Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7924))

Abstract

Due to hybridization events in evolution, studying two different genes of a set of species may yield two related but different phylogenetic trees for the set of species. In this case, we want to measure the dissimilarity of the two trees. The rooted subtree prune and regraft (rSPR) distance of the two trees has been used for this purpose, and many algorithms and software tools have been developed for computing the rSPR distance of two given phylogenetic trees. The previously fastest exact algorithm for this problem runs in \(O\left(2.415^dn\right)\) time, where n and d are the number of leaves and the rSPR distance of the input trees, respectively. In this paper, we present a faster exact algorithm which runs in \(O\left(2.344^dn\right)\) time. Our experiments show that the new algorithm can be significantly faster than the newest version (namely, v1.1.1) of the previously best software (namely, Whidden et al.’s RSPR) for rSPR distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evol. Biol. 6, 159–169 (2006)

    Article  Google Scholar 

  2. Bonet, M.L., St. John, K., Mahindru, R., Amenta, N.: Approximating subtree distances between phylogenies. Journal of Computational Biology 13, 1419–1434 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bordewich, M., McCartin, C., Semple, C.: A 3-approximation algorithm for the subtree distance between phylogenies. Journal of Discrete Algorithms 6, 458–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8, 409–423 (2005)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z.-Z., Wang, L.: FastHN: A Fast Tool for Minimum Hybridization Networks. BMC Bioinformatics 13, 155 (2012)

    Article  Google Scholar 

  6. Chen, Z.-Z., Wang, L.: An Ultrafast Tool for Minimum Reticulate Networks. Journal of Computational Biology 20(1), 38–41 (2013)

    Article  MathSciNet  Google Scholar 

  7. Goloboff, P.A.: Calculating SPR distances between trees. Cladistics 24(4), 591–597 (2007)

    Article  Google Scholar 

  8. Hein, J., Jing, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Appl. Math. 71, 153–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hill, T., Nordström, K.J., Thollesson, M., Säfström, T.M., Vernersson, A.K., Fredriksson, R., Schiöth, H.B.: SPRIT: Identifying horizontal gene transfer in rooted phylogenetic trees. BMC Evolutionary Biology 10, 42 (2010)

    Article  Google Scholar 

  10. MacLeod, D., Charlebois, R.L., Doolittle, F., Bapteste, E.: Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement. BMC Evolutionary Biology 5(1), 27 (2005)

    Article  Google Scholar 

  11. Rodrigues, E.M., Sagot, M.-F., Wakabayashi, Y.: The maximum agreement forest problem: Approximation algorithms and computational experiments. Theoretical Computer Science 374, 91–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Than, C., Ruths, D., Nakhleh, L.: PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9, 322 (2008)

    Article  Google Scholar 

  13. Wu, Y.: A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25(2), 190–196 (2009)

    Article  Google Scholar 

  14. Whidden, C., Beiko, R.G., Zeh, N.: Fast FPT algorithms for computing rooted agreement forests: Theory and experiments. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 141–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Whidden, C., Zeh, N.: A unifying view on approximation and FPT of agreement forests. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 390–402. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, ZZ., Wang, L. (2013). Faster Exact Computation of rSPR Distance. In: Fellows, M., Tan, X., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 7924. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38756-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38756-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38755-5

  • Online ISBN: 978-3-642-38756-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics