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Abstract. In this paper, a new hybrid self-evolving algorithm is presented with 
its application to a highly nonlinear problem in electrical engineering. The  
optimal power flow problem described here focuses on the minimization of the 
fuel costs of the thermal units while maintaining the voltage stability at each of 
the load buses. There are various restrictions on acceptable voltage levels,  
capacitance levels of shunt compensation devices and transformer taps making 
it highly complex and nonlinear. The hybrid algorithm discussed here is a com-
bination of the learning principles from Brain Storming Optimization algorithm 
and Teaching-Learning-Based Optimization algorithm, along with a self-
evolving principle applied to the control parameter. The strategies used in the 
proposed algorithm makes it self-adaptive in performing the search over the 
multi-dimensional problem domain. The results on an IEEE 30 Bus system  
indicate that the proposed algorithm is an excellent candidate in dealing with 
the optimal power flow problems. 

Keywords: Brain-Storming Optimization, Non-dominated sorting, Optimal 
power flow, Teaching-learning-based optimization. 

1 Introduction 

Computational intelligence and its derivatives have become very handy tools in the 
field on engineering, especially for the studies on nonlinear systems. Among the intel-
ligent techniques, evolutionary computation has been of high interest in the field of 
engineering optimization problems [1]. Various algorithms such as Genetic Algorithm 
[2], Particle Swarm Optimization [3], Differential Evolution [4], Artificial Bee Colo-
ny [5] etc. have been already used in power engineering. The economically optimal 
power scheduling and stable steady state operation of an electrical grid is one of the 
major focus areas among them. This problem, which deals with the power flow and 
voltage states of an electrically connected network during steady state, is often  
referred to as optimal power flow (OPF) problem. OPF can have multiple objectives 
for which optimality is to be searched, but has major emphasis on economic schedule 
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of the power generation, along with minimizing the voltage deviations that could 
occur at the points at which loads to the system are connected. The intricate electrical 
interconnections, transformer taps for voltage stepping, steady state shunt compensa-
tion devices – all of them make the relations between the electrical variables highly 
complex and nonlinear. This demands requirement of smart methods for deciding the 
system variables. The conventional gradient-based techniques would end up with 
suboptimal solutions if applied to such an optimality problem with multiple  
constraints [1]. Relatively optimal solutions reported so far have been discovered 
using evolutionary computational techniques [4, 6].  

Teaching–Learning–Based Optimization (TLBO) is a recent technique proposed to 
serve the purpose of nonlinear function optimization [7, 8]. The philosophical essence 
of the algorithm is based on the interaction of the learners in a class with the teacher 
of that class and among themselves. For the sake of simplicity, the learner with the 
highest advantage of knowledge is considered as the teacher for that instance of time 
and the classroom dynamics is expected to evolve the average level of the learners 
with respect to the teacher.  

Brain Strom Optimization (BSO) is based on the controlled idea generation with 
the help of some flexible rules. It puts forth the philosophy that improvisation of ideas 
can be done through brainstorming sessions and piggybacking on existing ideas. Even 
though the concept of teacher is absent in brainstorming, both the optimization  
algorithms show mutual compatibility. The TLBO algorithm which has been  
proposed originally do not stress on controlled cross-fertilization of ideas within the 
learners. Hybridization of these two algorithms with excellent philosophical bases 
could give a better algorithm. 

Considering the algorithmic sequence of TLBO, it is to be noted that control  
parameter in the TLBO algorithm is just a singular Teaching Factor. A self–evolving 
characteristic can be introduced to it to make the algorithm more guided and versatile 
in its evolution through the iterations. This methodology stresses the idea of  
self-improvisation in parallel to mutual-improvisations. In this paper the self-evolving 
hybrid algorithm is put into action by applying it on a multi-objective optimal load 
flow problem. 

The following parts of paper are organized such – section 2 details the objective of 
optimal power flow and identifies two major objectives. The exact relation of  
electrical quantities and the constraints imposed are stated. Section 3 explains the 
algorithmic sequence followed by the proposed algorithm for its execution. Section 4 
presents the application of the proposed algorithm on OPF problem along with the 
simulation results. The conclusions are given in section 5.  

2 Objectives of Optimal Power Flow  

The primary objective of the OPF problem is to satiate the load demand with minimum 
possible cost, simultaneously maintaining the voltage levels as seen by the loads 
around the expected value; all the while satisfying the physical limits of the compo-
nents involved in generation and transmission. The objective of cost minimization can 
be expressed as below. 
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The coefficient shown as a accounts for the fixed cost and the coefficients b and c 

account for the variable cost incurred from power production. 
iGP  is the power  

generated by the ith generator and NG is the total number of generators. The active 
power supplied should follow the demand constraint given below. 
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Where 
jDP  is the jth load and ND is the total number of loads. Each generator is  

restricted physically by a maximum and minimum quantity of power that it is capable 
of generating.  For the ith generator, it can be expressed as given below. 

i i i
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The total voltage deviation also acts an as an objective to be minimized. The loads 
require near-per-unit values of voltage for stable operation. The expression of objec-
tive meant for minimization is given below. 
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where 
kLV  is the voltage of the kth load bus (expressed in per unit) and NL is the 

number of load buses. The voltage states of the network are directly dependent on the 
generator voltage settings, the network impedances, shunt admittances, transformer 
tapings which hence are the decision variables. The transformer taps given by Tt and 
the reactive power compensators given by Qc are generally discretized values and 
hence discontinuous in their respective domain. A total of NT transformer taps and NC 
capacitors are considered as decidable parameters. The numerical bounds are  
expressed as below. 

i i i

Min Max
G G GV V V≤ ≤ , Min Max

t t tT T T≤ ≤ , Min Max
c c cQ Q Q≤ ≤  (5)

The voltage states of the network, both magnitude and angle at each node of the  
network, can be computed using load flow analysis. This information obtained can 
further be used to calculate the power losses in the network. Below the Root-Mean-
Square based phasor matrix calculations which are performed in load flow using the 
admittance matrix (Y) of an N bus system and the injected power are shown.  
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The powers thus computed are used in the equality constraints to match the injected 
power with demanded power. Power mismatches beyond tolerance would cause the 
load flow to fail in obtaining a convergent solution for the local search. 
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The objective is a highly nonlinear and highly restricted function of the following 
decision vector X. 

1 1 1 1N N T CG G
G G G G N NX P P V V T T Q Q =      (9)

This gives a total of (2 )G T CN N N+ +  decision variables which belong to four 

categories. The dimensionality of the problem can be very large as the number of 
buses increase. This makes the problem all the more challenging to solve. 

3 Self–Evolving Brain–Storming Inclusive Teaching–Learning–
Based Optimization Algorithm 

The Brain Storm Optimization and Teaching–Learning–Based Optimization algo-
rithms have been recently introduced in the research literature [9] and [7] respectively. 
While TLBO is based on excellence of learners inspired by the teacher, BSO stresses 
on information interchange through brainstorming. The following guidelines are used 
with reference to Osborn’s Original Rules for Idea Generation in a Brain storming 
Process [10]: 1) Suspend Judgment  2) Anything Goes 3) Cross–fertilize (Piggyback)  
4) Go for Quantity. The rule 3 emphasizes on the key idea of brain storming which is 
then incorporated into the teacher–learner–based algorithm to cross–fertilize the ideas 
from teaching phase and learning phase, so as to originate a new set of ideas, which if 
turns out to be superior, could replace inferior ideas. The Teaching Factor (TF) used in 
TLBO can be made self-evolving through its adaptation from the temporal change in 
consecutive function values. The computational steps are detailed below. 

3.1 Initialization 

Being a population-based stochastic algorithm, the initialization procedure is done 
over a matrix of M rows and N columns. M denotes the population size and N is the 
dimensionality of the problem at hand. The algorithm runs for a total of T iterations 



342 K.R. Krishnanand et al. 

 

after which termination occurs. Considering an element x at mth row and nth column of 
the said matrix, initialization is done as shown below. 

( )
( ) ( ) ( )
1 min max min

, ,n n nm n m nx x x x rand= + − ×  (10)

where m and n are indices for row and column respectively. The random value used 
follows a uniform distribution of randomness within the range (0, 1). The valid exist-
ing ideas could be used as a base to start for new idea generation. Similarly, prior 
known and acknowledged solutions can be used as seeds in the initial matrix. A  
potential solution X from mth row at time/iteration t is evaluated as shown below. 
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3.2 Teaching Phase 

In this phase, the average of the class is considered by taking the mean of each dimen-
sion of the population. The mean vector V can be shown as  
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The teacher for the current iteration is the best solution of the current population. In a 
multi-objective problem, the best ranked individual can be obtained by a suitable non-
dominated sorting method. The mutation in this phase is as shown below. 
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where TF shows the vector of teaching factors used for each learner. Since there is 
only this single type of control parameter present in original TLBO, it is possible to 
make it adaptive to the situation, making the algorithm self-evolving.  
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This is intelligent learning strategy in the proposed algorithm. The improvisation in 
the rank of the vector with respect to past would lead to reduction in teaching factor, 
indicating that the learner is performing well and has lesser need to contribute towards 
driving the class average corresponding to the current teacher. Considering deprecia-
tion in the rank, the individual would need to allow higher mutations between teacher 
and the average vectors and hence higher TF value is required. When there is no 
change in the rank, the TF value for that learner is kept constant. 
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3.3 Learning Phase 

This phase makes the learners undergo self–improvement through differential  
mutation. The temporal gradients which are present between the learners are used to 
facilitate the mutation process.  
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3.4 Brain–Storming Phase 

Here the amalgamation of both new populations occurs. A temporary matrix is 
created with intermixing from the populations from teaching and learning phases. 
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where α and β are the multiplication factors which decides the extent of participation 
of both populations in the brain storming process. The factors are kept within certain 
limits to assure contribution to brain storming from both the phases. Similar to BSO, 
the population thus obtained is mutated like in BSO using a smooth and stochastically 
weighted nonlinear function. 
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where K is the slope determining factor of the logsig function used. The current popu-
lation’s objective values along with the objective values of new populations are com-
pared together to perform the reinsertion of the superior vectors.  

4 Simulation Results  

The proposed algorithm is tested so as to obtain optimal power flow solution for an 
IEEE 30-Bus, 6 generator system. The system data regarding the bus configurations 
and the line data can be found in [4] and are not presented here due to space  
constraints. Both objectives are individually optimized first and then used as seeds 
during consequent initialization. The algorithm is run for 10 trial runs and the best 
solution is presented in Table 1. All simulations are done in MATLAB R2011b  
software on a 3.4 GHz Core-i7 device with 8 GB of random access memory. The 
system is well known and has been studied before even in recent research literature 
[4, 6]. The real powers and voltages of buses {1, 2, 5, 8, 11, 13} are to be decided. 
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The transformer taps {11, 12 15, 36} are to be adjusted and the extent of reactive 
compensations at {10, 12, 15, 17, 20, 21, 23, 24, 29} have to be determined. The fuel 
cost and voltage deviations are functionally dependent on these 25 parameters. The 
comparison of results from the proposed algorithm is performed in Table 2. It is very 
clear from the results that the proposed technique shows comparable performance to 
recent algorithms and is quite optimal considering the initial states shown in [4, 6]. 

Table 1. IEEE-30 Bus, 6 generator system – power generataions, voltage magnitudes, 
transformer taps settings and reactive power values used for compensation 

 Minimize F(PG) Minimize F(VL)  Minimize F(PG) Minimize F(VL) 
PG1 176.6350 171.6105 T3 0.9755 0.9796 
PG2 48.2382 30.1370 T4 0.9607 0.9659 
PG3 21.2394 48.5742 Q1 4.4348 4.8671 
PG4 21.4096 10.0000 Q2 4.1871 0.3153 
PG5 12.0488 16.9136 Q3 4.2786 4.9994 
PG6 12.4177 15.7686 Q4 4.7454 1.6107 
VG1 1.1000 0.9999 Q5 3.6614 4.9912 
VG2 1.0877 1.0211 Q6 5.0000 4.6549 
VG3 1.0622 1.0173 Q7 4.6468 5.0000 
VG4 1.0700 1.0016 Q8 5.0000 4.9721 
VG5 1.0986 1.0341 Q9 2.1255 2.0984 
VG6 1.1000 1.0108 F(PG) 799.1295 863.0816 
T1 1.0139 1.0526 F(VL) 1.9557 0.0884 
T2 0.9069 0.9034 Loss 8.5885 9.6627 

Table 2. Comaprison of results based on [4, 6] 

Method 
Optimal fuel cost (in 

$/hr) 
Optimal total voltage deviations 

Gradient-based approach 804.853 - 
Improved GA 800.805 - 

PSO 800.41 - 
DE 799.2891 0.1357 

AGAPOP 799.8441 0.1207 
Proposed algorithm 799.1295 0.0884 

 
As seen from Table 2, the proposed hybrid algorithm is very effective in finding  
optimality of the objectives. The time difference in algorithms is negligible owing to 
high computational capabilities of modern day processors. 

5 Conclusion 

A hybrid algorithm is proposed based on two algorithms, TLBO and BSO, which 
have mutually compatible philosophical bases. The proposed algorithm is easily mod-
ified to be self-evolving since the original algorithm has only a single type of control 
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parameter. The algorithm is successfully applied to highly complex optimal power 
flow problem with multiple objectives. The results indicate that the proposed algo-
rithm is an excellent candidate for intelligent decision-making leading to economic-
cum-stable operation of the power network. The flexibility and generic nature of the 
algorithm makes it suitable for optimizations on electrical networks spread over a 
large area or even those inside a building. The algorithm has higher memory require-
ment during its intermediate stages, but that disadvantage is trivial in the current 
world scenario of high end memory availability. 
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