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Abstract. A concurrent system is persistent if throughout its opera-
tion no activity which become enabled can subsequently be prevented
from being executed by any other activity. This is often a highly desir-
able (or even absolutely necessary) property, in particular, if the system
is to be implemented in hardware. Over the past 40 years, persistence
has been investigated and applied in practical implementations assuming
that each activity is a single atomic action which can be represented, for
example, by a single transition of a Petri net used as a formal represen-
tation of a concurrent system. Recently, it turned out that such a notion
of persistence is restricted and in dealing with the synthesis of GALS
systems one also needs to consider activities represented by steps which
are sets of simultaneously executed transitions. Moving into the realm
of step based execution semantics creates a wealth of new fundamental
problems and intriguing questions. In particular, there are different ways
in which the standard notion of persistence could be lifted from the level
of sequential semantics to the level of step semantics. Moreover, at a local
level, one may consider steps which are persistent and cannot be disabled
by other steps, as well as steps which are nonviolent and cannot disable
other steps. In this paper, we aim at providing a classification of differ-
ent types of persistence and nonviolence, both for steps and markings
of pt-nets. We also investigate behavioural and structural properties of
such notions both for the general pt-nets and their subclasses.
Keywords: persistence, nonviolence, step semantics, Petri net, taxon-
omy, behaviour, structure.

1 Introduction

A concurrent system is persistent [2–4, 7] if throughout its operation no activity
which become enabled can subsequently be prevented from being executed by
any other activity. This is often a highly desirable (or even absolutely necessary)
property, in particular, if the system is to be implemented in hardware [5, 8].
Over the past 40 years, persistence has been investigated and applied in practical
implementations assuming that each activity is a single atomic action which can
be represented, for example, by a single transition of a Petri net used as a formal
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representation of a concurrent system. In other words, persistence was considered
assuming the sequential execution semantics of concurrent systems.

Recently, in a companion paper [6] we argued that the notion of persistence
is restricted and in dealing with the synthesis of GALS systems one also needs to
consider activities represented by steps which are sets of simultaneously executed
transitions. Moving into the realm of step based execution semantics creates a
wealth of new fundamental problems and intriguing questions, some of which
have been addressed in [6]. In particular, there are different ways in which the
standard notion of persistence could be lifted from the level of sequential seman-
tics to the level of step semantics. For example, if part of an enabled has been
executed by another step, should we insist on the whole delayed step to be still
enabled, or just its residual part? Moreover, at a local level, one may consider
steps which are persistent and cannot be disabled by other steps, as well as steps
which are nonviolent [1, 2] and cannot disable other steps. In this paper, we aim
at providing a classification of different types of persistent and nonviolent steps
taking pt-nets to be the system model in which the discussion is carried out.
Moreover, we introduce and investigate persistence and nonviolence at the level
of markings of pt-nets. We also investigate behavioural and structural proper-
ties of notions pertaining to persistence and nonviolence both for the general
pt-nets and safe pt-nets.

The paper is organised as follows. In the next section, we present basic notions
and notations used throughout. Section 3 introduces various types of persistent
and nonviolent steps of transitions in pt-nets, and Section 4 provides their tax-
onomy. The following section extends the discussion and taxonomy of persistence
and nonviolence to markings of pt-nets. In Section 6 we investigate the basic
properties of persistent and nonviolent steps of transitions in pt-nets, and then,
in Section 7, we focus specifically on the class of safe pt-nets.

2 Preliminaries

A pt-net is a tuple N = (P, T,W,M0), where P and T are finite disjoint sets of
respectively places and transitions, W : (P ×T )∪ (T ×P ) → N is an arc weight
function, and M0 : P → N is the initial marking. In general, any mapping
M : P → N is a marking of N , and if M ′ is a marking such that M(p) ≥ M ′(p),
for all p ∈ P , then we denote M ≥ M ′. We use the standard conventions
concerning the graphical representation of nets.

A step α of N is a set of its transitions, α ⊆ T . We will use α, β, γ, . . . to
range over the set of steps. For every place p ∈ P , W (p, α) =

∑
t∈α W (p, t) and

W (α, p) =
∑

t∈α W (t, p). Intuitively, W (p, α) gives the number of tokens that the
firing of α removes from p, and W (α, p) is the total number of tokens inserted
into p. The pre-places and post-places of a step α are respectively defined as
•α = {p ∈ P | W (p, α) > 0} and α• = {p ∈ P | W (α, p) > 0}. A singleton step
α = {t} will often be denoted by t, and by a non-singleton step we will mean
any step comprising at least two transitions.



A Taxonomy of Persistent and Nonviolent Steps 3

A step α is enabled and may be fired at a marking M if M(p) ≥ W (p, α), for
every place p ∈ P . We denote this by M [α〉. Firing such an enabled step leads to
the marking M ′ defined by M ′(p) = M(p) −W (p, α) + W (α, p), for every place
p ∈ P . We denote this by M [α〉M ′.

A step sequence from a marking M is a (possibly empty) sequence of steps
σ = α1 . . . αn such that there are markings M1, . . .Mn+1 satisfying M = M1

and Mi[αi〉Mi+1, for every i ≤ n. We denote this by M [σ〉 and M [σ〉Mn+1. If
M = M0 then Mn+1 belongs to the set [M0〉 of reachable markings of N .

The concurrent reachability graph CRG(N ) of N is defined as a labelled
directed graph CRG(N ) = ([M0〉, A,M0), where the reachable markings of N
are vertices, the initial marking is the initial vertex, and the set of arcs is given
by A = {(M,α,M ′) | M ∈ [M0〉 ∧M [α〉M ′}.

A pt-net N is ordinary if W (P × T ∪ T × P ) ⊆ {0, 1}, and safe if M(P ) ⊆
{0, 1}, for every M ∈ [M0〉 . It can be seen that a pt-net without non-active
transitions (i.e., transitions that are not enabled at any reachable marking) is
ordinary.

Note that being a safe pt-net does not depend on the chosen semantics, i.e.,
the sequential semantics where only singleton steps are executed, or the full step
semantics. In what follows, a step α of a pt-net:

– is active if there is a reachable marking which enables it.
– is positive if W (α, p) ≥ W (p, α), for every p ∈ P .
– is disconnected if (•t∪t•)∩(•t′∪t′•) = ∅, for all distinct transitions t, t′ ∈ α.
– lies on self-loops if W (p, t) = W (t, p), for all t ∈ α and p ∈ P .

Clearly, if α lies on self-loops then it is also positive. We also have:

Fact 1 If M [α〉 and M ′ ≥ M , then M ′[α〉.

Fact 2 If M [α〉 and β ⊆ α, then M [β(α \ β)〉.

Fact 3 A step α is enabled at a reachable marking M of a safe pt-net iff α is
disconnected and contains transitions enabled at M .

3 Persistence and Nonviolence

In its standard form, persistence is stated as a property of nets executed accord-
ing to the sequential semantics.

Definition 1 (persistent net, [7]). A pt-net N is persistent if, for all tran-
sitions t 6= t′ and any reachable marking M of N , M [t〉 and M [t′〉 imply M [tt′〉.

The above definition captures a property of the entire system represented by
the pt-net. If one is interested in more fine-grained preservation of executability
of actions, it is natural to re-phrase it in terms of individual transitions.

Definition 2 (nonviolent/persistent transition). Let t be a transition en-
abled at a marking M of a pt-net N . Then:
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– t is locally nonviolent at M if, for every transition t′ enabled at M ,

t′ 6= t =⇒ M [tt′〉 .

– t is locally persistent at M if, for every transition t′ enabled at M ,

t′ 6= t =⇒ M [t′t〉 .

Moreover, an active transition t is globally nonviolent (or globally persistent) in
N if it is locally nonviolent (resp. locally persistent) at every reachable marking
of N at which it is enabled.

The net-oriented and transition-oriented definitions are closely related as,
due to the symmetric roles played by t and t′ in Definition 1, we immediately
obtain the following.

Proposition 1. Let N be a pt-net. Then the following are equivalent:

– N is persistent.
– N contains only globally nonviolent transitions.
– N contains only globally persistent transitions.

We will now introduce the central definitions of this paper, in which we lift
the notions of persistence and nonviolence from the level of individual transitions
to the level of steps.

Definition 3 (nonviolent step). Let α be a step enabled at a marking M of
a pt-net N . Then:

– α is locally a-nonviolent at marking M (or la-nonviolent) if, for every step
β enabled at M ,

β 6= α =⇒ M [α(β \ α)〉 .

– α is locally b-nonviolent at marking M (or lb-nonviolent) if, for every step
β enabled at M ,

β ∩ α = ∅ =⇒ M [αβ〉 .

– α is locally c-nonviolent at marking M (or lc-nonviolent) if, for every step
β enabled at M ,

β 6= α = ∅ =⇒ M [αβ〉 .

Moreover, an active step α is globally a/b/c-nonviolent (or ga/gb/gc-non-
violent) in N if it is respectively la/lb/lc-nonviolent at every reachable mark-
ing of N at which it is enabled.

Each of the three types of step nonviolence is a conservative extension of
transition nonviolence introduced in Definition 2. Intuitively, type-a nonviolence
requires that only the unexecuted part of a delayed step is kept enabled, and
so it is ‘protected’ by α. Type-b and type-c nonviolence, however, insist on
maintaining the enabledness of the whole delayed step.
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Definition 4 (persistent step). Let α be a step enabled at a marking M of a
pt-net N . Then:

– α is locally a-persistent at marking M (or la-persistent) if, for every step
β enabled at M ,

β 6= α =⇒ M [β(α \ β)〉 .

– α is locally b-persistent at marking M (or lb-persistent) if, for every step
β enabled at M ,

β ∩ α = ∅ =⇒ M [βα〉 .

– α is locally c-persistent at marking M (or lc-persistent) if, for every step
β enabled at M ,

β 6= α = ∅ =⇒ M [βα〉 .

Moreover, an active step α is globally a/b/c-persistent (or ga/gb/gc-persis-
tent) in N if it is respectively la/lb/lc-persistent at every reachable marking
of N at which it is enabled.

Again, each of the three types of step persistence is a conservative extension
of transition persistence introduced in Definition 2. Type-a persistence requires
that only unexecuted part of a delayed step is kept enabled, and in this case
a persistent step can ‘survive’ only partially. Type-b and type-c persistence,
however, insist on preserving the enabledness of the whole step. Note that in
type-b of nonviolence and persistence, two steps are considered different if they
are disjoint, whereas in the other two cases it is enough that they are different,
and so they can have a nonempty intersection.

p1

p2

p3

p4

p5

p6

p7

p8

t

t
′

t
′′

t
′′′

M2

M3

M4

M5

M0 M1

{t ′}{t}

{t}{t ′}

{t ′′}{t ′′′}

{t ′′′}{t ′′}

{t , t ′}

{t ′′, t ′′′}

Fig. 1. A persistent safe pt-net and its concurrent reachability graph.

Moving from sequential to step semantics changes the way we perceive the
persistence of pt-nets introduced by the standard Definition 1. In particular,
in the sequential semantics, by Proposition 1, all transitions in a persistent net
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are both globally nonviolent and globally persistent. In the step semantics the
situation is radically different. Consider, for example, the pt-net in Figure 1. It
is persistent, and all of its active steps are both ga-persistent and ga-nonviolent.
However, its nonempty steps fail to be lc-persistent or lc-nonviolent at some of
the markings that enable them. More precisely, {t}, {t′} and {t, t′} are neither
lc-persistent nor lc-nonviolent at M0, while {t′′′}, {t′′} and {t′′, t′′′} are nei-
ther lc-persistent nor lc-nonviolent at M1. This should not come as a surprise,
as the type-c of persistence (or nonviolence) is a demanding property. Type-a
of persistence and nonviolence, on the other hand, are close in spirit to their
sequential counterparts.

p1 p2

t t
′

M0

M1

{t ′}

{t}

Fig. 2. A safe pt-net illustrating the duality of persistence and nonviolence.

The duality of the nonviolent and persistent steps is illustrated in Figure 2,
where:

– {t} is both a ga-nonviolent and gc-nonviolent step, but neither la-persistent
nor lc-persistent at M0.

– {t′} is both a ga-persistent and gc-persistent step, but neither la-nonviolent
nor lc-nonviolent at M0.

A step can be both nonviolent and persistent. For example, if we merge p1
and p2 in Figure 2, making both t and t′ lie on self-loops, then {t} and {t′}
become ga/gc-nonviolent/persistent.

4 Relating Persistent and Nonviolent Steps

Our aim in this section is to identify the expressiveness of different types of
persistent and nonviolent steps. Directly from Definitions 3 and 4 we have the
following.

Proposition 2. Let α be a step enabled at a reachable marking M of a pt-
net N . Then, respectively:

1. If α is ga/gb/gc-nonviolent in N , then α is la/lb/lc-nonviolent at M .
2. If α is ga/gb/gc-persistent in N , then α is la/lb/lc-persistent at M .

We then obtain a number of inclusions between different types of persistent
and nonviolent steps which all hold for general pt-nets.



A Taxonomy of Persistent and Nonviolent Steps 7

Proposition 3. Let α be a step and M be a marking of a pt-net N . Then:

1. α is la-nonviolent at M iff α is lb-nonviolent at M .
2. α is la-persistent at M iff α is lb-persistent at M (cf. [6]).

Proof. Assume that α is enabled at M , and β is another step enabled at M .

(1) Suppose that α is la-nonviolent at M and β ∩ α = ∅. Then M [α(β \ α)〉
and β \ α = β. Hence M [αβ〉, and so α is lb-nonviolent at M .
Conversely, suppose α is lb-nonviolent at M . Then M [α(β \ α)〉 as (β\α)∩α = ∅

and M [β \ α〉 (cf. Fact 2). Hence, α is la-nonviolent at M .

(2) Suppose that α is la-persistent at M and β∩α = ∅. Then M [β(α \ β)〉 and
α \ β = α. Hence M [βα〉, and so α is lb-persistent at M .
Conversely, suppose that α is lb-persistent at M . Then M [(β \ α)α〉 as (β \α)∩
α = ∅ and M [β \ α〉 (cf. Fact 2). Hence, for every place p ∈ P :

M(p) −W (p, β \ α) + W (β \ α, p) ≥ W (p, α)

which implies:

M(p) −W (p, β) + W (p, β ∩ α) + W (β, p) −W (β ∩ α, p) ≥ W (p, α) .

As a result, we obtain that

M(p) −W (p, β) + W (β, p) ≥ W (p, α) −W (p, β ∩ α) + W (β ∩ α, p)
= W (p, α \ β) + W (β ∩ α, p)
≥ W (p, α \ β)

implying M [β(α \ β)〉. Hence α is la-persistent at M . ⊓⊔

Proposition 4. Let α be a step of a pt-net N . Then:

1. α is ga-nonviolent in N iff α is gb-nonviolent in N .
2. α is ga-persistent in N iff α is gb-persistent in N (cf. [6]).

Proof. Follows directly from Proposition 3. ⊓⊔

Proposition 5. Let α be a step and M a marking of a pt-net N . Then:

1. If α is lc-nonviolent at M , then α is la-nonviolent at M .
2. If α is lc-persistent at M , then α is la-persistent at M .

Proof. Since enabledness of steps is monotonic in pt-nets (see Fact 2), the two
implications follow directly from Definitions 3 and 4, where the statements for
lc-persistence and lc-nonviolence have stronger consequents. ⊓⊔

Proposition 6. Let α be a step of a pt-net N . Then:

1. If α is gc-nonviolent in N , then α is ga-nonviolent in N .
2. If α is gc-persistent in N , then α is ga-persistent in N .
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p1 p2 p3

p4

t
′

t t
′′

t
′′′

M0

M1

M3

M2

M4

{t ′}

{t ′′′}

{t}

{t}, {t , t ′′}

{t′′}

{t′′}

Fig. 3. A safe pt-net for (ii,v,vi) in Figure 7 and (i,ii) in Figure 9.

p1 p2

p3 p4 p5

t
′

tt
′′

M0

M1

M2

M3 M4

M5

{t}

{t ′′}

{t} {t ′}

{t}{t ′}

{t , t ′}

Fig. 4. A safe pt-net for (iv) in Figure 7.

Proof. Follows directly from Proposition 5. ⊓⊔

The implications in Propositions 5 and 2 (for type-a) cannot be reversed.
A counterexample is provided in Figure 3, where {t} is both la-nonviolent and
la-persistent at M3. However, it is neither lc-nonviolent nor lc-persistent at
M3 as well as it is neither ga-nonviolent nor ga-persistent (because of M0).

The implications in Propositions 6 cannot be reversed. A counterexample is
provided in Figure 3, where {t, t′′} is both ga-nonviolent and ga-persistent, but
neither gc-nonviolent nor gc-persistent. As this step is only enabled at marking
M3, it fails to be lc-nonviolent or lc-persistent as well. Moreover, in Figure 3,
{t′′′} is a step that is type-a and type-c globally nonviolent and persistent,
because it is only enabled at one marking M1, and no other nonempty step is
enabled at M1.

Figure 4 shows that a step {t} may be ga-persistent, but only lc-persistent
(at M0 and M4). Step {t} is not gc-persistent in that reachability graph, be-
cause it is not lc-persistent at M2. The same example can be used considering
nonviolence.
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p1

p2 p3 p4

t t
′

t
′′

M1

M3 M4

M0

M2

{t}

{t ′}

{t ′′}{t}

Fig. 5. A safe pt-net for (iii) in Figure 7.

p1 p2

p3 p4 p5

t t
′

t
′′

M0

M1 M2

M3

M4

{t ′}

{t} {t ′′}

{t , t ′′}

{t ′′} {t}

Fig. 6. A safe pt-net for (i) in Figure 7.

Figure 5 shows an example of a step, {t}, that is lc-nonviolent, la-nonviolent,
lc-persistent and la-persistent at M0, but neither gc-nonviolent nor ga-nonviolent
nor gc-persistent nor ga-persistent.

There are steps in pt-nets that are neither persistent nor nonviolent accord-
ing to any of the considered types; for example, {t, t′′} and {t′} in Figure 6.
They are enabled only at M0, and fail to be persistent or nonviolent there.

Finally, there are pt-nets where all steps are neither persistent nor nonviolent
whatever type (a or c) we choose. For example, take a safe pt-net with only two
transitions, t and t′, which share only one marked pre-place. Then, the only two
steps in the concurrent reachability graph are {t} and {t′}, and they prevent
each other from being persistent and, as a consequence, they also fail to be
nonviolent.

The relationships between different types of persistent and nonviolent steps
are summarised in the diagram of Figure 7. As the relationships are the same
for persistence or nonviolence, the diagram simply refers to different types of
persistence or nonviolence.



10 M.Koutny,  L.Mikulski and M.Pietkiewicz-Koutny

active steps

la=lb

lc
ga=gb

gc

(v)(iv)(iii)(ii)(i) (vi)

Fig. 7. A taxonomy of persistent and nonviolent steps. Examples of steps exhibiting
the nonemptiness of the specific sets of steps in the diagram are as follows: {t, t′′} and
{t′} in Figure 6 for (i); {t} in Figure 3 for (ii); {t} in Figure 5 for (iii); {t} in Figure 4
for (iv); {t′′′} in Figure 3 for (v); and {t, t′′} in Figure 3 for (vi).

5 Persistent and Nonviolent Markings

In this section we focus on steps enabled at a particular marking. A marking
will be persistent (or nonviolent) according to some chosen type of persistence
(or nonviolence) if all steps that it enables will satisfy appropriate definition of
persistence (or nonviolence). Interestingly, in such markings, if all enabled steps
are a (b or c) persistent they all are a (b or c) nonviolent, and vice versa. In
some way, such markings create an environment where steps do not interfere
with each other.

Definition 5 (nonviolent/persistent marking). Let M be a reachable mark-
ing of a pt-net N . Then:

– M is a/b/c-nonviolent in N if every step enabled at M is respectively
la/lb/lc-nonviolent at M .

– M is a/b/c-persistent in N if every step enabled at M is respectively la/lb/lc-
persistent at M .

Proposition 7. A reachable marking of a pt-net is a/b/c-persistent iff it is
a/b/c-nonviolent, respectively.

Proof. By Definition 5, a reachable M is a-persistent in a pt-net N iff each step
α enabled at M is la-persistent at M . The latter in turn is equivalent to:

∀α : M [α〉 =⇒ (∀β : α 6= β ∧M [β〉 =⇒ M [α(β \ α)〉)
≡ ∀α, β : α 6= β ∧M [α〉 ∧M [β〉 =⇒ M [α(β \ α)〉
≡ ∀α, β : α 6= β ∧M [α〉 ∧M [β〉 =⇒ M [β(α \ β)〉
≡ ∀α : M [α〉 =⇒ (∀β : α 6= β ∧M [β〉 =⇒ M [β(α \ β)〉) .

The last line is equivalent to stating that each step α enabled at M is la-
nonviolent at M . Hence, by Definition 5, M is a-nonviolent in N .

The proofs of the other two equivalences are similar. ⊓⊔

Proposition 8. A reachable marking of a pt-net N is a-persistent (or a-
nonviolent) in N iff it is b-persistent (resp. b-nonviolent) in N .
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Proof. Follows directly from Definitions 4 and 5, and Propositions 3 and 7. ⊓⊔

Proposition 9. If a reachable marking of a pt-net N is c-persistent (or c-
nonviolent) in N , then it is a-persistent (resp. a-nonviolent) in N .

Proof. Follows directly from Definitions 4 and 5, and Propositions 5 and 7. ⊓⊔

The implications in Proposition 9 cannot be reversed, and a suitable coun-
terexample is provided in Figure 3, where M3 is both a-persistent and a-nonviolent
marking but it is neither c-persistent nor c-nonviolent. Notice that all the steps
enabled at M3 (i.e., {t}, {t′′} and {t, t′′}) are la-persistent at this marking,
making it a-persistent (and a-nonviolent, see Proposition 7). However, {t} and
{t, t′′} are neither lc-persistent nor lc-nonviolent at M3.

p1 p2 p3

p4

t
′

t t
′′

t
′′′

M0

M1

M2

{t ′}

{t ′′′}

{t}

{t}

{t′′}

{t, t′′}

Fig. 8. A safe pt-net for (iii) in Figure 9.

The relationships between different types of persistent and nonviolent mark-
ings are summarised in the diagram of Figure 9. As the relationships are the
same for persistence or nonviolence, the diagram simply refers to different types
of persistence or nonviolence.

reachable markings
a=b

c

(iii)(ii)(i)

Fig. 9. A taxonomy of persistent and nonviolent markings. Examples of markings ex-
hibiting the nonemptiness of the specific sets of markings in the diagram are as follows:
M0 in Figure 3 for (i); M3 in Figure 3 for (ii); and M2 in Figure 8 for (iii).
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6 Persistent and Nonviolent Steps in PT-nets

In this section, we investigate general properties of persistent and nonviolent
steps. The first question we address is whether persistence and nonviolence of
steps can be ‘inherited’ by their substeps. For general pt-nets, the answer turns
out to be positive only for local persistence.

Proposition 10. Let γ ⊆ α be two steps and M be a reachable marking of a
pt-net. Then:

1. If α is la-persistent at M , then γ is la-persistent at M .
2. If α is lc-persistent at M , then γ is lc-persistent at M .

Proof. From γ ⊆ α, M [α〉 and Fact 2, we have M [γ〉. Hence γ is active. Moreover,
we assume ∅ 6= γ 6= α as the otherwise the results is obvious.

(1) Let β 6= γ be a step enabled at M . If β 6= α then, as α is la-persistent at
M , we have M [β(α \ β)〉. Hence, by γ \ β ⊆ α \ β and Fact 2, M [β(γ \ β)〉. If
β = α then M [β(γ \ β)〉 as M [α∅〉 and γ \ β = ∅.

(2) Let β 6= γ be a step enabled at M . If β 6= α then, as α is lc-persistent at
M , we have M [βα〉. Hence, by γ ⊆ α and Fact 2, M [βγ〉. If β = α and ¬M [αγ〉,
then we proceed as follows. By M [α〉, there is p ∈ P such that M(p)−W (p, α)+
W (α, p) < W (p, γ). On the other hand, since α is lc-persistent at M and γ 6= α
is enabled at M , we have M [γα〉. Thus M(p) − W (p, γ) + W (γ, p) ≥ W (p, α).
As a result, W (p, α) + W (p, γ) −W (γ, p) < W (p, γ) + W (p, α) −W (α, p), and
so W (γ, p) > W (α, p), yielding a contradiction. ⊓⊔

Proposition 10 does not hold for globally persistent steps and their substeps,
whether we consider a-persistence or c-persistence. Figure 8 shows an example of
a step, {t, t′′}, which is both ga-persistent and gc-persistent, but its substep {t}
is neither ga-persistent nor gc-persistent, because of marking M0. Furthermore,
Proposition 10 extended to nonviolent steps does not hold, even for ordinary pt-
nets. Figure 10 provides a counterexample, where {t, t′′} is both la-nonviolent
and lc-nonviolent at M0 (in fact it is both ga-nonviolent and gc-nonviolent,
as no other nonempty steps are enabled at M0), but its substep {t} is neither
la-nonviolent nor lc-nonviolent at M0.

Type-c persistence and nonviolence are very demanding, and can only be
satisfied by steps of a very particular kind. The presence of type-c persistent or
nonviolent steps has therefore, some structural implications for nets and their
reachability graphs. The next result gives sufficient conditions for being a globally
nonviolent step.

Theorem 1. Each active positive step of a pt-net is both gc-nonviolent and
ga-nonviolent.

Proof. Let M [α〉M ′ and β 6= α be a step enabled at M . From M ′ ≥ M (as
α is positive) and Fact 1 it follows that M ′[β〉. Hence M [αβ〉, and so α is gc-
nonviolent. Moreover, by Proposition 6, α is also ga-nonviolent. ⊓⊔
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p1 p2

p3

t t
′

t
′′

M0

M1

M2

M3

M4

M5

{t}

{t ′′}

{t}

{t ′′}

{t}

{t ′′}

{t , t ′′}

{t ′}
{t ′}

{t ′}

{t , t ′}

Fig. 10. An ordinary pt-net for the discussion of Proposition 10.

The next result gives necessary conditions for being a gc-persistent step.
Intuitively, the intersection of a gc-persistent step with any other step enabled
at the same marking consumes less resources (tokens) that it produces. This
should not be a surprise, because in c-persistence the intersection of two enabled
steps at a given marking must be able to fire twice in a row.

Proposition 11. Let α be a gc-persistent non-singleton step enabled at a reach-
able marking M of a pt-net. Then, for every step β 6= α enabled at M , α∩ β is
a positive step.

Proof. Suppose that the step γ = α ∩ β is not positive, and so there is p ∈ P
such that W (p, γ) > W (γ, p). We consider two cases.

Case 1: α 6⊂ β. Since M [α〉 and γ ⊆ α, we have M [γ〉. Also, since α 6⊂ β,
γ 6= α. As α is gc-persistent, there exists a marking M1 such that M [γ〉M1[α〉.
We can repeat this construction, replacing M with M1, as α is globally c-
persistent. In fact, we can repeat this construction k = M(p)+1 times, obtaining
M [γ〉M1[γ〉M2[γ〉M3 . . .Mk[α〉.

We then observe that M(p) − M1(p) = W (p, γ) − W (γ, p) ≥ 1. Similarly,
Mi(p)−Mi+1(p) ≥ 1, for i = 1, . . . , k− 1. Hence M(p)−Mk(p) ≥ k = M(p) + 1
and so Mk(p) < 0 which is obviously impossible, yielding a contradiction.

Case 2: α ⊂ β. Then γ = α ∩ β = α. As α is a non-singleton step, we can
split it into two disjoint nonempty subsets: α = γ = γ′ ⊎ γ′′. Since M [α〉 and
γ′, γ′′ ⊆ α, we have M [γ′〉 and M [γ′′〉. Also, γ′ 6= α and γ′′ 6= α. As α is
gc-persistent, there exists a marking M ′ such that M [γ′〉M ′[α〉. Now, we can
repeat this construction, for M ′ and step γ′′ getting: M [γ′〉M ′[γ′′〉M1[α〉 or
M [γ′γ′′〉M1[α〉. We can repeat this construction, now starting at M1, as α is
globally c-persistent. In fact, we can repeat this construction k = M(p) + 1
times, obtaining M [γ′γ′′〉M1[γ′γ′′〉M2[γ′γ′′〉M3 . . .Mk[α〉.
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We now observe that, by γ = γ′⊎γ′′, we have W (p, γ) = W (p, γ′)+W (p, γ′′)
and W (γ, p) = W (γ′, p) + W (γ′′, p). The rest of the proof is then similar as in
Case 1. ⊓⊔

In Proposition 11, one cannot drop the assumption that α is a non-singleton
step. Consider, for example, Figure 11 and take α = {t′} and β = {t, t′}, which
are two different steps enabled at M0. Although α is gc-persistent, the inter-
section α ∩ β = {t′} is not a positive step, as W (p1, t

′) > W (t′, p1). Similarly,
one cannot drop the assumption that α is gc-persistent. Consider, for example,
Figure 13 and take α = {t, t′}, and β = {t}, which are two different steps jointly
enabled at several markings, such as M0. Although α is a non-singleton step, the
intersection α ∩ β = {t} is not a positive step as W (p1, α ∩ β) > W (α ∩ β, p1).

p1

p2 p3

t t
′

2

M0

M1 M2

M3 M4 M5

M7 M8 M9

{t} {t ′}

{t , t ′}

{t} {t ′} {t} {t ′}

{t ′}{t ′} {t ′}

Fig. 11. A pt-net for the discussion of Proposition 11.

The implication in Proposition 11 cannot be reversed, and a counterexample
is provided in Figure 12, where α = {t, t′} is a non-singleton step enabled (only)
at M0. There are two other nonempty steps enabled at M0, viz. {t} and {t′′′}.
Clearly, both α ∩ {t} = {t} and α ∩ {t′′′} = ∅ are positive steps. However, α is
not gc-persistent as it is not enabled after the execution of t′′′.

p1

p2

t t
′

t
′′′

2

M1

M0

{t ′′′}

{t}

{t′}

{t, t′}

Fig. 12. A pt-net for the discussion of Proposition 11.
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p1

p2 p3

t t
′

M0

M1 M2

M3 M4 M5

M6 M7

M8 M9

M10

M11

{t} {t ′}

{t , t ′}
{t} {t ′}

{t , t ′}

{t} {t ′}

{t , t ′}

{t ′} {t} {t ′}
{t , t ′}

{t}

{t} {t ′}
{t , t ′}

{t}

{t ′} {t}

{t}

Fig. 13. A pt-net for the discussion of Proposition 11.

Finally, Proposition 11 cannot be re-stated for nonviolence, and a counterex-
ample is provided in Figure 10, where α = {t, t′′} is a gc-nonviolent non-
singleton step, and β = {t} is another step enabled together with α at M0.
However, α ∩ β is not a positive step as W (p2, α ∩ β) > W (α ∩ β, p2).

Theorem 2. Let α be a gc-persistent non-singleton step of a pt-net N , and γ
be a subset of α. Then:

1. For every reachable marking M enabling α, γ is lc-persistent at M .
2. γ is gc-nonviolent in N .

Proof. (1) Follows directly from Proposition 10.

(2) As α is an active step, there is a reachable marking M enabling α. We now
consider two cases.

Case 1: γ ⊂ α. Then γ 6= α is a step enabled at M . As α is gc-persistent, we
can use Proposition 11 to conclude that γ is positive.

Now, suppose that M ′ is a reachable marking enabling γ. We need to show
that, for any step β 6= γ enabled at M ′, we have M ′[γβ〉. Let M ′′ be a marking
such that M ′[γ〉M ′′. This means M ′′(p) = M ′(p)−W (p, γ) +W (γ, p), for every
p ∈ P . So, as γ is positive, we obtain that M ′′ ≥ M ′. Thus, from M ′[β〉 and
Fact 1, we have that M ′′[β〉, as was required.

Case 2: γ = α. As α is a non-singleton step, we can represent it as a disjoint
union of two nonempty subsets: α = γ′ ⊎ γ′′. From M [α〉 and Fact 2, we have
M [γ′〉 and M [γ′′〉. Moreover, as α is gc-persistent, we can use Proposition 11
to conclude that both γ′ and γ′′ are positive steps. Therefore, γ is also positive.
The rest of the proof is similar as in Case 1. ⊓⊔

In Proposition 11, the intersection of two different steps enabled at some
reachable marking, α∩β, will be able to fire twice in a row (as α is gc-persistent).
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As a result, α ∩ β can be seen as a persistent step as well as a nonviolent step
at markings that enable α (cf. Theorem 2(2)). As α can be covered by such
intersections, gc-persistence of a non-singleton α implies its gc-nonviolence. In
a way, in type-c case, the boundary between persistence and nonviolence blurs
to some extent.

Type-a persistence and nonviolence are different in nature. They follow most
closely the ideas of persistence and nonviolence in the sequential case: they com-
plement each other. The next result shows the complementarity of a-nonviolent
and a-persistent steps at some reachable marking M .

Theorem 3. Let M be a reachable marking of a pt-net N . If there are two
disjoint steps α and β enabled at M such that every enabled step at M is a
subset of their union, then the following holds:

α is la-persistent at M implies β is la-nonviolent at M.

Proof. Let γ be a step enabled at M such that γ ∩ β = ∅. This and γ ⊆ α ∪ β
implies γ ⊆ α. By Propositions 10 and 3(2), the step γ is lb-persistent, and so
M [βγ〉. Since γ is an arbitrary step, disjoint from β and enabled at M , we obtain
that β is lb-nonviolent at M . Finally, by Proposition 3(1), β is la-nonviolent
at M . ⊓⊔

The implication in opposite direction does not hold, even in the case of
ordinary nets. The counterexample is presented in Figure 10. Taking α = {t′}
and β = {t, t′′} we see that β is a la-nonviolent step at M0, but α is not la-
persistent at M0. We can, for example execute step {t} at M0, which leads us
to marking M1, where α is not enabled.

We end this section with a result that gives sufficient conditions for a step of
an ordinary pt-net to be gc-nonviolent. It is a counterpart of Theorem 1 formu-
lated for the general pt-nets. Although the conditions here are more restrictive
than those in Theorem 1, they are linked to the structure of a net rather than
the behaviour.

Theorem 4. Let α be an active step of an ordinary pt-net N . If α lies on
self-loops, then α is gc-nonviolent in N .

Proof. Since all the transitions in α lie on self-loops, α is positive. Hence, by
Theorem 1, α is gc-nonviolent in N . ⊓⊔

7 Persistent and Nonviolent Steps in Safe PT-nets

In the case of safe pt-nets, due to their specific properties, we can identify more
interesting properties of persistent or nonviolent steps and, in particular, link
them to the structure of the nets. We start with results are concerned with the
structural properties related to C-persistence and C-nonviolence.
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Proposition 12 (see [6]). Let α be a step which is lc-persistent or lc-
nonviolent at a reachable marking M of a safe pt-net N . Then •(α ∩ β) =
(α ∩ β)•, for every step β 6= α enabled at M .

Proof. The result for lc-persistent α was proven for [6]. We therefore assume
that α = {t1, . . . , tn} is lc-nonviolent.
Suppose that p ∈ •(α∩β), for some step β 6= α enabled at M . Clearly, M(p) = 1.
Moreover, by Fact 3, α is disconnected.

Since α is lc-nonviolent, there is a marking M ′ such that M [α〉M ′[β〉. As
M ′[β〉 and p ∈ •(α ∩ β), we have M ′(p) = 1. Hence M ′(p) = M(p) −W (p, α) +
W (α, p), and so W (t1, p)+ · · ·+W (tn, p) = W (p, t1)+ · · ·+W (p, tn). By N being
safe, all the arc weights in this formula are 0 or 1. Moreover, α is disconnected.
It therefore follows that W (p, ti) = W (ti, p), for each ti. Hence p ∈ (α∩β)•, and
so •(α ∩ β) ⊆ (α ∩ β)•.

Suppose now that p ∈ (α ∩ β)• \ •(α ∩ β). Then, by M [α ∩ β〉 and the
safeness of N , M(p) = 0. Hence, by M [α〉 and M [β〉, we must have p /∈ •α∪ •β.
Consequently, since there is M ′′ such that M [αβ〉M ′′, we obtain M ′′(p) ≥ 2, a
contradiction with N being safe. Hence •(α ∩ β) ⊇ (α ∩ β)•, and so the result
holds. ⊓⊔

As a result, we can link lc-persistence and lc-nonviolence with the structural
property of lying on self-loops.

Theorem 5 (see [6]). Let α be a non-singleton step which is lc-persistent
or lc-nonviolent at a reachable marking M of a safe pt-net N . Then α lies on
self-loops.

Proof. The result for lc-persistent α was proven for [6]. We therefore assume
that α is lc-nonviolent. Suppose that t ∈ α. Since {t} 6= α is a step enabled at
M , by Proposition 12, •(α ∩ {t}) = (α ∩ {t})•. Hence •t = t•. ⊓⊔

Corollary 1. Let α be a non-singleton active step of a safe pt-net N . Then α
is gc-nonviolent iff all the transitions of α lie on self-loops.

Proof. Follows from Theorems 4 and 5. ⊓⊔

Theorem 6 ([6]). Let α be an active step of a safe pt-net N . If all the tran-
sitions in α are globally persistent and lie on self-loops, then α is gc-persistent
in N .

Theorem 6 can be seen as a persistence counterpart of Theorem 4 which was
proved for ordinary nets. (The latter is in fact stronger as we only need to assume
that α lies on self-loops.) We note that the implication in Theorem 6 cannot be
reversed, and a suitable counterexample is provided in Figure 8, where {t′} is a
gc-persistent step, but it does not lie on self-loops. Moreover, Theorem 6 cannot
be lifted to the level of ordinary nets, and Figure 14 provides a counterexample,
where α = {t, t′} is neither locally nor globally c-persistent step even though
both t and t′ are globally persistent transitions lying on self-loops.
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′′′
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M0

{t ′′′}
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{t′}

{t, t′}

{t}

{t′}

Fig. 14. An ordinary pt-net for the discussion of Theorem 6.

It is interesting to establish whether persistence or nonviolence are preserved
by taking substeps. For general pt-nets we only had results concerning the la,
lc and gc persistent steps. Here we can obtain similar results about nonviolence.
Moreover, for the type-c of nonviolence the result holds globally.

Proposition 13. Let γ ⊆ α be two steps and M be a reachable marking of a
safe pt-net N . Then:

1. If α is la-nonviolent at M then γ is la-nonviolent at M .
2. If α is lc-nonviolent at M then γ is lc-nonviolent at M .
3. If α is gc-nonviolent in N then γ is gc-nonviolent in N .

Proof. As the case α = γ is obvious, below we assume that γ ⊂ α. Also, we
assume that γ is nonempty, as the empty step trivially satisfies Definitions 3
and 4.

(1) From M [α〉 and γ ⊂ α, we have M [γ〉. Let β 6= γ be a step enabled at M .
We need to prove that M [γ〉M ′′[β \ γ〉, for some marking M ′′. We consider two
cases.

Case 1: β 6= α. Since α is la-nonviolent at M , we have M [α(β \ α)〉. Hence,
for every place p ∈ •(β \ α), p ∈ •α implies p ∈ α•. Furthermore, since α
is disconnected (by Fact 3), we have that, for every place p ∈ •(β \ α) and
transition t ∈ α, p ∈ •t implies p ∈ t•. As a result, for every place p ∈ •(β \ α),
p ∈ •γ implies p ∈ γ•. Hence, by M [β〉, we obtain that M ′′[β \ α〉. We further
observe that, by Facts 2 and 2, we get M ′′[(α \ γ) ∩ β〉. It therefore follows that
all the transitions in (β \α)∪ (α\γ)∩β = β \γ are enabled at M ′′. Moreover, as
β \ γ ⊂ β and M [β〉, we obtain from Fact 3 that the step β \ γ is disconnected.
Hence, again by Fact 3, M ′′[β \ γ〉.

Case 2: β = α. Since M [α〉M ′ and γ ⊂ α, by Fact 2, M [γ〉M ′′[α \ γ〉.

(2) Since ∅ 6= γ ⊂ α, α is a non-singleton step. Thus, by Theorem 5, α lies on
self-loops. Hence γ also lies on self-loops, and so we have M [γ〉M [β〉 as required.

(3) Since α is gc-nonviolent, it is lc-nonviolent at some reachable marking M .
Proceeding similarly as in (2), we get that α lies on self-loops and, consequently,
that γ lies on self-loops. Then, from Theorem 1, proved for general pt-nets, we
obtain that γ is gc-nonviolent. ⊓⊔



A Taxonomy of Persistent and Nonviolent Steps 19

Proposition 13 does not hold for ordinary pt-nets, and Figure 10 shows a
counterexample. The step {t, t′′} there is both ga and gc-nonviolent as well as
la and lc-nonviolent at M0 (the only marking which enables it), but its substep
{t} is neither la-nonviolent nor lc-nonviolent at M0 (as once it is executed, the
previously enabled step {t′} becomes disabled). Also, Proposition 13(1) cannot
be generalised to ga-nonviolent steps, an a suitable counterexample is provided
in Figure 3, where {t, t′′} is a ga-nonviolent step, but its substep {t} is not ga-
nonviolent (as after executing {t} at M0, an enabled step {t′} becomes disabled).

Theorem 7. Let α be a gc-nonviolent step of a safe pt-net N . Then all the
transitions in α are globally nonviolent in N .

Proof. Let t ∈ α. Consider a marking M enabling α, and so M [t〉. Then, from
{t} ⊆ α, the fact that α is gc-nonviolent and Proposition 13(3), we obtain
that {t} is gc-nonviolent in N . This means in particular that, for any reachable
marking M of N enabling {t}, if {t′} 6= {t} is a step enabled at M , we have
M [{t}{t′}〉. We can therefore conclude that t, as a transition (rather than a
step), is globally nonviolent (see Definition 2). ⊓⊔

The above result does not hold for ordinary pt-nets, and a suitable counterex-
ample is provided in Figure 10 which we used to demonstrate that Proposition 13
does not hold for ordinary pt-nets. In the latter case, we took a singleton sub-
step of a gc-nonviolent step of an ordinary pt-net and showed that it disables
another singleton step. The two singleton steps can be treated as transitions
here.

The next two results give sufficient conditions for a step to be ga-persistent
or ga-nonviolent in terms of their constituent transitions.

Theorem 8 (see [6]). Let α be an active step of a safe pt-net N . If all the
transitions in α are globally persistent (nonviolent) in N , then α is ga-persistent
(resp. ga-nonviolent) in N .

Proof. In the case of persistence, the result was proven for [6]. We therefore
assume that all the transitions in α are globally nonviolent. Let M be a reachable
marking and β 6= α be a step in N such that M [α〉 and M [β〉. Note that, by
Fact 3, β is disconnected. We need to show that M [α(β \ α)〉.

Assume that α = {t1, . . . , tm} and β \ α = {u1, . . . , uk}. From M [α〉 and
Fact 2, we have M [t1 . . . tm〉M ′. Now, for each transition ui, since M [ui〉 and
every ti is globally nonviolent, we have that M ′[ui〉. Thus, by Fact 3, M ′[β \ α〉,
and so M [α(β \ α)〉. ⊓⊔

The two implications in Theorem 8 cannot be reversed, and and a suitable
counterexample is provided in Figure 3, where a ga-nonviolent and ga-persistent
step {t, t′′} contains a transition t that is neither globally nonviolent nor globally
persistent (because of the marking M0).

The last result concerning persistence and nonviolence in safe pt-nets, shows
how they can complement each other. It is a counterpart of Theorem 3, but here
the result holds in both directions due to Proposition 13, which was not available
for the general nor ordinary pt-nets.
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Theorem 9. Let M be a reachable marking of a safe pt-net N . If there are
two disjoint steps α and β enabled at M such that every enabled step at M is a
subset of their union, then the following holds:

α is la-persistent at M iff β is la-nonviolent at M.

Proof. The (=⇒) implication follows from Theorem 3. To show the (⇐=) impli-
cation, let γ be a step enabled at M such that γ ∩ α = ∅. Since γ ⊆ α ∪ β, we
have γ ⊆ β. As β is la-nonviolent at M we have, from Proposition 13(1), that γ
is la-nonviolent at M . By Proposition 3(1), we have that γ is also lb-nonviolent
at M , and so M [γα〉. Since γ is an arbitrary step, disjoint from α and enabled
at M , we get that α is lb-persistent at M . Using Proposition 3(2), we can then
conclude that α is la-persistent at M . ⊓⊔

8 Conclusions

In this paper we initiated a comprehensive investigation of different notions of
persistence and nonviolence in the step based semantics of concurrent systems.
Among the problems and issues we plan to investigate in future are the phe-
nomenon of confusion on the level of steps, persistence and nonviolence in the
context of whole processes, and some less restrictive notions of persistence and
nonviolence, especially a guarantee of disabling retrieve known as k-persistence.
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