Skip to main content

Barriers to Exascale Computing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7851))

Abstract

The development of an exascale computing capability with machines capable of executing O(1018) operations per second by the end of the decade will be characterized by significant and dramatic changes in computing hardware architecture from current (2012) petascale high-performance computers. From the perspective of computational science, this will be at least as disruptive as the transition from vector supercomputing to parallel supercomputing that occurred in the 1990s. This was one of the findings of a 2010 workshop on crosscutting technologies for exascale computing. The impact of these architectural changes on future applications development for the computational sciences community can now be anticipated in very general terms. While the community has been investigating the road to exascale worldwide in the last several years, there are still several barriers that need to be overcome to obtain general purpose exascale performance. This short paper will summarize the major challenges to exascale, and how much progress has been made in the last five years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Simon, H., Zacharia, T., Stevens, R.: Modeling and Simulation at the Exascale for Energy and Environment, Berkeley, Oak Ridge, Argonne (2007), http://science.energy.gov/ascr/news-and-resources/program-documents/

  2. Stevens, R., White, A.: Crosscutting Technologies for Computing at Exaflops, San Diego (2009), http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/

  3. Shalf, J., Dosanjh, S., Morrison, J.: Exascale Computing Technology Challenges. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simon, H.D. (2013). Barriers to Exascale Computing. In: Daydé, M., Marques, O., Nakajima, K. (eds) High Performance Computing for Computational Science - VECPAR 2012. VECPAR 2012. Lecture Notes in Computer Science, vol 7851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38718-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38718-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38717-3

  • Online ISBN: 978-3-642-38718-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics