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Step Persistence in the Design of GALS Systems

Johnson Fernandes, Maciej Koutny, Marta Pietkiewicz-Koutny,
Danil Sokolov and Alex Yakovlev

Newcastle University
Newcastle upon Tyne, NE1 7RU, U.K.

Abstract. In this paper we investigate the behaviour of GALS (Glob-
ally Asynchronous Locally Synchronous) systems in the context of VLSI
circuits. The specification of a system is given in the form of a Petri net.
Our aim is to re-design the system to optimise signal management, by
grouping together concurrent events. Looking at the concurrent reach-
ability graph of the given Petri net, we are interested in discovering
events that appear in “bundles”, so that they all can be executed in one
clock tick. The best candidates for bundles are sets of events that appear
and re-appear over and over again in the same configurations, forming
“persistent” sets of events. Persistence was considered so far only in the
context of sequential semantics. Here we introduce a notion of persistent
steps and discuss their basic properties. We then introduce a formal def-
inition of a bundle and propose an algorithm to prune the behaviour of a
system, so that only bundle steps remain. The pruned reachability graph
represents the behaviour of a re-engineered system, which in turn can be
implemented in a new Petri net using the standard techniques of net
synthesis. The proposed algorithm prunes reachability graphs of persis-
tent and safe nets leaving bundles that represent maximally concurrent
steps.
Keywords: asynchronous and synchronous circuits, GALS systems, per-
sistence, step transition systems, Petri nets.

1 Introduction

Traditional circuit design styles have been following one of the two main strands,
namely synchronous and asynchronous. In a nutshell, these two approaches dif-
fer in their techniques of synchronising interaction between circuit elements.
Asynchronous designs adopt ‘on request’ synchronisation where interaction is
regulated by means of handshake control signals. They are designed to be adap-
tive to delays of signal propagation. Synchronous designs, on the other hand,
assume worst case delay between circuit elements and determine a global peri-
odic control signal for synchronisation called the clock. The clock signal limits the
many sequencing options considered in asynchronous control. Thus synchronous
circuits are considered to be a proper subset of asynchronous circuits [6].

Asynchronous logic was the dominant design style with most early comput-
ers. In particular, David Muller’s speed-independent circuits, dating back to the
late 1950s, have served many interesting applications such as the ILLIAC I and



2

ILLIAC II computers [15]. However since 1960, an era when fabrication of in-
tegrated circuits (ICs) became a feasible business, synchronous design became
the mainstream technique as it met the market needs with its shorter design
cycle. Today, majority of designs are synchronous, well etched in the heart of
semiconductor industry together with superior CAD tools and EDA flows.
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pulse

a

b
c

Fig. 1. Hazardous switching of an AND gate.

One of the main issues with the complexity of asynchronous circuits was
the handling of hazards. Hazards are manifestations of undesirable switching
activity called glitches. In the asynchronous style of synchronisation, the output
of each circuit element is potentially sensitive to its inputs. This can give rise
to non-monotonic pulses (or glitches) when transitioning between output states,
as illustrated in the waveform of Figure 1 taking the case of an AND gate. Due
to tight timing between the rising edge of input a and falling edge of input b,
the output c produces a non-monotonic pulse before stabilising to a low. This
behaviour is hazardous as it is uncertain how the fanout of the AND gate will
interpret the glitch; the output c temporary switching to logical 1 or staying at
logical 0 all the time.

As shown, for instance, in paper [19], the phenomenon described in the
above example can be conveniently interpreted in terms of formal models such
as Keller’s named transition systems [11] or Petri nets [6]. In particular, what
we see in this circuit is the effect where a signal that is enabled (rising edge
of c) in a certain state of the circuit may become disabled without firing after
the occurrence of another signal (falling edge of b). Such an effect corresponds
to the violation of persistence property at the level of signal transitions if the
latter are used to label the corresponding named transition system. Furthermore,
when such a circuit is modelled by a labelled Petri net following the technique of
[19], the Petri net would also be classified as a non-persistent one. Thus, it was
shown in [19] that the modelling and analysis of an asynchronous circuit with
respect to hazard-freedom is effectively reduced to the analysis of persistence of
its corresponding Petri net model.
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Synchronous circuits, on the other hand, do not require persistence satis-
faction as they are intrinsically immune to hazardous behaviour. The principle
reason being that the clock, set at worst-case latency period, filters out un-
desirable circuit switching. This greatly simplifies circuit design compared to
asynchronous methods wherein the same circuit had to be analysed for persis-
tence and redesigned to ensure glitch-free operation. Clocked circuits are thus
preferred over asynchronous circuits for designing functionally correct (hazard-
immune) ICs efficiently. However with chip sizes scaling to deep sub-micron level,
semiconductors are experiencing severe variability and it is becoming extremely
complicated to design chips in the synchronous fashion. This is because design-
ing for variability requires longer safety margins which in turn reduces the clock
frequency and degrades circuit performance. To cope with these challenges, asyn-
chronous design methodologies have re-emerged owing to their inherent adap-
tiveness. However, they still suffer significant challenges such as complicated de-
sign flow, high overhead costs from control and, lack of CAD support tools and
legacy design reuse. Therefore attempts are being made to find a compromise.

An on-trend intermediate solution is mixed synchronous-asynchronous de-
sign, chiefly acting in the form of Globally Asynchronous Locally Synchronous
(GALS) methodology; its benefits well known in literature [10, 9, 17]. GALS sys-
tem design, introduced in [5], can exploit the advantages of asynchrony and at
the same time maximally reuse the products of synchronous design flow. This
design technique divides a digital system into synchronous islands which commu-
nicate asynchronously by handshake mechanism. Each island has its own local
clock which can be activated on demand by means of a handshake control signal.
Such systems comprise a mixed temporal behaviour. Asynchronous handshakes
handle switching between components where adaptability can significantly im-
prove performance, while clocking is applied to components where worst case
performance is tolerable. However, it is worthy of note that modelling GALS
systems would involve detection of potential hazardous states due to presence
of asynchronous components, making their design and verification a significant
research challenge.

Being a recent trend, there is a lack of formal models that describe cor-
rectness of GALS designs. The complexity in modelling them begins with the
investigation of persistence. It should be noted that the standard notion of per-
sistence has been defined at the level of single actions, which is also known as
interleaving semantics of concurrency. This notion has been adequate for repre-
senting the correctness of the behaviour of circuits that are fully asynchronous.
In asynchronous circuits, there is concurrency between independent actions and
sequential order between causally related actions. This notion is well represented
by Keller’s named transition systems [11]. Figure 2(a) depicts such a model cap-
turing the asynchronous behaviour of a system with four events A, B, X and Y .
Now, in synchronous circuits, the clock signal would trigger a single action or
several actions. These circuits exhibit parallelism between actions in the same
clock cycle and sequential order between groups of actions in adjacent clock cy-
cles. To represent this group execution of actions, we will use steps, and therefore
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(a) Interleaving model for (b) Step model for (c) Mixed model for
asynchronous behaviour. synchronous behaviour. GALS behaviour.

Fig. 2. Temporal representations of systems having concurrent, parallel and mixed
concurrent-parallel behaviours.

we need step transition systems to represent such a behaviour. A step represents
a single action or a group of actions that are triggered simultaneously from a
particular state by the clock signal. Figure 2(b) shows such a transition system
model capturing the temporal behaviour of a synchronous system with the help
of steps. For the case of GALS, there is a mixture of synchrony and asynchrony
and hence both concurrent and parallel behaviour have to be represented. Fig-
ure 2(c) illustrates the mixed temporal behaviour seen in such systems. In all
three cases, step transition systems provide a suitable behavioral model, as a
single transition can be treated as a singleton step.

Synchronous and asynchronous systems have distinct techniques to guarantee
functionally correct behaviour. However, for GALS systems, it is not so straight-
forward as correctness should be accounted from both angles. We would like to
find an adequate representation of the correct behaviour of GALS systems. Here,
it would be natural to define such a behaviour in analogous way as it was done
for asynchronous circuits, i.e. with the use of the notion of persistence. However,
when modelling GALS systems we have to consider complex actions, namely
steps, and corresponding transition systems. This paper is hence centred around
extending the notion of persistence to steps.

The paper is organised as follows. Section 2 recalls the basic definitions and
notations concerning step transition systems and PT-nets. Section 3 introduces
the notion of persistent steps and discusses their basic properties. Section 4
presents the main result of the paper, an algorithm that prunes the concurrent
reachability graph of a net, which serves as an initial system specification, to
obtain a representation of a desired “GALS” behavior. Finally, section 5 contains
conclusions and presents directions for future work.
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2 Preliminaries

In this section we recall definitions and notations concerned with step transition
systems and Petri nets used in the rest of this paper.

2.1 Step Transition Systems

Let T be a finite set of net transitions representing actions of a concurrent system.
A set of transitions will be called a step, and we will use α, β, γ, . . . to range
over all steps P(T ). Sometimes we will identify a step α with its characteristic
function α : T → {0, 1}. We will also write α =

∑
t∈T α(t) · t. The size of α will

be defined by the number of its elements and denoted by |α|.

Definition 1 (st-system). A step transition system (or st-system) over T is
a triple

STS = (Q,A, q0)

consisting of a set of states Q including the initial state q0 ∈ Q, and a set of
labelled arcs A ⊆ Q× P(T )×Q. It is assumed that:

– the transition relation is deterministic, i.e., if (q, α, q′) ∈ A and (q, α, q′′) ∈ A
then q′ = q′′

– each state is reachable, i.e., if q ∈ Q then there are steps α1, . . . , αn (n ≥ 0)
and states q1, . . . , qn = q such that (qi−1, αi, qi) ∈ A for 1 ≤ i ≤ n.

We introduce the following notations:

– q
α
−→ q′ and q

α
−→ whenever (q, α, q′) ∈ A.

– EnSTS (q) = {α | q
α
−→} is the set of all steps enabled at a state q.

– activeSTS (q) =
⋃
{α | q

α
−→} is the set of all transitions active at a state q

(the transitions that feature in the steps enabled at q).

– EnSTS = {α | ∃q ∈ Q : q
α
−→} is the set of all the enabled steps of STS .

– max(q) = {α ∈ EnSTS (q) | ∀β ∈ EnSTS (q) : α 6⊂ β} is the set of all
maximal steps enabled at a state q.

2.2 PT-nets

A PT-net is a tuple N = (P, T,W,M0), where P and T are disjoint sets of
respectively places and transitions, W : (P × T ) ∪ (T × P ) → N is an arc
weight function, and M0 : P → N is an initial marking (in general, any mapping
M : P → N is a marking). We will use the standard conventions concerning the
graphical representation of PT-nets, as illustrated in Figure 3(a).

For every element x ∈ P ∪ T , we denote

•x = {y |W (y, x) > 0} (pre-set of x),

x• = {y |W (x, y) > 0} (post-set of x).
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Fig. 3. Net N (a), and its concurrent reachability graph CRG(N) (b).

If x ∈ T , we will call p ∈ •x a pre-place of x and p ∈ x• a post-place of x.
The dot-notation extends in the usual way to sets of elements, for example,
•X =

⋃
x∈X

•x.
Moreover, for every place p ∈ P and step α ∈ P(T ), we denote:

W (p, α) =
∑

t∈T

α(t) ·W (p, t) and W (α, p) =
∑

t∈T

α(t) ·W (t, p) .

In other words, W (p, α) gives the number of tokens that the firing of α removes
from p, and W (α, p) is the total number of tokens inserted into p after the
execution of α.

Given a PT-net N = (P, T,W,M0), a step α ∈ P(T ) is enabled and may be
fired at a marking M if, for every place p ∈ P :

M(p) ≥W (p, α) . (1)

We denote this by M [α〉. (For a singleton step α = {t}, we will write M [t〉 rather
than M [{t}〉.) Firing such a step leads to the marking M ′, for every place p ∈ P
defined by:

M ′(p) = M(p)−W (p, α) +W (α, p) . (2)

We denote this by M [α〉M ′.
The concurrent reachability graph CRG(N ) ofN is the st-system CRG(N ) =

([M0〉, A,M0) over T where:

[M0〉 = {Mn | ∃α1, . . . , αn ∃M1, . . .Mn−1 ∀1 ≤ i ≤ n : Mi−1[αi〉Mi} (3)

is the set of reachable markings and (M,α,M ′) ∈ A iff M [α〉M ′. Figure 3(b)
shows the concurrent reachability graph of the PT-net in Figure 3(a). Further-
more, we will call α1 . . . αn, as in the formula (3), a step sequence and write
M0[α1 . . . αn〉Mn.

Definition 2 (sequential conflict). Two distinct transitions, t, t′ ∈ T , are in
sequential conflict at a marking M if M [t〉 and M [t′〉, but M [tt′〉 does not hold.
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Definition 3 (concurrent conflict). Two distinct transitions, t, t′ ∈ T , are
in concurrent conflict at a marking M if M [t〉 and M [t′〉, but M [{t, t′}〉 does
not hold.

Note that sequential conflict implies concurrent conflict, but not necessarily
vice versa.

Definition 4 (safe net). A PT-net N = (P, T,W,M0) is safe if

∀p ∈ P ∀M ∈ [M0〉 : M(p) ≤ 1.

In view of the above definition, the markings of safe nets can be treated as subsets
of the set of places P , where a marking is a set of places for which M(p) = 1.

3 Step persistence in nets

Muller’s speed independent theory provided a unique method for guaranteeing
hazard-freeness of asynchronous circuits [14]. The semimodularity condition in
this work required that an excitation of a circuit element must not be removed
until absorbed by the system [18]. This condition was identified by Keller in
[11] 1 to be the same as the property of persistence in his named transition sys-
tem model for asynchronous parallel computation. Thus satisfying the property
of persistence became one of the key requirements when designing hazard-free
asynchronous circuits.

Later, the idea of persistence was investigated in many papers, for example,
in [1–4, 7, 13, 19]. However, with the exception of [7], it was only considered in the
context of sequential executions of systems, and defined for transitions (rather
than steps) as follows:

Definition 5 (persistent net, [13]). A PT-net N = (P, T,W,M0) is persis-
tent if for all distinct transitions t, t′ ∈ T and any reachable marking M , M [t〉
and M [t′〉 imply M [tt′〉.

We can re-write this definition from the point of view of single transition as
follows:

Definition 6 (persistent transition). A transition t ∈ T is persistent in a
PT-net N = (P, T,W,M0) if

∀M ∈ [M0〉 ∀t
′ ∈ T \ {t} : M [t〉 ∧M [t′〉 =⇒M [t′t〉.

The following definition gives three versions (A, B and C) of a definition of
a persistent step. In each case, we try to capture the fact that a persistent step,
which is enabled at some reachable marking M , cannot be disabled by another
enabled step. The difference in the versions lies either in the different under-
standing of what ‘not to be disabled’ means or what we mean by a ‘different’

1 Keller ([11]) was the first to consider persistence in the context of Petri nets.
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step. Notice that the introduced notions of a persistent step are defined glob-
ally and the required conditions must be satisfied at all the markings, where a
candidate for a persistent step is enabled.2

Definition 7 (persistent step in a net). A step α ∈ P(T ) is A-persistent,
B-persistent and C-persistent in a PT-net N = (P, T,W,M0) if respectively the
following hold:

(A) ∀M ∈ [M0〉 ∀β ∈ P(T ) : M [α〉 ∧M [β〉 ∧ β 6= α =⇒M [β(α \ β)〉
(B) ∀M ∈ [M0〉 ∀β ∈ P(T ) : M [α〉 ∧M [β〉 ∧ β ∩ α = ∅ =⇒M [βα〉
(C) ∀M ∈ [M0〉 ∀β ∈ P(T ) : M [α〉 ∧M [β〉 ∧ β 6= α =⇒M [βα〉 .

As can be easily seen, each of the three versions is a conservative extension of
the standard definition of a persistent transition (see Definition 6). A-persistence
requires that only unexecuted part of a step α should not be disabled, while B-
persistence and C-persistence insist on continued enabledness of the persistent
step α. In B-persistence, two steps are considered different if their intersection
is empty, while for A-persistence and C-persistence it is enough if different steps
do not coincide (but they can have non-empty intersection). It turns out that
A-persistence and B-persistence are equivalent, as is shown in the following
proposition.

Proposition 1. Let α ∈ P(T ) be a step of a PT-net N = (P, T,W,M0). Then
α is A-persistent in N iff α is B-persistent in N .

Proof. Suppose that α and β ∈ P(T ) are two different non-empty steps enabled
at a marking M of N (notice that empty step is trivially persistent according
to A, B or C-persistence defined in Definition 7).
=⇒ Let α be A-persistent in N , and so M [β(α \ β)〉. Suppose β ∩α = ∅. Then
we have α \ β = α, implying M [βα〉. Hence, α is B-persistent in N .
⇐= Let α be B-persistent in N , and so M [(β \ α)α〉 as (β \ α)∩ α = ∅. Hence,
for every place p ∈ P :

M(p)−W (p, β \ α) +W (β \ α, p) ≥W (p, α)

which implies:

M(p)−W (p, β) +W (p, β ∩ α) +W (β, p)−W (β ∩ α, p) ≥W (p, α) .

Hence we have

M(p)−W (p, β) +W (β, p) ≥W (p, α)−W (p, β ∩ α) +W (β ∩ α, p)
= W (p, α \ β) +W (β ∩ α, p)
≥W (p, α \ β)

implying M [β(α \ β)〉. Hence α is A-persistent. ⊓⊔

2 A more detailed analysis of persistent steps, which considers also steps that are
locally persistent, is presented in a companion paper, “A Taxonomy of Persistent and
Nonviolent Steps” by M. Koutny,  L. Mikulski and M. Pietkiewicz-Koutny, submitted
to ICATPN 2013 (see also [12]).
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It is easy to see that C-persistence is stronger than the other two notions.
Figure 4 ([12]) shows an example of a step, {t, t}, which is A-persistent, but not
C-persistent. The step {t, t} there is only enabled at marking M3, where also {t}
and {t} steps are enabled. After executing step {t}, step {t, t} is still enabled,
but after executing step {t}, only unexecuted part of {t, t} (that means {t}) is
enabled.

(a)

p1 p2 p3

p4

t
′ t t

t̃

(b)

M0

M1

M3

M2

M4

{t ′}

{̃t}

{t}

{t}, {t , t}

{t}

{t}

Fig. 4. A safe net N (a), and its concurrent reachability graph CRG(N ) (b). Step {t, t}
is A-persistent, but not C-persistent.

For a safe PT-net N , C-persistent non-singleton steps are built out of tran-
sitions lying on self-loops. To show this, we first prove an auxiliary result.

Proposition 2. Let α be a C-persistent step of a safe PT-net N = (P, T,W,M0)
enabled at a reachable marking M of N . Then •(α∩β) = (α∩β)• for every step
β 6= α enabled at M in N .

Proof. Suppose p ∈ •(α ∩ β) for some step β 6= α enabled at M in N . This and
M [α〉 (as α is enabled at M) imply M(p) = 1. Since α is C-persistent, there
exists a marking M ′ such that M [β〉M ′[α〉. Again, as M ′[α〉 and p ∈ •(α ∩ β),
we have M ′(p) = 1. From M [β〉M ′, we have M ′(p) = M(p)−W (p, β)+W (β, p),
and so

∑
t∈T β(t) ·W (t, p) =

∑
t∈T β(t) ·W (p, t). Let β = {t1, . . . , tn}. Then,

W (t1, p) + . . .+W (tn, p) = W (p, t1) + . . .+W (p, tn) and, by N being safe, all
the arc weights in this formula are 0 or 1. We now consider two cases:

1. There is i ≤ n such that W (ti, p) = 1 and W (p, ti) = 0. Since M [ti〉 (as
M [β〉), M(p) = 1 and N is safe, we have a contradiction, because ti, when
fired, would deposit another token in p.

2. There is j ≤ n such that W (tj , p) = 0 and W (p, tj) = 1. This means that
there is i ≤ n, W (ti, p) = 1 and W (p, ti) = 0. But this was already ruled out
by the first case. So, contradiction again.
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As a result, for each transition ti ∈ β, W (p, ti) = W (ti, p). Hence p ∈ (α ∩ β)•.
Consequently, •(α ∩ β) ⊆ (α ∩ β)•.

Suppose now that p ∈ (α ∩ β)• \ •(α ∩ β). Then, by M [α ∩ β〉 and the
safeness of N , M(p) = 0. Hence, by M [α〉 and M [β〉, we must have p /∈ •α∪ •β.
Consequently, since there is M ′′ such that M [βα〉M ′′, we obtain M ′′(p) ≥ 2, a
contradiction with N being safe. Hence •(α ∩ β) = (α ∩ β)•. ⊓⊔

Theorem 1. Let α be a non-singleton C-persistent step of a safe PT-net N =
(P, T,W,M0) which is enabled in at least one reachable marking. Then all the
transitions of α lie on self-loops, i.e., •t = t• for t ∈ α.

Proof. Suppose that t ∈ α andM be a reachable marking enabling α. Since {t} 6=
α and M [t〉 for any marking M such that M [α〉, we have, from Proposition 2,
•(α ∩ {t}) = (α ∩ {t})•. Hence •t = t•. ⊓⊔

We now want to relate the persistence of a step with the persistence of its
constituent transitions in safe nets. We first consider A-persistent steps, but as
we already know the results will also hold for B-persistent steps.

First, we prove a simple, but important, fact concerning pre-sets and post-
sets of transitions in steps of safe nets.

Fact 1 If α is a step enabled in a reachable marking of a safe PT-net N , then
(•t ∪ t•) ∩ (•u ∪ u•) = ∅, for all distinct transitions t, u ∈ α.

Proof. Let t, u ∈ α and M be a reachable marking such that M [α〉.
Suppose that p ∈ •t ∩ •u. Since M [α〉, we obtain M [{t, u}〉. That means

M(p) ≥ W (p, t) +W (p, u) = 2, a contradiction with N being safe. As a result,
•t ∩ •u = ∅.

Suppose now that p ∈ t• ∩ u•. Since M [α〉, we obtain M [{t, u}〉M ′. Hence
M ′(p) = M(p)−W (p, t)−W (p, u)+W (t, p)+W (u, p). As t and u cannot share a
pre-place, W (p, t) and W (p, u) cannot both be 1. If one of them has p as its pre-
place, then M(p) = 1, as otherwise one of the transitions would not be enabled
at M , and both are enabled at M . So, the right hand side of the equation yields
2, but the left hand side cannot as the net is safe. We have a contradiction. As
a result, t• ∩ u• = ∅.

Suppose now that p ∈ t• ∩ •u. By M [u〉, M(p) = 1. On the other hand, we
know that p /∈ •t ∩ •u and so p ∈ t• \ •t. Since M [t〉M ′′, for some marking M ′′,
we obtain M ′′(p) = 2, a contradiction with N being safe. Hence, t•∩•u = ∅. ⊓⊔

Theorem 2. Let α be a step in a safe PT-net N = (P, T,W,M0) which is
enabled in at least one reachable marking. If all the transitions in α are persistent
in N , then α is A-persistent in N .

Proof. Let M be a reachable marking and β 6= α be a step in N such that M [α〉
and M [β〉. We need to show that M [β(α \ β)〉.

Assume that α ∩ β = {t1, . . . , tm}, α \ β = {w1, . . . , wn} and β \ α =
{u1, . . . , uk}. Note that all the transitions in these three sets are different. From
M [β〉 we have M [t1 . . . tmu1 . . . uk〉. Now, since each wi is persistent and enabled
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at M , we have that M [t1 . . . tmu1 . . . ukw1 . . . wn〉. Since α and β are steps in a
safe net N enabled at some marking (M), we have, from Fact 1, that transitions
in α and β have disjoint pre-sets and post-sets. Hence we have M [β(α \ β)〉. ⊓⊔

We now consider C-persistent steps. In this case the antecedent in the im-
plication is stronger.

Theorem 3. Let α be a step in a safe PT-net N = (P, T,W,M0) which is
enabled in at least one reachable marking. If all the transitions in α are persistent
and lie on self-loops in N , then α is C-persistent in N .

Proof. Let M be a reachable marking and β 6= α be a step in N such that M [α〉
and M [β〉. We need to show that M [βα〉.

Proceeding similarly as in the previous proof we can show that

M [t1 . . . tmu1 . . . ukw1 . . . wn〉 .

Now, since all transitions in α lie on self-loops we further obtain

M [t1 . . . tmu1 . . . ukt1 . . . tmw1 . . . wn〉 .

Hence we have M [βα〉. ⊓⊔

In both Theorem 2 and Theorem 3, the implications in the opposite direction
do not hold. A counterexample is shown in the Figure 5.

(a)

p1 p2 p3

p4

t
′ t t

t̃

(b)

M0

M1

M2

{t ′}

{̃t}

{t}

{t}

{t}

{t, t}

Fig. 5. A safe net N (a), and its concurrent reachability graph CRG(N ) (b). A per-
sistent step α = {t, t} of N contains a non-persistent transition t.

Observe that step α = {t, t} in Figure 5 is both A-persistent and C-persistent,
but t ∈ α is not persistent at M0 = {p1, p2}, because there exists t′ 6= t such
that M0[t〉 and M0[t

′〉, but M0[t
′t〉 does not hold.
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4 Pruning reachability graphs

The main motivation for studying persistent steps in this paper is to discover
which sets of transitions can be executed synchronously and therefore be treated
as some kind of “atomic actions”, giving rise to new “bigger” transitions, which
would execute in a “hazard-free” way. We will call them bundles. Looking at our
application area of asynchronous circuits, bundling actions would reduce signal
management by merging concurrent signals into one event. This merging must
be done in a consistent fashion. The best candidates for bundles are persistent
steps, but if we want to form “bigger” transitions from them, we must make
sure that one enabled persistent step does not include another enabled persistent
step. All the transitions in a bundle must always appear together, in the same
configurations. In the ideal situation (we say ideal, because it might be difficult to
achieve), we do not want to allow, for example, three persistent steps {a, b}, {a}
and {b} to be enabled in a given transition system. We need to choose: either
to opt for {a, b} and delete {a} and {b}, or the other way round. Therefore,
we need to develop an algorithm which, for a given net N = (P, T,W,M0),
would allow us to prune its reachability graph CRG(N ) in such a way that
all persistent steps would satisfy an additional “non-inclusion” condition. The
“pruned” transition system would represent the desired behaviour, which then
we would like to implement in a form of a Petri net in a process of synthesis.

First we define a sub-st-system, which will be obtained as a result of pruning
a given reachability graph.

Definition 8 (sub-st-system). An st-system STS = (Q,A, q0) is a sub-st-
system of an st-system STS ′ = (Q′, A′, q0) if Q ⊆ Q′, A ⊆ A′ and, for every
q ∈ Q, activeSTS (q) = activeSTS ′(q). We denote this by STS 4 STS ′.

In the above definition, EnSTS of a “properly pruned” reachability graph
STS ′ will be a set of bundles . What we mean by “properly pruned” will be
described by conditions stated in Problem 1.

First, we need to re-define the three notions of step persistence, that were
used for nets, in the context of transition systems. Once we start pruning an
st-system, we need to decide whether the remaining steps that were previously
persistent remain persistent. Checks for persistence will be done in a transition
system (that might not be a reachability graph of any net).

Definition 9 (persistent step in a transition system). A step α ∈ EnSTS

is A-persistent, B-persistent and C-persistent in an st-system STS = (Q,A, q0)
if respectively the following hold for all states q ∈ Q and steps β such that
α
←− q

β
−→:

(A) β 6= α =⇒ q
β(α\β)
−−−−→

(B) β ∩ α = ∅ =⇒ q
βα
−−→

(C) β 6= α =⇒ q
βα
−−→ .

Remark 1. A step α is A-persistent in a net N iff α is A-persistent in a transition
system CRG(N ). The same can be said in the case of B- and C-persistence.
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We have the following relationships between the three step persistence no-
tions defined for transition systems.

Proposition 3. Let STS = (Q,A, q0) be a st-system.

1. If α ∈ EnSTS is A-persistent, then it is also B-persistent.
2. If α ∈ EnSTS is C-persistent, then it is also B-persistent.

Proof. (1) Let q ∈ Q and
α
←− q

β
−→ be such that β ∩ α = ∅. Since α ∈ EnSTS is

A-persistent, we have q
β(α\β)
−−−−→. Hence q

βα
−−→ which means that α ∈ EnSTS is

B-persistent.

(2) Follows directly from Definition 9. ⊓⊔

Note that in the class of general step transition systems, B-persistence does
not imply A-persistence of steps, as it was proved for nets. Indeed, let α ∈ EnSTS

be B-persistent step in STS , and β 6= α and q ∈ Q be such that
α
←− q

β
−→. We

know that β∩(α\β) = ∅. However, with such assumptions, we cannot in general

guarantee that q
α\β
−−→. Though latter is true for concurrent reachability graphs

of PT-nets, we must also consider step transition systems resulting from the
pruning of such reachability graphs.

Problem 1 Let N be a PT-net and CRG(N ) be its concurrent reachability
graph. Find an st-system STS such that STS 4 CRG(N ) and additionally sat-
isfying (D)&(E) or (D)&(F ), where the three conditions are defined as follows:

(D) All steps in EnSTS are B-persistent in STS. 3

(E) α 6⊂ β for all nonempty steps α, β ∈ EnSTS .
(F ) α 6⊂ β for all states q and all nonempty steps α, β ∈ EnSTS (q).

We denote this respectively by

STS 4
global
pers CRG(N ) and STS 4

local
pers CRG(N ) .

We also refer to the condition described in (E) as global non-inclusion, and to
the condition described in (F ) as local non-inclusion.

The difference between 4global
pers and 4local

pers is that the latter only requires
non-inclusion of bundles locally for each state, whereas the former insists that
non-inclusion holds globally. We therefore have

Proposition 4. STS 4global
pers CRG(N ) implies STS 4local

pers CRG(N ).

In our first attempt to solve Problem 1, we will concentrate on PT-nets that
are persistent according to Definition 5. We then have the following result.

3 Alternatively, we could require A-persistence or C-persistence. We opted here for
B-persistence, because it is the weakest of the three notions.
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Theorem 4. If N is persistent (according to Definition 5), then there is at least
one STS satisfying STS 4global

pers CRG(N ).

Proof. It suffices to take CRG(N ) and delete all non-singleton steps. ⊓⊔

As the above proof produces completely sequential solution, we will now
search for a more concurrent one. We will also require that the original PT-net
in not only persistent, but as well safe.

Proposition 5. If N is persistent (according to Definition 5) and safe, then
every step α ∈ EnCRG(N ) is B-persistent in CRG(N ).

Proof. Let α ∈ EnCRG(N ). If N is persistent (according to Definition 5), all
transitions in α are persistent (according to Definition 6). Hence, from Theorem 2
and the fact that N is safe, we have that α is A-persistent in N , and also B-
persistent in N (see Proposition 1). Following Remark 1, we conclude that α is
B-persistent in CRG(N ). ⊓⊔

The above proposition guarantees B-persistence of steps in CRG(N ) of a
persistent and safe net N , but the non-inclusion conditions ((E) or (F )) are,

in general, not satisfied in CRG(N ), as for all its states q, q
α
−→ implies q

β
−→

for any step β ⊂ α. To satisfy the non-inclusion conditions, we need to prune
CRG(N ) in such a way that B-persistence of steps is maintained. We will now
explore what happens if we decide to prune all but the maximal steps at every
reachable marking.

In what follows the st-system CRGmax (N ) is obtained from CRG(N ), the
concurrent reachability graph of a PT-net N , by deleting at every reachable
marking M , all the arcs labelled by non-maximal non-empty 4 steps, and then
removing the nodes that became unreachable from the initial marking by the
removal of such steps.

Proposition 6. CRGmax (N ) 4 CRG(N ).

Proof. Follows from definitions and the fact that for each enabled step there is
a maximal step enabled at the same marking. ⊓⊔

Proposition 7. CRGmax (N ) satisfies condition (F ) from Problem 1.

Proof. Follows from the fact that maximal steps are in-comparable (see definition
of maximal steps in section 2.1). ⊓⊔

Figures: 6, 7, 8 and 9 show the examples of persistent and safe nets for which
the described pruning procedure works as their CRGmax (N ) graphs contain only
B-persistent steps. In all the mentioned examples the pruned reachability graph
satisfies CRGmax (N ) 4local

pers CRG(N ), and in case of the example in Figure 6, we

even have CRGmax (N ) 4global
pers CRG(N ). So, the pruning procedure helped to

4 For technical reasons we do not want to delete empty steps, as they might be im-
portant in future algorithms.
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achieve local non-inclusion without jeopardising B-persistence of the remaining
steps. Notice, however, that in Figures 7(c) and 9(c) this B-persistence in initial
markings is achieved only, because the steps enabled there are not disjoint and
therefore satisfy B-persistence condition trivially.

(a)

a b

(b)

M0

{a, b}

{a} {b}

{b} {a}

(c)

M0

{a, b}

Fig. 6. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRG

max (N ) 4local
pers CRG(N ) obtained in the pruning procedure (c).

(a)

a t1 t2

(b)

M0

{a}{t2, a}{t1, a}

{t1} {t2}

{t1} {t2}

(c)

M0

{t2, a}{t1, a}

{t1} {t2}

Fig. 7. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRG

max (N ) 4local
pers CRG(N ) obtained in the pruning procedure (c).

In general, pruning non-maximal steps may make some of the remaining
steps non-B-persistent. Figure 10 shows that the initially enabled step {b} is
not B-persistent after the pruning procedure. After executing step {a} it is not
longer enabled. Instead step {b, c} is enabled, because it was the maximal step
in the marking M . Having said that, we propose a weaker version of condition
(B) which holds for safe and persistent PT-nets.

Proposition 8. If N is persistent (according to Definition 5) and safe, then,

for every marking M in CRGmax (N ),
α
←−M

β
−→ implies:

(B′) β ∩ α = ∅ =⇒ ∃γ : α ⊆ γ ∧M
βγ
−−→ .

Proof. From Proposition 5 we know that M
βα
−−→ in CRG(N ). Moreover, there

is a maximal step γ available (as it remained after pruning) after executing β at

M such that α ⊆ γ. Hence M
βγ
−−→ in CRGmax (N ). ⊓⊔
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(a)

a b c

(b)

M0

{a, b}{a}

{b}

{b}

(c)

M0

{a, b}

{b}

Fig. 8. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRG

max (N ) 4local
pers CRG(N ) obtained in the pruning procedure (c).

Hence, pruning non-maximal steps may result in the loss of persistence when
α ⊂ γ in (B′). In such a case we may, however, ‘repair’ N by making the step γ
non-enabled. The mechanism for achieving this is simple, namely we select one
transition from α, one transition from γ \α, and make sure that they cannot be
executed simultaneously.

Let N be a PT-net and t 6= u be two transitions. Then Nt↔u is a PT-net
obtained from N by adding a new place p marked initially with one token, and
such that W (p, t) = W (t, p) = W (p, u) = W (u, p) = 1. This construction is
illustrated in Figure 11, where we try to fix the problem of the net N in Figure
10. We added a new place p and chose b and c as our t and u (the only choice
in this example) creating a new net N ′ = Nb↔c. The new place disables the
concurrent step {b, c} at M leaving the singleton steps {b} and {c} enabled
at M , as they are now maximal steps at this marking. In fact, in this simple
example, we have only non-singleton steps in the concurrent reachability graph,
which makes it maximal without pruning. More involved example is shown in
Figure 12 and 13, in the Appendix.

In the following propositions we show that after the proposed modification
the net generates a reachability graph, which is the sub-st-system of the reacha-
bility graph of the initial net. Also, the modified net is still persistent (according
to Definition 5) and safe.

Proposition 9. Let N be persistent (according to Definition 5) and safe net.
The reachable markings of CRG(Nt↔u) and CRG(N ) are the same, if we iden-
tify each reachable marking M of N with the reachable marking M ∪ {p} of
Nt↔u. Furthermore, CRG(Nt↔u) 4 CRG(N ).

Proof. Follows from definitions. ⊓⊔

Proposition 10. If N is persistent (according to Definition 5) and safe, then
CRG(Nt↔u) is also persistent (according to Definition 5) and safe.

Proof. Follows from definitions. ⊓⊔
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(a)

da b

c

(c)

M0

{c}

{b, c}

{b, d}{a, d}

{a}

(b)

M0
{c}

{c}

{d} {c, d}

{b}

{b, d}

{b, c, d}

{c}

{c}

{b} {b, c}

{d} {c, d}

{d}

{b}

{b, d}

{b}

{d}

{a}

{a, d}

{a}

{d}

{b} {a}

{d}

{b}

{a}{a, d}

Fig. 9. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRG

max (N ) 4local
pers CRG(N ) obtained in the pruning procedure (c).

We can now propose a dynamic way of pruning embodied by the following
algorithm:

while ¬(CRGmax (N ) 4local
pers CRG(N )) do

choose M,α, β, γ in CRGmax (N ) satisfying (B′) with α ⊂ γ

choose t ∈ α, u ∈ γ \ α

N := Nt↔u
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(a)

a b

c

(b)

M0

M
{c}

{b}

{c}

{b, c}

{b}{a}

{a}{b}

(c)

M0

M

{c}

{b, c}

{b}{a}

{a}

Fig. 10. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRG

max (N ) obtained in the pruning procedure, which does not satisfy
CRG

max (N ) 4local
pers CRG(N ) (c).

(a)

p

a b

c

(b)

M0

M
{c}

{b}

{c}

{b}{a}

{a}{b}

Fig. 11. Fixing the problem in the example in Figure 10: persistent and safe net N ′ =
Nb↔c (a), its concurrent reachability graph CRG(N ′) = CRG

max (N ′), which trivially
satisfies CRG

max (N ′) 4local
pers CRG(N ′) (and also CRG

max (N ′) 4global
pers CRG(N ′)) (b).

It follows from what we already demonstrated that the above algorithm al-
ways terminates and for the final PT-net N we have:

CRGmax (N ) 4local
pers CRG(N ) .
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Since the algorithm is non-deterministic, we may try various strategies for choos-
ing t and u.

5 Conclusions

In GALS, bundling is envisioned to reduce signal management, and could re-
duce the cost of scheduling and control, and improve system performance. The
ideal way to model mixed synchronous-asynchronous systems is to start with a
concurrent model that is persistent and fully asynchronous in behaviour. Then
run several iterations that derive a combination of bundles that represents the
temporal nature the designer requires. Careful selection of bundles is essential
so that the pruned behaviour of the fully asynchronous model still exhibits some
characteristics of its parent and is persistent. Step persistence is hence an im-
portant characteristic that will guarantee true persistent behaviour for mixed
synchronous-asynchronous models.

In this paper we developed a pruning procedure for reachability graphs of
persistent and safe nets. This procedure constructs a step transition system that
contains only bundles. The bundles in our algorithm represent maximally concur-
rent steps of the initial system. In future we intend to investigate other possible
pruning algorithms, weakening our constraints and allowing the initial system’s
behaviour to be given by a net that is not necessarily persistent. Furthermore,
we plan to allow in the algorithms the choice of non-maximal bundles in certain
cases. For example, input signals are usually behaving in fully asynchronous way
and should not be bundled.
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Appendix

(a) da b

c

(b)

M0
{b}
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{a} {a, d}
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{a}

{c} {c}{c, d}
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{a, d}
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{c}

{a, d}
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Fig. 12. A persistent and safe net N (a), its concurrent reachability graph CRG(N )
(b), and CRG

max (N ) obtained in the pruning procedure, which does not satisfy
CRG

max (N ) 4local
pers CRG(N ) (c).
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{c} {c}{c, d}

(c)

M0

{b}

{b}

{a, d}

{c}
{c}

{a, d}

{b}

{c}

Fig. 13. Fixing the problem in the example in Figure 12: persistent and safe net N ′ =
Nb↔c (a), its concurrent reachability graph CRG(N ′) (b), and CRG

max (N ′) 4
local
pers

CRG(N ′) obtained in the pruning procedure (c). The st-system in (c) satisfies as well
CRG

max (N ′) 4global
pers CRG(N ′).
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