Skip to main content

An Agent-Based Cognitive Robot Architecture

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7837))

Abstract

We propose a new cognitive robot control architecture in which the cognitive layer can be programmed by means of the agent programming language Goal. The architecture exploits the support that agent-oriented programming offers for creating cognitive robotic agents, including symbolic knowledge representation, deliberation via modular, high-level action selection, and support for multiple, declarative goals. The benefits of the architecture are that it provides a flexible approach to develop cognitive robots and support for a clean and clear separation of concerns about symbolic reasoning and sub-symbolic processing. We discuss the design of our architecture and discuss the issue of translating sub-symbolic information and behavior control into symbolic representations needed at the cognitive layer. An interactive navigation task is presented as a proof of concept.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levesque, H., Lakemeyer, G.: Cognitive robotics. Handbook of Knowledge Representation, 869 (2008)

    Google Scholar 

  2. Beetz, M., Mosenlechner, L., Tenorth, M.: CRAM - A Cognitive Robot Abstract Machine for Everyday Manipulation in Human Environments, pp. 1012–1017. IEEE (2010)

    Google Scholar 

  3. Kelley, T.D.: Developing a psychologically inspired cognitive architecture for robotic control: The symbolic and subsymbolic robotic intelligence control system. Advanced Robotic 3, 219–222 (2006)

    Google Scholar 

  4. Hanford, S.D., Janrathitikarn, O., Long, L.N.: Control of mobile robots using the soar cognitive architecture. Journal of Aerospace Computing Information and Communication 5, 1–47 (2009)

    Google Scholar 

  5. Hawes, N., Sloman, A., Wyatt, J., Zillich, M., Jacobsson, H., Kruijff, G., Brenner, M., Berginc, G., Skocaj, D.: Towards an Integrated Robot with Multiple Cognitive Functions, vol. 22, pp. 1548–1553. AAAI Press, MIT Press, Menlo Park, Cambridge (1999/2007)

    Google Scholar 

  6. Tenorth, M., Jain, D., Beetz, M.: Knowledge processing for cognitive robots. KI-Künstliche Intelligenz 24, 233–240 (2010)

    Article  Google Scholar 

  7. Tenorth, M., Beetz, M.: Knowrob - knowledge processing for autonomous personal robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 4261–4266. IEEE (2009)

    Google Scholar 

  8. Hindriks, K.: Programming rational agents in goal. In: Multi-Agent Programming: Languages, Tools and Applications, pp. 119–157. Springer US (2009)

    Google Scholar 

  9. http://ii.tudelft.nl/trac/goal (2012)

  10. Hindriks, K.V., van Riemsdijk, M.B., Behrens, T.M., Korstanje, R., Kraaijenbrink, N., Pasman, W., de Rijk, L.: Unreal goal agents. In: AGS 2010 (2010)

    Google Scholar 

  11. Behrens, T., Hindriks, K., Dix, J.: Towards an environment interface standard for agent platforms. Annals of Mathematics and Artificial Intelligence, 1–35 (2010)

    Google Scholar 

  12. Shanahan, M., Witkowski, M.: High-level robot control through logic. Event London, 104–121 (2000)

    Google Scholar 

  13. Duch, W., Oentaryo, R., Pasquier, M.: Cognitive architectures: Where do we go from here? In: Proceeding of the 2008 Conference on Artificial General Intelligence, pp. 122–136 (2008)

    Google Scholar 

  14. Soutchanski, M.: High-level Robot Programming and Program Execution (2003)

    Google Scholar 

  15. Coffey, S., Clark, K.: A Hybrid, Teleo-Reactive Architecture for Robot Control (2006)

    Google Scholar 

  16. Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: Oro, a knowledge management platform for cognitive architectures in robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)

    Google Scholar 

  17. Burghart, C., Mikut, R., Stiefelhagen, R., Asfour, T., Holzapfel, H., Steinhaus, P., Dillmann, R.: A cognitive architecture for a humanoid robot: a first approach. Architecture, 357–362 (2005)

    Google Scholar 

  18. Anderson, J.R., Lebiere, C.: The atomic components of thought, vol. 3. Erlbaum (1998)

    Google Scholar 

  19. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence. Artificial Intelligence 33, 1–64 (1987)

    Article  Google Scholar 

  20. Benjamin, P., Lyons, D., Lonsdale, D.: Designing a robot cognitive architecture with concurrency and active perception. In: Proceedings of the AAAI Fall Symposium on the Intersection of Cognitive Science and Robotics (2004)

    Google Scholar 

  21. Avery, E., Kelley, T., Davani, D.: Using cognitive architectures to improve robot control: Integrating production systems, semantic networks, and sub-symbolic processing. System 77 (1990)

    Google Scholar 

  22. Laird, J.E.: Toward cognitive robotics. In: Proceedings of SPIE, vol. 7332, pp. 73320Z–73320Z–11 (2009)

    Google Scholar 

  23. Bekey, G.A.: Autonomous Robots: From Biological Inspiration to Implementation and Control. The MIT Press (2005)

    Google Scholar 

  24. Baillie, J.C.: Urbi: Towards a universal robotic low-level programming language. In: 2005 IEEE RSJ International Conference on Intelligent Robots and Systems, pp. 820–825 (2005)

    Google Scholar 

  25. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  26. Azad, P., Asfour, T., Dillmann, R.: Combining Harris interest points and the SIFT descriptor for fast scale-invariant object recognition. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4275–4280. IEEE (2009)

    Google Scholar 

  27. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  28. Mika, S., Schaefer, C., Laskov, P., Tax, D., Müller, K.R.: Support vector machines, vol. 1, pp. 1–33. Springer (2004)

    Google Scholar 

  29. Kurfess, F.: Integrating symbol-oriented and subsymbolic reasoning methods into hybrid systems. In: From Synapses to Rules-Discovering Symbolic Rules from Neural Processed Data, pp. 275–292. Kluwer Academic Publishers (2002)

    Google Scholar 

  30. Qureshi, F., Terzopoulos, D., Gillett, R.: The cognitive controller: A hybrid, deliberative/reactive control architecture for autonomous robots. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 1102–1111. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  31. Arkin, R.C.: Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robotics and Autonomous Systems 6, 105–122 (1990)

    Article  Google Scholar 

  32. Connell, J.H.: SSS: a hybrid architecture applied to robot navigation, vol. 3, pp. 2719–2724. IEEE Comput. Soc. Press (1992)

    Google Scholar 

  33. Gat, E.: Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture for Controlling Real-World Mobile Robots, pp. 809–815. Citeseer (1992)

    Google Scholar 

  34. Johnson, M., Jonker, C., van Riemsdijk, B., Feltovich, P.J., Bradshaw, J.M.: Joint activity testbed: Blocks world for teams (BW4T). In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 254–256. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, C., Hindriks, K.V. (2013). An Agent-Based Cognitive Robot Architecture. In: Dastani, M., Hübner, J.F., Logan, B. (eds) Programming Multi-Agent Systems. ProMAS 2012. Lecture Notes in Computer Science(), vol 7837. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38700-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38700-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38699-2

  • Online ISBN: 978-3-642-38700-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics