
Query Caching in Agent Programming Languages

Natasha Alechina1, Tristan Behrens2, Koen Hindriks3, and Brian Logan1

1 School of Computer Science
University of Nottingham
Nottingham NG8 1BB UK

2 Department of Informatics
Clausthal University of Technology

Germany
3 Delft University of Technology

Abstract. Agent programs are increasingly widely used for large scale, time
critical applications. In developing such applications, the performance of the
agent platform is a key concern. Many logic-based BDI-based agent program-
ming languages rely on inferencing over some underlying knowledge represen-
tation. While this allows the development of flexible, declarative programs, re-
peated inferencing triggered by queries to the agent’s knowledge representation
can result in poor performance. In this paper we present an approach to query
caching for agent programming languages. Our approach is motivated by the ob-
servation that agents repeatedly perform queries against a database of beliefs and
goals to select possible courses of action. Caching the results of previous queries
(memoization) is therefore likely to be beneficial. We develop an abstract model
of the performance of a logic-based BDI agent programming language. Using our
model together with traces from typical agent programs, we quantify the possi-
ble performance improvements that can be achieved by memoization. Our results
suggest that memoization has the potential to significantly increase the perfor-
mance of logic-based agent platforms.

1 Introduction

Belief-Desire-Intention (BDI) based agent programming languages facilitate the devel-
opment of rational agents specified in terms of beliefs, goals and plans. In the BDI
paradigm, agents select a course of action that will achieve their goals given their be-
liefs. To select plans based on their goals and beliefs, many logic-based BDI-based
agent programming languages rely on inferencing over some underlying knowledge
representation. While this allows the development of flexible, declarative programs, re-
peated inferencing triggered by queries to the agent’s knowledge representation can
result in poor performance. When developing multiagent applications for large scale,
time critical applications such performance issues are often a key concern, potentially
adversely impacting the adoption of BDI-based agent programming languages and plat-
forms as an implementation technology.

In this paper we present an approach to query caching for agent programming lan-
guages. Our approach is motivated by the observation that agents repeatedly perform
queries against a database of beliefs and goals to select possible courses of action.

Caching the results of previous queries (memoization) is therefore likely to be benefi-
cial. Indeed caching as used in algorithms such as Rete [1] and TREAT [2] has been
shown to be beneficial in a wide range of related AI applications, including cognitive
agent architectures, e.g., [3], expert systems, e.g., [4], and reasoners, e.g., [5]. However
that work has focused on the propagation of simple ground facts through a dependency
network. In contrast, the key contribution of this paper is to investigate the potential of
caching the results of arbitrary logical queries in improving the performance of agent
programming languages. We develop an abstract model of the performance of a logic-
based BDI agent programming language, defined in terms of the basic query and update
operations that form the interface to the agent’s knowledge representation. Using our
model together with traces from typical agent programs, we quantify the possible per-
formance improvements that can be achieved by memoization. Our results suggest that
memoization has the potential to significantly increase the performance of logic-based
agent platforms.

The remainder of the paper is organised as follows. In Section 2 we introduce an ab-
stract model of the interface to a logic-based BDI agent’s underlying knowledge repre-
sentation and an associated performance model. Section 3 presents experimental results
obtained from traces of typical agent programs and several key observations regarding
query and update patterns in these programs. Section 4 introduces two models to exploit
these observations and improve the efficiency of the use of Knowledge Representation
Technologies (KRTs) by agent programs. Section 5 discusses related work, and Section
6 concludes the paper.

2 Abstract Performance Model

In this section, we present an abstract model of the performance of a logic-based agent
programming language as a framework for our analysis. The model abstracts away de-
tails that are specific to particular agent programming languages (such as Jason [6],
2APL [7], and GOAL [8]), and focuses on key elements that are common to most, if not
all, logic-based agent programming languages.

The interpreter of a logic-based BDI agent programming language repeatedly exe-
cutes a ‘sense-plan-act’ cycle (often called a deliberation cycle [9] or agent reasoning
cycle [6]). The details of the deliberation cycle vary from language to language, but in
all cases it includes processing of events (sense), deciding on what to do next (plan),
and executing one or more selected actions (act). In a logic-based agent programming
language, the plan phase of the deliberation cycle is implemented by executing the set
of rules comprising the agent’s program. The rule conditions consist of queries to be
evaluated against the agent’s beliefs and goals (e.g., plan triggers in Jason, the heads
of practical reasoning rules in 2APL) and the rule actions consist of actions or plans
(sequences of actions) that may be performed by the agent in a situation where the rule
condition holds. In the act phase, we can distinguish between two different kinds of
actions. Query actions involve queries against the agent’s beliefs and goals and do not
change the agent’s state. Update actions, on the other hand, are either actions that di-
rectly change the agent’s beliefs and goals (e.g., ‘mental notes’ in Jason, belief update

actions in 2APL), or external actions that affect the agent’s environment, and which
may indirectly change the agent’s beliefs and goals.

In a logic-based agent programming language, the agent’s database of beliefs and
goals is maintained using some form of declarative knowledge representation technol-
ogy. Queries in the conditions of rules and query actions give rise to queries performed
against the knowledge representation. Update actions give rise (directly or indirectly)
to updates to the beliefs and goals maintained by the knowledge representation. For
example, Figure 1 illustrates example rules from Jason, 2APL and GOAL agent pro-
grams, which select a move action to move a block in the Blocks World environment.
While the rules appear quite different and have different components, the evaluation of

+!on(X,Y) <- !clear(X); !clear(Y); move(X,Y).

(a) Jason

allOnTable <- on(X,Y) and clear(X) and not(Y=table) |
{ @blocksworld(move(X,table),); On(X,table) }

(b) 2APL

if a-goal(tower([X| T])) then move(X, table).

(c) GOAL

Fig. 1: Example Blocks World rules

the conditions of each rule gives rise to similar queries to the underlying knowledge
representation. In this example, the terms on, clear and tower are predicates which
are evaluated by querying the belief and goal bases of the agents. Similarly, the agent
programs use logical rules (Horn clauses) to represent knowledge about the environ-
ment. For example, Figure 2 illustrates a rule used in the Jason Blocks World agent to
determine whether a set of blocks constitutes a tower.

tower([X]) :- on(X,table).
tower([X,Y|T]) :- on(X,Y) & tower([Y|T]).

Fig. 2: Example Jason logical rule

The 2APL and GOAL agents use the same recursive rule in Prolog format with ‘&’
replaced by ‘,’. Similarly, in each case, execution of external actions such as move and
internal belief and goal update actions give rise to updates to the agent’s beliefs and
goals, either indirectly through perception of the environment (in the case of external
action) or directly (in the case of internal actions).

From the point of view of the agent’s knowledge representation, the three steps in
the sense-plan-act cycle can therefore be mapped onto two kinds of knowledge rep-
resentation functionality. The knowledge representation must provide functionality for

querying an agent’s beliefs and goals when applying rules or executing query actions in
the agent’s plans, and for updating an agent’s beliefs and goals upon receiving new in-
formation from other agents or the environment, or because of internal events that occur
in the agent itself. Our performance model therefore distinguishes two key knowledge
representation phases that are common to virtually all logic-based agent programming
languages: a query phase and an update phase. The two phases together constitute an
update cycle.

Fig. 3: Update Cycle

The model is illustrated in Figure 3. The query phase includes all queries processed
by the agent’s knowledge representation in evaluating rule conditions to select a plan
or plans, and in executing the next step of the agent’s plans (e.g., if the next step of
a plan is a belief or goal test action). The update phase includes all updates to the
agent’s knowledge representation resulting from the execution of the next step of a
plan, where this step changes the agent’s state directly (e.g., the generation of subgoals
or the addition or deletion of beliefs and goals), and updating the agent’s state with
new beliefs, goals, messages or events at the beginning of the next sense-plan-act cycle.
Note that update cycles do not necessarily correspond one-to-one to deliberation cycles.
For example, in Jason and 2APL the action(s) performed at the end of a deliberation
cycle may be internal actions (such as test actions) that do not update the agent’s beliefs
and goals, and in these languages the query phase may include queries from several
deliberation cycles. In what follows, we assume that the query phase occurs first and
the update phase second, but our results do not depend on this particular order and a
similar analysis can be performed if the order of the phases is reversed.

To develop our performance model in detail, we must first make the query/update
interface to the agent’s knowledge representation precise. Different agent program-
ming frameworks utilise different types of databases to store different parts of the
agent’s state. For example, most logic-based agent programming languages use dif-
ferent databases for beliefs and for goals, and almost all languages (with the exception
of GOAL) maintain bases that store plan-like structures or intentions. Here we focus
on those aspects common to most logic-based agent programming languages, namely
operations on the agent’s beliefs and goals, and abstract away from the details of their
realisation in a particular agent platform. In particular, we ignore operations performed
on databases of intentions or plans. Although agent platforms do perform operations on

intentions and plans that can be viewed as queries and updates, these operations vary
widely from platform to platform and typically do not involve logical inference.

The first key KRT functionality is querying a database. A query assumes the pres-
ence of some inference engine to perform the query. In many agent platforms, a dis-
tinction is made between performing a query to obtain a single answer and to obtain all
answers. In what follows, we abstract away from the details of particular inference en-
gines provided by different agent platforms and represent queries by the (average) time
required to perform the query. The second key functionality is that of modifying or up-
dating the content of a database. With the exception of recent work on the semantic web
and on theory progression in situation calculus, update has not been a major concern for
classical (non-situated) reasoners. However it is essential for agents as they need to be
able to represent a changing and dynamic environment. All the agent platforms we have
investigated use a simple form of updating which involves simply adding or removing
facts. In cases where the agent platform adopts the open world assumption, one needs
to be slightly more general and support the addition and removal of literals (positive
and negated facts).

Based on this model, we can derive an analysis of the average case performance for
a single update cycle of an agent. Our analysis distinguishes between costs associated
with the query phase and the update phase of an update cycle. We assume that the agent
performs on average N queries in the query phase of an update cycle. If the average
cost of a query is cqry , then the average total cost of the query phase is given by

N · cqry

In general, the same query may be performed several times in a given update cycle. (We
provide support for the fact that queries are performed multiple times in a cycle below.)
If the average number of unique queries performed in an update cycle is K, then on
average each query is performed n = N/K times per cycle.

The total average cost of the update phase of an update cycle can be derived simi-
larly. In logic-based agent programming languages, updates are simple operations which
only add or remove facts (literals) from a database, so it is reasonable to consider only
the total number of updates when estimating the cost of the update phase. If U is the
average number of updates (i.e., adds and deletes) per cycle and cupd is the average cost
of an update, then the average total cost of the update phase is given by

U · cupd

Combining both the query and update phase costs yields:

N · cqry + U · cupd (1)

3 Experimental Analysis

To quantify typical values for the parameters in our abstract performance model, we
performed a number of experiments using different agent platforms and agent and en-
vironment implementations. We stress that our aim was not to determine the absolute

or relative performance of each platform, but to estimate the relative average number of
queries and updates performed by ‘typical’ agent programs, and their relative average
costs on each platform, in order to determine to what extent caching may be useful as a
general strategy for logic-based agent programming languages. To this end, we selected
three well known agent platforms (Jason [6], 2APL [7] and GOAL [8]), and five existing
agent programs/environments (Blocks World, Elevator Sim, Multi-Agent Programming
Contest 2006 & 2011, and Wumpus World).

The agent platforms were chosen as representative of the current state of the art
in logic-based agent programming languages, and span a range of implementation ap-
proaches. For example, both 2APL and GOAL use Prolog engines provided by third
parties for knowledge representation and reasoning. 2APL uses the commercial Prolog
engine JIProlog [10] implemented in Java, whereas GOAL uses the Java interface JPL
to connect to the open source SWI-Prolog engine (v5.8) which is implemented in C
[11]. In contrast, the logical language used in Jason is integrated into the platform and
is implemented in Java.

The agent programs were chosen as representative of ‘typical’ agent applications,
and span a wide range of task environments (from observable and static to partially
observable and real-time), program complexity (measured in lines of code, LoC), and
programming styles. The Blocks World is a classic environment in which blocks must
be moved from an initial position to a goal state by means of a gripper. The Blocks
World is a single agent, discrete, fully observable environment where the agent has full
control. Elevator Sim is a dynamic, environment that simulates one or more elevators in
a building with a variable number of floors (we used 25 floors) where the goal is to trans-
port a pre-set number of people between floors [12]. Each elevator is controlled by an
agent, and the simulator controls people that randomly appear, push call buttons, floor
buttons, and enter and leave elevators upon arrival at floors. The environment is partially
observable as elevators cannot see which buttons inside other elevators are pressed nor
where these other elevators are located. In the 2006 Multi-Agent Programming Contest
scenario (MAPC 2006) [13] teams of 5 agents explore grid-like terrain to find gold and
transport it to a depot. In the 2011 Multi-Agent Programming Contest scenario (MAPC
2011) [14] teams of 10 agents explore ‘Mars’ and occupy valuable zones. Both MAPC
environments are discrete, partially observable, real-time multi-agent environments, in
which agent actions are not guaranteed to have their intended effect.

Finally, the Wumpus World is a discrete, partially observable environment in which
a single agent must explore a grid to locate gold while avoiding being eaten by the
Wumpus or trapped in a pit. For some of the environments we also varied the size of
the problem instance the agent(s) have to deal with. In the Blocks World the number
of blocks determines the problem size, and in the Elevator Sim an important parameter
that determines the size of a problem instance is the number of people to be moved
between floors. The size of problem instances that we have used can be found in the
first column of Tables 2 through 6.

It is important to stress that, to avoid any bias due to agent design in our results,
the programs were not written specially for the experiments. While our selection was
therefore necessarily constrained by the availability of pre-existing code (in particular
versions of each program were not available for all platforms), we believe our results are

representative of the query and update performance of a broad range of agent programs
‘in the wild’. Table 1 summarises the agents, environments and the agent platforms that
were used in the experiments.

Environment Agent Agent Deliberation
Platform LoC Cycles

Blocks World Jason 34 104-961
2APL 64 186-1590
GOAL 42 16-144

Elevator Sim 2APL 367 3187-4010
GOAL 87 2292-5844

MAPC 2006 Jason 295 2664
MAPC 2011 GOAL 1588 30

Wumpus World Jason 294 292-443
Table 1: Agents and Environments

3.1 Experimental Setup

To perform the experiments, we extended the logging functionality of the three agent
platforms, and analysed the resulting query and update patterns in the execution traces
for each agent/environment combination. The extended logging functionality captured
all queries and updates delegated to the knowledge representation used by the agent
platform and the cost of performing each query or update.

In the case of 2APL and GOAL, which use a third party Prolog engine, we recorded
the cost of each query or update delegated to the respective Prolog engine. In these
languages, Prolog is used to represent and reason with percepts, messages, knowledge,
beliefs, and goals. Action preconditions and test goals are also evaluated using Pro-
log. Prolog queries and updates to the Prolog database therefore account for all costs
involved in the query and update phases of an update cycle. In the case of Jason, the
instrumentation is less straightforward, and involved modifying the JASON belief base
to record the time required to query and update percepts, messages, knowledge and
beliefs.4 The time required to process other types of Jason events, e.g., related to the
intentions or plans of an agent, was not recorded.

We ran each of the agent/environment/platform combinations listed in Table 1 un-
til the pattern of queries and updates stabilised (i.e., disregarding any ‘start up’ period
when the agent(s), e.g., populate their initial representation of the environment). For dif-
ferent agent environments, this required different numbers of deliberation cycles (listed
in the Deliberation Cycles column in Table 1). For example, fewer deliberation cycles
are required in the Blocks World to complete a task than in other environments, whereas
in the Elevator Sim environment thousands of deliberation cycles are required to reach
steady state. For the real-time Multi-Agent Programming Contest cases, the simulations

4 In contrast to 2APL and GOAL, Jason does not have declarative goals.

were run for 1.5 minutes; 1.5 minutes is sufficient to collect a representative number of
cycles while keeping the amount of data that needs to be analysed to manageable pro-
portions. For each agent/environment/platform run, the time required to perform each
query or update resulting from the execution of the agent’s program was logged, re-
sulting in log files as illustrated in Figure 4. Here, add and del indicate updates, and

...
add on(b2,table) 30
add on(b9,b10) 43
del on(b4,b6) 21
query tower(’.’(X,T)) 101
query tower(’.’(b7,[])) 51
...

Fig. 4: Example log file

query indicates a belief or goal query, followed by the updated belief or goal, or query
performed, and the time required in microseconds.

3.2 Experimental Results

In this section we briefly present the results of our analysis and highlight some ob-
servations relating to the query and update patterns that can be seen in this data. We
stress that our aim is not a direct comparison of the performance of the agent programs
or platforms analysed. The performance results presented below depend on the tech-
nology used for knowledge representation and reasoning as well as on the machine
architecture used to obtain the results. As such the figures provide some insight in how
these technologies perform in the context of agent programming but cannot be used
directly to compare different technologies. Rather our main focus concerns the patterns
that can be observed in the queries and updates that are performed by all programs and
platforms, and the potential performance improvement that might be gained by caching
queries on each agent platform.

We focus on the update cycles that are executed during a run of an agent. Recall that
these cycles may differ from the deliberation cycle of an agent. An update cycle consists
of a phase in which queries are performed which is followed by a subsequent phase in
which updates are performed on the databases that an agent maintains. Note that update
cycles do not correspond one-to-one to deliberation cycles. In particular, both Jason and
2APL agents execute significantly more deliberation cycles than update cycles as can
be seen by comparing Table 1 with the tables below. The phases are extracted from log
files by grouping query and add/del lines.

We analysed the log files to derive values for all the parameters in the abstract
model introduced in Section 2, including the average number queries performed at each
update cycle N , the average number of unique queries performed in an update cycle
K, the average number of times that the same query is performed in an update cycle
N/K, the average cost of a query cqry , the average number of updates performed in an

update cycle U , and the average cost of an update cupd . We also report the number of
update cycles for each scenario we have run. Finally, we report the average percentage
of queries that are repeated in consecutive update cycles, p. That is, p represents the
average percentage of queries that were performed in one cycle and repeated in the next
update cycle.

The Jason and 2APL agents were run on a 2 GHz Intel Core Duo, 2 GB 667 MHz
DDR2 SDRAM running OSX 10.6 and Java 1.6. The GOAL agents were run on a 2.66
GHz Intel Core i7, 4GB 1067 MHz DDR3, running OSX 10.6 and Java 1.6. Query and
update costs are given in microseconds. The Size column in Tables 2a – 2c refers to the
number of blocks in Blocks world. In Tables 3a and 3b for the Elevator Sim, Size refers
to the number of people that randomly are generated by the simulator. The size column
in Table 6 refers to the size of grid used: KT2 is a 6× 5 grid with one pit, KT4 a 9× 7
grid with 2 pits, and KT5 a 4× 4 grid with 3 pits.

The results for the Blocks World environment are given in Tables 2a – 2c. Note that
the average query and update costs for the GOAL agent decrease when the number of
blocks increases. This effect can be explained by the fact that in this toy domain the
overhead of translating queries by means of the JPL interface to SWI-Prolog queries is
relatively larger in smaller sized instances than in larger sized ones. Also note that the
costs found for GOAL agents cannot be used to draw conclusions about the performance
of SWI-Prolog because of the significant overhead the Java interface JPL introduces.

Size N K n p cqry U cupd Update cycles
10 4.6 3.3 1.39 70% 485 1.1 376 16
50 4.8 3.3 1.46 82% 286 1.0 1057 79
100 5.1 3.3 1.54 82% 317 1.0 2788 152

(a) Jason

Size N K n p cqry U cupd Update cycles
10 41.1 26.8 1.56 58% 8554 1.8 294 46
50 104.8 78.2 1.34 59% 22335 1.8 273 230

100 235.4 165.8 1.42 59% 49247 1.8 435 460

(b) 2APL

Size N K n p cqry U cupd Update cycles
10 26.0 17.6 1.48 59% 89 2.6 58 16
50 100.3 66.0 1.52 63% 64 2.7 35 70
100 153.3 105.7 1.45 70% 59 2.9 29 144

(c) GOAL

Table 2: Blocks World

The results for the Elevator Sim environment are given in Tables 3a and 3b. Tables
4 and 5 give the results for the MAPC 2006 & 2011 environments, and the results for
the Wumpus World environment are shown in Table 6.

Size N K n p cqry U cupd Update cycles
10 11,214.3 290.3 38.63 52% 97979 2.0 2971 16
50 1,800.7 206.5 8.72 71% 88839 1.1 674 163

100 1,237.7 202.9 6.10 71% 82766 1.1 456 215

(a) 2APL

Size N K n p cqry U cupd Update cycles
10 29.5 12.1 1.16 92% 29 1.0 39 5844
50 28.44 23.7 1.20 92% 30 1.0 37 3636

100 34.3 28.6 1.20 90% 31 1.0 36 2292

(b) GOAL

Table 3: Elevator Sim

Size N K n p cqry U cupd Update cycles
N/A 4.6 3.7 1.25 76% 256 1.1 96 379

Table 4: Multi-Agent Programming Contest 2006, Jason

Size N K n p cqry U cupd Update cycles
N/A 80.5 66.0 1.22 82% 66 28.0 45 30

Table 5: Multi-Agent Programming Contest 2011, GOAL

Size N K n p cqry U cupd Update cycles
KT2 8.9 7.4 1.2 59% 671 1.0 173 18
KT4 9.1 7.6 1.2 55% 1170 1.0 166 24
KT5 8.0 6.7 1.2 52% 664 1.0 428 18

Table 6: Wumpus World, Jason

As can be seen, even in simple environments like the Blocks World, agent pro-
grams may perform many queries in a single update cycle (see Table 2). In the Blocks
World experiments, the total number of queries performed during a run ranges from 417
queries for the GOAL agent in the small 10 blocks problem instance in only 16 deliber-
ation cycles to 108, 300 queries for the 2APL agent in the 100 blocks problem instance
in 1590 deliberation cycles. Given that the Blocks World environment involves only a
small number of beliefs and that the agents use only a few logical rules, this implies
that the same query is repeated many times. A similar pattern can be seen in the other
experiments. In all cases, the average number of times a query is performed in a single
cycle is consistently larger than 1, with N/Kranging from 1.16 (Table 3b) up to 38.63
(3a). Our first observation is therefore that queries are consistently repeated in a single
update cycle by all agents in all environments and across all the platforms investigated.

Observation 1 In a single update cycle, the same query is performed more than once,
i.e., we have n > 1.

A second observation that follows consistently from the data is that large percent-
ages of queries are repeated each update cycle. We have found that 22% up to even 92%
of queries are repeated in consecutive update cycles.

Observation 2 A significant number of queries are repeated at subsequent update cy-
cles, i.e., p > 20%.

Secondly, in all agent/environment/platform combinations investigated, in a single
deliberation cycle an agent performs only a few (perhaps only one) actions that directly
or indirectly change the state of the agent. This is also supported by the fact that the
number of deliberation cycles in most cases is larger than the number of update cycles.
In other words, the execution of a deliberation cycle does not always result in an update.
Comparing the average number of updates with the average number of unique queries,
we consistently find that many more queries are performed than updates in each cycle.

Observation 3 The number of updates U (add, deletes) performed in an update cycle
is significantly smaller than the number of unique queries K performed in that cycle,
i.e. K � U .

Note that all three observations are independent of the size or complexity of the
environment, the complexity of the agent program or the agent platform used. This
strongly suggest that the query and update performance of agent programs in the plat-
forms investigated can be significantly improved.

4 Query Caching

The observations in the previous section suggest that efficiency can be significantly
increased by memoization, i.e. by caching query results. The cache stores answers to
queries, so that if the same query is performed again in the same update cycle, the
answers can be returned without recourse to the underlying knowledge representation.

In this section, we first show how to modify the interface to the underlying knowl-
edge representation to incorporate caching. We then extend the abstract performance
model introduced in Section 2 in order to analyse the potential increase in performance
of caching, and derive a relationship between n = N/K and the costs of maintaining
the cache which characterises when caching is likely to be beneficial.

4.1 Extending the Knowledge Representation Interface

The most straightforward approach to exploit the fact that some queries are performed
multiple times in a single update cycle, is to add the results of a query to the cache the
first time it is performed in an update cycle, and then retrieve the results from the cache
if the query is reevaluated at the same update cycle. Although very simple in requiring
no information about the average number of times each unique query is repeated in a
cycle, as we show below, if the cost of cache insertion is sufficiently low, significant
performance improvements can be achieved. Moreover, such an approach requires only
a very loose coupling between the cache and the underlying knowledge representation.

The cache simply acts as a filter: if a query is a cache hit the results are immediately
returned by the cache; if a query is a cache miss, the query is delegated to the knowledge
representation and the results stored in the cache, before being returned to the agent
program.

The use of a cache requires an extension of the KRT interface with a cache opera-
tion lookup to lookup entries, an operation put to put entries into the cache, and an
operation clear to clear the cache again. The basic approach can be implemented as
shown in the algorithm below.

Listing 1.1: Query Cache

1 % Query Phase
2 clear(cache)
3 FOR EACH query Qi DO
4 IF lookup(Qi, answer, cache)
5 THEN return(answer)
6 ELSE DO
7 answer = query(Qi, beliefbase)
8 put(Qi:answer, cache)
9 return(answer)

10 ENDDO
11 ENDDO

Of course, by only storing the query results, it is not possible to detect when cache
entries are invalidated, so the cache needs to be cleared at the start of each query phase in
an update cycle and rebuilt from scratch. In addition, when compiling an agent program,
care is required to ensure that differences in variable names are resolved so that similar
queries are retrieved from the cache instead of being recomputed. For example, the
queries q(X,Y) and q(A,B) which represent the same query but use different variables
should not result in a cache miss.

The cache can be implemented by a hash table. Given Observation 2, the size of the
hash table can be tuned to optimal size after one or two cycles. By implementing the
cache as a hash table, the insertion costs cins of an entry are constant and the evaluation
costs of performing a query a second time are equal to the lookup costs, i.e. a constant
chit that represents the cost for a cache hit. This results in the following performance
model, adapted from the model in Section 2:

K · (cqry + cins) +N · chit + U · cupd (2)

It follows that whenever

cqry >
K

N −K
· cins +

N

N −K
· chit (3)

it is beneficial to implement a cache. That is, the cache increases performance whenever
the average query cost is greater than the average lookup cost of a query plus the average
insertion cost times the proportion of unique to non-unique queries (for N > K). As
expected, the larger the average number of times n a query is performed in a single

cycle, the larger the expected efficiency gains. In the worst case in which all queries are
only performed once in a cycle, i.e. n = 1, the cache will incur an increase in the cost
which is linear in the number of queries, i.e. N · (cins + chit).

4.2 Experimental Evaluation

To estimate values for cins and chit and the potential improvement in performance
that may be obtained from caching, we implemented the caching mechanism described
in algorithm 1.1 and evaluated its performance by simulating the execution of each
agent platform with caching using the query and update logs for the Blocks World and
Elevator Sim experiments. The cache is implemented as a single hash table that is filled
the first time a query is performed in a query phase and cleared when the first update is
performed in the subsequent update phase.

As might be expected, the cost of both cache insertions and hits were low. For our
implementation, the cost chit was about 1 microsecond (0.45 − 1.16µs) with a similar
value for cins (0.29− 0.83µs).

Even in the experiment with the lowest value of n (the Elevator Sim agent pro-
grammed in GOAL with 10 people to be transported) the condition of equation 3 is
satisfied and performance is improved by caching. In this case, n = 1.16 and cQ = 29
(see Table 3b), and we have 29 > 1/0.16 + 1 = 7.25. The average estimated gain per
cycle in this case is 42µs, which can be computed using equation 2 and subtracting the
first from the last. The performance gained even in this case is about 10%. In all other
cases the gains of using single cycle caching are substantially larger.

5 Related Work

There is almost no work that directly relates to our study of the performance of knowl-
edge representation and reasoning capabilities incorporated into agent programming.
As far as we know, our study is the first to investigate patterns in the queries and up-
dates that are performed by agent programs. In [15] it was observed that agent pro-
grams appear to spend most of their time in evaluating conditions for adopting plans,
although the author’s proposed solution was to adopt a plan indexing scheme, rather
than to optimize query evaluation in general. In [16] the performance of the FLUX and
GOLOG agent programming languages is studied. Another GOLOG-style language,
Indi-GOLOG, implements caching [17]. GOLOG-like languages, however, do not im-
plement a deliberation cycle based on the BDI paradigm.

Performance issues of BDI agents have been studied in various other contexts. To
mention just a few examples, [18] proposes an extended deliberation cycle for BDI
agents that takes advantage of environmental events and [19] proposes the incorpora-
tion of learning techniques into BDI agents to improve their performance in dynamic
environments. The focus of these papers is on integrating additional techniques into
an agent’s architecture to improve the performance of an agent instead of on the KRT
capabilities of those agents.

6 Conclusion

We presented an abstract performance model of the basic query and update operations
that define the interface to a logic-based BDI agent’s underlying knowledge representa-
tion. Using this model, we analysed the performance of a variety of different agent pro-
grams implemented using three different agent platforms. To the best of our knowledge,
our study is the first to analyse query and update patterns in existing agent program-
ming languages. Although preliminary, our results suggest that in logic-based agent
platforms, knowledge representation and reasoning capabilities account for a large part
of the execution time of an agent. In particular, three key observations suggest that
integrating memoization into agent programming languages have the potential to sig-
nificantly increase the performance of logic-based agent platforms: the same queries
are performed more than once in a single update cycle, large number of queries are
repeated in subsequent cycles, and the number of queries is typically much larger than
the number of updates performed.

We showed how the interface to the underlying knowledge representation of an
agent platform can be modified to incorporate caching, and extended the abstract perfor-
mance model to quantify the potential performance improvements that can be achieved
by memoization of queries. Our results indicate that even simple query caching tech-
niques have the potential to substantially improve the performance across a wide range
of application domains.

The work presented here is limited to a single agent update cycle. Our results, and
in particular the observation that a significant number of queries are repeated in subse-
quent agent cycles, suggests that further performance improvements may be obtained
by extending caching to multiple cycles. Extending our abstract performance model and
implementation to account for such queries is an area of further work.

References

1. Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19 (1982) 17–37

2. Miranker, D.P.: TREAT: A better match algorithm for AI production systems. In: Proceed-
ings of the Sixth National Conference on Artificial Intelligence (AAAI’87), AAAI Press
(1987) 42–47

3. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An architecture for general intelligence.
Artificial Intelligence 33 (1987) 1–64

4. Software Technology Branch, Lyndon B. Johnson Space Center Houston: CLIPS Reference
Manual: Version 6.21. (2003)

5. Jena. http://jena.sourceforge.net/ (2011)
6. Bordini, R.H., Hubner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-

peak using Jason. Wiley (2007)
7. Dastani, M.: 2APL: a practical agent programming language. International Journal of Au-

tonomous Agents and Multi-Agent Systems 16 (2008) 214–248
8. Hindriks, K.V.: Programming Rational Agents in GOAL. In: Multi-Agent Programming.

Springer (2009) 119–157
9. Dastani, M., de Boer, F.S., Dignum, F., Meyer, J.J.C.: Programming agent deliberation.

In: Proceedings of the Second International Joint Conference on Autonomous Agents and
Multiagent Systems, ACM (2003) 97–104

10. JIProlog. http://www.ugosweb.com/jiprolog/ (2011)
11. SWI-Prolog. http://www.swi-prolog.org/ (2011)
12. Elevator Simulator. http://sourceforge.net/projects/elevatorsim/

(2011)
13. Dastani, M., Dix, J., Novak, P.: The first contest on multi-agent systems based on computa-

tional logic. In: Proceedings of CLIMA ’05. (2006) 373–384
14. Behrens, T., Dix, J., Köster, M., Hübner, J., eds.: Special Issue about Multi-Agent-Contest

II. Volume 61 of Annals of Mathematics and Artificial Intelligence. Springer, Netherlands
(2011)

15. Dennis, L.: Plan indexing for state-based plans. In: Informal Proceedings of DALT 11.
(2011)

16. Thielscher, M.: Pushing the envelope: Programming reasoning agents. In: AAAI Workshop
Technical Report WS-02-05: Cognitive Robotics, AAAI Press (2002)

17. Giacomo, G.D., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: A high-level pro-
gramming language for embedded reasoning agents. In Bordini, R.H., Dastani, M., Dix, J.,
Fallah-Seghrouchni, A.E., eds.: Multi-Agent Programming: Languages, Platforms and Ap-
plications. Springer (2009) 31–72

18. Koch, F., Dignum, F.: Enhanced deliberation in BDI-modelled agents. In: Advances in
Practical Applications of Agents and Multiagent Systems (PAAMS 2010), Springer (2010)
59–68

19. Singh, D., Sardina, S., Padgham, L., James, G.: Integrating learning into a BDI agent for
environments with changing dynamics. In: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI). (2011) 2525–2530

