
Programming the LU Factorization
for a Multicore System with Accelerators

Jakub Kurzak1, Piotr Luszczek1 and Jack Dongarra1,2,3

1 University of Tennessee, Knoxville TN 37919, USA
2 Oak Ridge National Laboratory, Oak Ridge TN 37831, USA

3 University of Manchester, Manchester M13 9PL, UK
{kurzak, luszczek, dongarra}@eecs.utk.edu

Abstract. LU factorization with partial pivoting is a canonical numeri-
cal procedure and the main component of the High Performance Linpack
benchmark. This article presents an implementation of the algorithm for
a hybrid, shared memory, system with standard CPU cores and GPU
accelerators. Performance in excess of one TeraFLOPS is achieved using
four AMD Magny Cours CPUs and four NVIDIA Fermi GPUs.

1 Introduction

This paper presents an implementation of the canonical formulation of the LU
factorization, which relies on partial (row) pivoting for numerical stability. It is
equivalent to the DGETRF function in the LAPACK numerical library. Since the
algorithm is coded in double precision, it can serve as the basis for an imple-
mentation of the High Performance Linpack benchmark (HPL) [2]. The target
platform is a hybrid, multi-CPU, multi-GPU shared memory system.

2 Background

The LAPACK block LU factorization is the main point of reference here, and
LAPACK naming convention is followed. The LU factorization of a matrix M
has the form M = PLU , where L is a unit lower triangular matrix, U is an upper
triangular matrix and P is a permutation matrix. The LAPACK algorithm pro-
ceeds in the following steps: Initially, a set of nb columns (the panel) is factored
and a pivoting pattern is produced (DGETF2). Then the elementary transforma-
tions, resulting from the panel factorizaton, are applied to the remaining part of
the matrix (the trailing submatrix). This involves swapping of up to nb rows of
the trailing submatrix (DLASWP), according to the pivoting pattern, application
of a triangular solve with multiple right-hand-sides to the top nb rows of the
trailing submatrix (DTRSM), and finally application of matrix multiplication of
the form C = C−A×B (DGEMM), where A is the panel without the top nb rows,
B are the top nb rows of the trailing submatrix and C is the trailing submatrix
withoug the top nb rows. Then the procedure is applied repeatedly, descending
down the diagonal of the matrix.

3 The Solution

The main hybridization idea is captured on Figure 1 and relies on representing
the work as a Directed Acyclic Graph (DAG) and dynamic task scheduling,
with CPU cores handling the complex fine-grained tasks on the critical path and
GPUs handling the coarse-grained data-parallel tasks outside of the critical path.
Some number of columns (lookahead) is assigned to the CPUs and the rest of the
matrix is assigned to the GPUs in a 1D block-cyclic fashion. In each step of the
factorization, the CPUs factor a panel and update their portion of the trailing
submatrix, while the GPUs update their portions of the trailing submatrix. After
each step, one column of tiles shifts from the GPUs to the CPUs.

(a) Task Graph Scheduling

CPU cores GPU 0 GPU 1

step 3

step 2
step 1

step 0 step 0 step 0

GPU 1

step 1 step 1

GPU 0

step 2

GPU 0

step 2

GPU 1

(b) Work Partitioning

Fig. 1: Scheduling the task graph of LU factorization, with fine-grained tasks on
the critical path being dispatched to individual CPU cores and coarse-grained
tasks outside of the critical path being dispatched to GPU devices.

The implementation relies on a number of state-of-the-art solutions such as:
tile data layout, block-cyclic data distribution, parallel recursive panel factoriza-
tion, GPU kernel autotuning, the technique of lookahead, the use of superscalar
scheduling and communication-computation overlapping.

3.1 Tile Data Layout

The matrix is laid out in square tiles, where each tile occupies a continuous
region of memory. Tiles are stored in column-major. Elements within tiles are
store in row-major. Such layout is referred to as Column-Row Rectangular Block
(CRRB) [4]. This layout is preserved on the CPU side (host memory) and the
GPU side (device memory). The storage of elements by rows is critical to the
performance of the row swap (DLASWP) operation on the GPUs. The storage of
tiles by columns simplifies the communication of columns between the CPUs
and the GPUs.

3.2 CPU Kernels

CPUs are responsible for the panel factorization and a portion of the update
of the trailing submatrix. The update is relatively straightforward and requires
three opetations: row swap (DLASWP), triangular solve (DTRSM) and matrix mul-
tiplication (DGEMM). In the case of DLASWP, one core is responsible for swaps in
one column of tiles. The LAPACK DLASWP function cannot be used, because of
the use of tile layout, so DLASWP is hand-coded. In the case of DTRSM and DGEMM

one core is responsible for one tile. Calls to Intel Math Kernel Library (MKL)
are used, with layout set to row-major.

Panel factorization is a difficult workload. The LAPACK DGETF2 function
is sequential and memory bound, and can deliver performance of roughly 0.5
Gflop/s, which is completely inadequate for a hybrid LU implementation. Run-
ning at such speed, panel factorizations would completely dominate the entire
execution time. A fast alternative is absolutely critical. Here a recursive-parallel
panel factorization is used, providing an order of magnitude higher performance.

A recursive formulation of the panel factorization is the basis for the imple-
mentation [3]. The application of recursion allows to decrease memory intensity
by introducing some degree of level 3 BLAS operations. Parallelization relies on
splitting the panel vertically into a number of pieces. Each piece is handled by
one core throughout all the steps of the panel factorization. At some point in
the LU factorization, panels become short enough to fit in the aggregate cache
of the designated cores, i.e., panel operations become cache-resident, what at
some level resembles the technique of Parallel Cache Assignement (PCA) [1]
employed by ATLAS. The cores are forced to work in lock-step, but can benefit
from a high level of cache reuse. The ultra-fine granularity of operatins requires
very ligh-weight synchronization. Synchronization is implemented using volatile
variables and works at the speed of hardware cache-coherency.

3.3 GPU Kernels

The update of the trailing submatrix on the GPUs requires kernels for three op-
erations: row swap (DLASWP), triangular solve (DTRSM) and matrix multiplication
(DGEMM). DLASWP is implemented by creating nb (tile size) threads per multipro-
cessor and assigning one column to each thread. DTRSM (an in-place operation)
is replaced by an inversion of the diagonal block (application of the L factor
to identity) on a CPU, followed by DGEMM on the GPUs. These straightforward
implementations are sufficient to make the impact of the operations negligible
in comparison to the DGEMM.

The DGEMM kernels are produced in the process of autotuning, similar to
the one used in the MAGMA project. The system is called Automatic Stencil
TuneR for Accelerators (ASTRA) [5] and follows the principles of Automated
Empirical Optimization of Software (AEOS), popularized by the Automatically
Tuned Linear Algebra Software (ATLAS) project [6].

The kernel is expressed through a parametrized stencil, creating a large search
space of possible implementations. The search space is agressively pruned, us-
ing mostly constraints related to the usage of hardware resources. On NVIDIA

GPUs, one of the main selection criteria is occupancy, i.e. the capability of the
kernel to launch a big number of Single Instruction Multiple Threads (SIMT)
threads. The pruning process identifies a few tens of kernels for each tile size.
The final step of autotuning is benchmarking of these kernels to find the best
performing ones.

There are two differences between the kernels used here and the MAGMA ker-
nels. MAGMA kernels operate on matrices in canonical FORTRAN 77 column-
major layout, compliant with the Basic Linear Algebra Subroutines (BLAS) stan-
dard. The kernels used here operate on matrices in CRRB tile layout [4]. Also,
MAGMA kernels are tuned for the case where all three input matrices are square,
while the kernels used here are tuned for the block outer product operation in the
LU factorization, i.e., C = C−A×B, where the width of A and the height of B
are equal to the matrix tile size nb. Tuning is done for the largest C that can be
mapped to a texture (∼12K×12K). Table 1 lists the performance of the auto-
tuned kernels along with their most important tuning parameters (the blocking
factors, i.e., the size of DGEMM performed by each multiprocessor in the outermost
loop).

Table 1: Autotuned block outer product GPU DGEMM kernels.

TILE SIZE 32 64 96 128 160 192 224 256 288

BLOCKING 32×32×8 64×64×16 32×32×6 64×64×16 32×32×8 64×64×16 32×32×8 64×64×16 32×32×6

GFLOPS 208 250 255 272 265 278 269 277 274

3.4 Superscalar Scheduling

Manually multithreading the hybrid LU factorization would be non-trivial. It
would be a challenge to track dependencies without automation, given the three
different levels of granularity involved: single tile, one column, a large block
(submatrix). Here the QUARK superscalar scheduler is used for automatic de-
pendency tracking and work scheduling. The LU factorization code is expressed
with the canonical serial loop nest, where calls to CPU and GPU kernels are
augmented with information about sizes of affected memory regions and direc-
tionality of arguments (IN, OUT, INOUT). QUARK schedules the work by re-
solving data hazards (RaW, WaR, WaW) at runtime. Two important extensions
are critical to the implementation of the hybrid LU factorization: variable-length
list of dependencies and support for nested parallelism.

CPU tasks, such as panel factorizations and row swaps, affect columns of
the matrix of variable height. For such tasks the list of dependencies is created
incrementally, by looping over the tiles involved in the operation. It is a similar
situation for the GPU tasks, which involve large blocks of the matrix (large arrays
of tiles). The only difference is that here transitive (redundant) dependencies are
manually removed to decrease scheduling overheads, while preserving corectness.

The second crucial extension of QUARK is support for nested parallelism,
i.e., superscalar scheduling of tasks, which are internally multithreaded. The
hybrid LU factorization requires parallel panel factorization for the CPUs to be
able to keep pace with the GPUs. At the same time, the ultra-fine granularity
of the panel operations prevents the use of QUARK inside the panel. Instead,
the panel is manually multithreaded using cache coherency for synchronization
and scheduled by QUARK as a single task, entered at the same time by multiple
threads.

3.5 Communication

Each panel factorization is followed by a broadcast of the panel to all the GPUs.
After each update, the GPU in possession of the leading leftmost column sends
that column back to the CPUs (host memory). These communications are ex-
pressed as Quark tasks with proper dependencies linking them to the computa-
tional tasks. Because of the use of lookahead, the panel factorizations can proceed
ahead of the trailing submatrix updates and so can transfers, which allows for
perfect overlapping of communication and computation, as further discussed in
the following section.

4 Results

The system used for this work couples one CPU board with four sockets and
one GPU board with four sockets. The CPU board is an NVIDIA Tesla S2050
system with 4 Fermi chips, 14 multiprocessors each, clocked at 1.147 GHz. The
CPU board is a H8QG6 Supermicro system with 4 AMD Magny Cours chips,
12 cores each, clocked at 2.1 GHz.

The theoretical peak of a single CPU socket amounts to 2.1 GHz×12 cores×
4 ops per cycle ' 101 Gflop/s, making it ∼403 Gflop/s for all four CPU sockets.
The theoretical peak of a single GPU amounts to 1.147 GHz × 14 cores ×
32 ops per cycle ' 514 Gflop/s, making it ∼2055 Gflop/s for all four GPUs.
The combined CPU-GPU peak is ∼2459 Gflop/s.

The system runs Linux kernel version 2.6.35.7 (Red Hat distribution 4.1.2-
48). The CPU part of the code is built using GCC 4.4.4. Intel MKL version
2011.2.137 is used for BLAS calls on the CPUs. The GPU part of the code is
built using CUDA 4.0.

Figure 2a shows the overall performance of the hybrid LU factorization and
Table 2 lists the exact performance number for each point along with values
of tuning parameters. Tuning is done by manual orthogonal search, i.e., tuning
tile size with all other parameters fixed, then tuning the lookahead depth, then
tuning the number of cores used for the panel factorization and reiterating. The
discontinuity between 23K and 25K is caused by abandoning the use of texture
caches. At this point the matrix exceeds the mazimum size of a 1D texture
of 227 (1 GB). The chart continues until 35K. Beyond that point the size of the
GPU memory, with ECC protection, is exceeded (2.6 GB).

0 10000 20000 30000
0

200

400

600

800

1000

1200

problem size

G
fl

o
p

/s

(a) Overall LU Performance

panel 66 panel 67 panel 68

GEMM 63 GEMM 64 GEMM 65

CPUs

GPUs

DMA
engines

time

d
e

vi
ce … …

(b) 1 Tflop/s Trace Fragment

Fig. 2: (a) Overall performance of the LU factorization. (b) Trace fragment of
the run which exceeded execution rate of 1 Tflop/s.

Figure 2b shows a small fragment in the middle of the execution trace of
the 1 Tflop/s run. In the CPU part, only the panel factorizations are shown.
The entire run factors a matrix of size 23K. The steps shown on the figure
correspond to factoring submatrices of size ∼12K. Due to the deep lookahead,
panel factorizations on the CPUs run a few steps ahead of trailing submatrix
updates on the GPUs. This allows for perfect overlapping of CPU work and GPU
work. It also allows for perfect overlapping of communication between the CPUs
and the GPUs. Each panel factorization is followed by a broadcast of the panel
to the GPUs (light gray DMA). Each trailing submatrix update is followed by
returning of one column to the CPUs (dark gray DMA).

Table 2: LU performance and values of tuning parameters.

MATRIX SIZE [K] 2.3 4.6 6.9 9.2 11.5 13.9 16.2 18.6 20.7 23.0 25.3 27.6 30.0 32.3 34.6

TILE SIZE 96 128 160 192

LOOKAHEAD 1 1 2 2 3 4 6 5 6 8 9 12

PANEL CORES 6 12

GFLOPS 54 163 279 441 582 732 840 909 973 1023 889 921 941 960 975

Figure 3a shows the performance of the panel factorization throughout the
entire run, using different numbers of cores, for panels of width 192. The jagged
shape of the lines reflects the unpredictable nature of a cache-based CPU mem-
ory system. The black line corresponds to the 1 Tflop/s run, for which 12 cores
are used (one socket). Six cores deliver inferior performance due to smaller size
of their combined caches, which cannot hold tall panels at the beginning of the
factorization. 24 cores deliver superior performance for tall panels, and slightly

lower performance for short panels, due to increased cost of inter-socket commu-
nication. It turns up that the use of 12 cores is more efficient, even for large ma-
trices. 12-core panel factorizations are capable of keeping up with GPU DGEMMs,
while the remaining cores are commited to CPU DGEMMs. As long as panel factor-
izations can execute in less time than GPU DGEMMs, it is better to free up more
cores to do CPU DGEMMs. At the same time, decreasing the number of panel cores
to six, would quadruple the time of the initial panel factorizations (Figure 3a),
causing disruptions in the flow of the GPUs work (Figure 2b).

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

factorization step

G
fl

o
p

/s

24 cores

12 cores

6 cores

(a) Panel on CPUs

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

factorization step

G
fl

o
p

/s

1 GPU

4 GPUs

(b) DGEMM on GPUs

Fig. 3: (a) Performance of the panel factorization on CPUs at each step of the
LU factorization. Panel width = tile size = 192. (b) Performance of the 4-GPU
DGEMM task and performance of a signle-GPU portion of that task.

Figure 3b shows the performance of the GPU DGEMM kernel throughout the
entire factorization. The gray line shows the DGEMM kernel performance on a
single GPU. The black line shows the performance of the 4-GPU DGEMM task.
The jagged shape of the line is due to the load imbalance among the GPUs.
The high peaks correspond to the calls where the load is perfectly balanced, i.e.,
the number of columns updated by the GPUs is divisible by 4. When this is
not the case, the number of columns assigned to different GPUs can differ by
one. The load imbalance can be completely eliminated by scheduling the GPUs
independently. Although, potential performance benefits are on the order of a
few percent. The two small dips on the left side of the line are due to random
phenomena (jitter of unknown source).

5 Conclusions

The results reveal the challenges of programming a hybrid multicore system with
accelerators. There is a disparity in performance of the CPUs and the GPUs to
start with. It turns into a massive disproportion when the CPUs are given the
difficult (synchronization-rich and memory-bound) task of panel factorization,
and the GPUs are given the easy (data-parallel and compute-bound) task of ma-
trix multiplication. While the performance of panel factorization on the CPUs
is roughly at the level of 12 Gflop/s, the performance of matrix multiplication
on the GPUs is almost at the level of 1,200 Gflop/s (two orders of magnitude).
The same disproportion applies to the computational power of the GPUs versus
the communication bandwidth between the CPU memory and the GPU memory
(host to device). The key to achieving good performance under such adverse con-
ditions is overlapping of CPU processing and GPU processing and overlapping
of communication.

References

1. Castaldo, A.M., Whaley, R.C.: Scaling LAPACK panel operations using paral-
lel cache assignment. In: ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP’10. ACM, Bangalore, India (January 2010),
DOI: 10.1145/1693453.1693484 (submitted to ACM TOMS)

2. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: Past,
present and future. Concurrency Computat.: Pract. Exper. 15(9), 803–820 (2003),
DOI: 10.1002/cpe.728

3. Gustavson, F.G.: Recursion leads to automatic variable blocking for
dense linear-algebra algorithms. IBM J. Res. Dev. 41(6), 737–756 (1997),
DOI: 10.1147/rd.416.0737

4. Gustavson, F.G., Karlsson, L., K̊agström, B.: Parallel and cache-efficient in-place
matrix storage format conversion. Tech. Rep. UMINF 10.05, Department of Com-
puter Science, Ume̊a University (2010), http://www8.cs.umu.se/research/uminf/
reports/2010/005/part1.pdf (submitted to ACM TOMS)

5. Kurzak, J., Tomov, S., Dongarra, J.: Autotuning GEMMs for Fermi. Tech. Rep. UT-
CS-11-671, Electrical Engineering and Computer Science Department, University of
Tennessee (2011), www.netlib.org/lapack/lawnspdf/lawn245.pdf (submitted to
IEEE TPDS)

6. Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimizations of soft-
ware and the ATLAS project. Parellel Comput. Syst. Appl. 27(1-2), 3–35 (2001),
DOI: 10.1016/S0167-8191(00)00087-9

http://dx.doi.org/10.1145/1693453.1693484
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1147/rd.416.0737
http://www8.cs.umu.se/research/uminf/reports/2010/005/part1.pdf
http://www8.cs.umu.se/research/uminf/reports/2010/005/part1.pdf
www.netlib.org/lapack/lawnspdf/lawn245.pdf
http://dx.doi.org/10.1016/S0167-8191(00)00087-9

	Programming the LU Factorization for a Multicore System with Accelerators
	Jakub Kurzak, Piotr Luszczek and Jack Dongarra

