 is the drift coefficient, b7 is the noise coefficient and w? is a Brownian
motion. It6’s Lemma ensures that our observable variables X; = f(I;) are also Itd
processes. Thanks to this fact, and assuming an appropriate feature rescaling, we
can locally estimate the distortion in the transformation f through the covariance
matrix C of the observable data, namely C = JJ7, where J is the Jacobian of
the function f. The important fact now is that the Euclidean distance [|i; — 1|
in the latent variable space can be approximated as

L — 117 = (X — X;)T[CHXs) + O (X)X — X). (1)

We can now build a diffusion kernel based on this distance whose infinitesimal
generator coincides with a backward Fokker—Planck operator. In particular, the
original latent features could be recovered by the appropriate eigenanalysis of
this operator. However, we do not need this to estimate distances in the inac-
cessible latent space as they can be computed directly on the sample manifold
M using (1) without having to go through any costly eigenanalysis.

3 Predicting Wind Ramps

In this section we will give a proposal for wind ramp warnings. As mentioned
before, while the idea of a wind ramp is intuitively clear, there is no universally
accepted characterization of it. Thus, here we shall discuss first the definition of
wind ramps, present then an approach for issuing wind ramp warnings and close
this section with the methodology which we will use to evaluate its effectiveness.

As mentioned in [6], an intuitive description of a wind power ramp could be a
large change in wind production in a relatively short period of time. To turn this
description into a formal definition we need to specify what are a “large change”
and a “short time period”. Several options are discussed in [3,6] but possibly
the simplest one is to consider derivatives or, rather, first order differences, and
say that a ramp will happen at time ¢ if in a time period At we have

|P(t + At) — P(t)| > APy, .

Notice that this definition detects equally upward and downward ramps and it
requires to determine the values of At and the threshold AP,,. Starting with
At, if t is given in hours, a low value such as At = 1 leaves no reaction time
to the system operator; on the other hand, a larger value will not imply a big
impact on the electrical system. Because of these and similar considerations
(see [7]), we have settled on the value At = 3. Notice that once At is chosen,
APy, essentially determines how often ramps happen. A low threshold results
in many ramp events but most of them will be of little consequence, while large
values result very relevant but also very infrequent ramps. We have settled in
a APy, that marks the top 5% percentile of ramp events. In other words, the
probability of a ramp jump |P(t + At) — P(t)| larger than APy, is 0.05.

In order to apply Anisotropic Diffusion to ramp event prediction, we have
to assume that extreme power ramps correspond to particular values of the



unknown latent variables that determine wind energy production. More precisely,
we have to define wind energy patterns X; that somehow capture the structure
of wind production at time ¢ and that are determined by latent variable values
l;. Thus, a possible approach to predict ramps at time ¢ is to identify previous
latent vectors [;, that are close to the current latent vector /; and to exploit the
corresponding previous wind energy patterns X;, to deduce whether the current
pattern X, is associated to a ramp event. To make this work, we must have an
estimate of the distance ||l;, — ;|| and is in this context where we can benefit
of an Anisotropic Diffusion approach. As explained in Sect. 2, this framework
allows to approximate ||l;, — I¢|| by (1). This estimate requires to compute and
invert the covariances C'(X%,) at each possible X;,. To alleviate the possibly
large computational cost, we simplify the Mahalanobis distance to d(X;,, X;) =
(Xy, — X)TC7 Y (X, — Xy), with C; ! the inverse of the local covariance matrix
in a cloud of points around X;.

We shall apply this approach working with D-dimensional energy patterns
of the form X; = (pt_pi1,...,pt—1,p:)" that correspond to a delay window
of length D, for which we will find a subset S; with the K sample patterns
X, nearest to Xy, with K appropriately selected. This will be done for both
the Mahalanobis and the Euclidean (i.e., isotropic) distances. Once S; is found,
we will classify X; as a ramp if we have v; > p, with ;4 the number of ramp-
associated patterns in S; and 1 < p < K a threshold value; we will give results
only for p = 1 but larger p values would be associated to more confidence in
a ramp happening at time ¢. In the Mahalanobis case we also have to select a
pattern cloud C; to compute the covariance matrix C; at time ¢. The simplest way
is just to work with a time cloud, i.e., to select C; = { X4, Xo1,..., Xe 41},
using the M patterns closest to X; in time. Alternatively, we shall consider a
cluster cloud where we fix a larger time cloud with kM patterns, apply x-means
clustering to it and choose the new cloud Cf as the cluster that contains X;.
Besides the parameter p, that will affect the confidence on the ramp prediction,
performance will of course depend on the concrete selection of the parameters
used, namely the number K of patterns closest to X;, the dimension D of the
patterns, and the M and x used to determine the covariance cloud. The complete
method is summarized in Alg. 1.

Since we want to solve what essentially is a supervised classification prob-
lem, confusion matrix-related indices seem to be the best way to evaluate al-
gorithm performance. More precisely, we use the sensitivity Sens = TP /Tp + FN
and specificity Spec = TN/TN + FP values, as well as precision Prec = TP /TP + FP,
that measures the proportion of correct ramp alerts. In order to select the best
K,D,M and k values we will combine TP, TN, FP and FN in the Matthews
correlation coefficient [1]

TP-TN — FP-FN
V/(TP + FP) - (TN + FN) - (TP +FN) - (TN + FP)

that returns a [—1, 1] value with & = 1 if FP = FN = 0, i.e., when we have a
diagonal confusion matrix, and ¢ = —1 if TP = TN = 0.



Algorithm 1 Ramp Events Detection

Input: P = {p1,...,ps}, wind power time series; D, pattern dimension; A¢, ramp
duration; R = {r1,...,rs—a¢}, {0,1} ramp labels; p, ramp threshold.
Output: #5411, the ramp prediction at time s + 1.
1: Build patterns X; = (pi—p+1,...,pi—1,0:)";
: Select the cloud Cs;
: Compute the covariance Cs;
Ss = NearestNeightbors(X,, Cs, K), the K patterns closest to Xs;
Vs = ZSS Ts;3
: if v > p then
return 1;
else
return 0;
: end if
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4 Experiments

In this section we will illustrate the application of the previous methods to the
Sotavento wind farm®, located in the northern Spanish region of Galicia and
that makes its data publicly available. The training data set that we will use is
composed of hourly productions from July 1, 2010, to July 31, 2012. Of these,
each hour starting from August 1 2011 will be used for test purposes, with the
training set formed by one year and one month, up to the hour before. Wind
ramp hours have been defined as those hours h for which the absolute 3-hourly
difference between productions at hours A and h + 4 falls in the top 5%. This
means a power rise of at least 4.38MW, which essentially correspond to a 25%
of the nominal power of this wind farm, a value also used in other studies [3,
4]. We recall that straight wind ramp prediction is a rather difficult problem
for which there are not reference results in the literature. Thus we will use as a
baseline reference the performance of a random prediction that assigns at each
hour a ramp start with a 0.05 probability. For the test period considered, we
have N = 8699 patterns of which 5%, i.e. N, = 450, are ramps and the rest,
N,, = 8249, are not. Table 1 shows the expected values of the confusion matrix
of this random model as well as the mean and deviation of sensitivity, specificity
and precision. We will compare the baseline results with the three K-nearest
neighbors (NN) models previously considered, that is, standard Euclidean K-
NN, called NN¥, and Mahalanobis K-NN with either a time cloud covariance,
called NN%[ , or a cluster cloud, called NN]\C/[ . We have to appropriately set the
hyper-parameter values, namely pattern dimension D and time cloud size M.
To arrive to some good values of K, D and M we have considered K values in
{5,10,15}, D values in {4,8,12} and M values in {10, 20,50} (we fix Kk = 4 to
define clouds in the cluster approximation) and chosen as the best parameters
those giving a largest Matthews coefficient @, which are K = 15 and D = 4 for
all cases, and M = 50 and kM = 200 for the time and cluster cloud sizes.

! Sotavento Calicia, http://www.sotaventogalicia.com/index.php.



Table 1: Baseline model confusion matrix.

Pred. + | Pred. — | > Mean Deviation
Real +| 181 269 450 | Sens 40.13%  2.31%
Real — | 3310 4939 | 8249 | Spec 59.87%  0.54%
> 3491 5208 | 8699 | Prec 5.17% 0.30%

Table 2: K-NN models confusion matrices.
Time Cloud (NN#) Cluster Cloud (NN¥) Euclidean (NN¥)
P+|P—| > P+|P.—| > P+ |P—| X
R. +| 321 | 129 | 450 R. +| 318 | 132 | 450 R. +| 314 | 136 | 450
R. — | 3048 | 5201 | 8249 R. — ] 3001 | 5248 | 8249 R. — {3034 | 5215 | 8249
> 13369 | 5330 | 8699 > 13319 | 5380 | 8699 > 13348 | 5351 | 8699

Sens 71.33% Sens 70.67% Sens 69.78%
Spec 63.05% Spec 63.62% Spec 63.22%
Prec 9.53% Prec 9.58% Prec 9.38%

The results obtained with each optimal model are presented in Table 2. As it
can be seen, all K-NN methods clearly outperform the random baseline model,
as the sensitivity and specificity of any random predictor always sum 100%. The
improvement can be appreciate particularly with respect to sensitivity, that goes
from near 40% to about 70%, and precision, that goes from near 5% to about
9.5%. The specificity gain is smaller, about 4%, but still quite larger than the
0.54% standard deviation of the random model. On the other hand, the NNTM
and NNé/I models are only slightly better than the purely Euclidean model NNZ
and none of the methods can be considered as exploitation-ready models, for
while they give a good sensitivity, but specificity and, therefore, precision are far
from good enough. Nevertheless, as we discuss next, it is well known that delay
vectors provide a rather crude information about the wind power time series and
adding more information to the X; is a clear first step toward better wind ramp
detection.

5 Discussion and Conclusions

While they are a key problem in wind energy and system operation management,
there is still no standard definition of wind power ramps and their detection is
therefore a problem far from being solved. In this work we have applied an
Anisotropic Diffusion approach where we consider wind power delay vectors as
visible events derived from latent vectors that follow some Itd processes. This
leads naturally to define a covariance based Mahalanobis distance for the delay



vectors and, in turn, to apply K-NN methods to detect past vectors close to the
current one X; and to use this information to predict whether or not a ramp is
going to start at time ¢. The resulting methods clearly outperform a baseline ran-
dom model and show a good sensitivity. However, specificity must be improved
which, in turn, would lead to better precision and, hence, to systems ready to
industrial use. A first step to achieve this would be to refine ramp prediction
using some weighted combination of the ramp states of the K nearest neighbors
of X;. A second step would be to work with patterns X; richer than plain delay
vectors, adding for instance numerical weather prediction (NWP) information
or even short time wind power predictions derived from this NWP information.
Finally, we could also exploit the time evolution of previous wind ramp alerts to
improve specificity. We are working on these and similar directions.
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