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Abstract. A cooperative bin packing game is an N-person game, where
the player set N consists of k bins of capacity 1 each and n items of
sizes a1, · · · , an. The value of a coalition of players is defined to be the
maximum total size of items in the coalition that can be packed into
the bins of the coalition. We adopt the taxation model proposed by
Faigle and Kern (1993) [6] and show that the 1/4-core is nonempty for
all instances of the bin packing game. This strengthens the main result
in [3].

1 Intorduction

Since many years, logistics and supply chain management are playing an impor-
tant role in both industry and our daily life. In view of the big profit generated
in this area, the question therefore arises how to “fairly” allocate profits among
the “players” that are involved. Take online shopping as an example: Goods are
delivered by means of carriers. Generally, shipping costs are proportional to the
weight or volume of the goods, and the total cost is basically determined by the
competitors. But there might be more subtle ways to compute “fair” shipping
cost (and allocation between senders and receivers). It is natural to study such
allocation problems in the framework of cooperative games. As a first step in this
direction we analyze a simplified model with uniform packet sizes as described
in more detail in section 2.

A cooperative game is defined by a tuple 〈N, v〉, where N is a set of players
and v : 2N → R is a value function satisfying v(∅) = 0. A subset S ⊆ N is called
a coalition and N is called the grand coalition. The usual goal in cooperative
games is to “ fairly” allocate the total gain v(N) of the grand coalition N among
the individual players. A well known concept is the core of a cooperative game,
defined by all allocation vectors x ∈ R

N satisfying

(i) x(N) = v(N),
(ii) x(S) ≥ v(S) for all S ⊆ N .

As usual, we abbreviate x(S) =
∑

i∈S xi.
We say a cooperative game is balanced if there exists a core allocation for any

instance. Unfortunately, many games are not balanced. Players in a non-balanced
game may not cooperate because no matter how the total gain is distributed,
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there will always be some coalition S with x(S) < v(S), i.e., it gets paid less
than it could earn on its own. For this case, one naturally seeks to relax the
condition (ii) above in such a way that the modified core becomes nonempty.
Faigle and Kern [6] introduced the multiplicative ε-core as follows. Given ε > 0,
the ε-core consists of all vectors x ∈ R

N satisfying condition (i) above together
with

(ii’) x(S) ≥ (1 − ε)v(S) for all subsets S ⊆ N .

We can interpret ε as a tax rate in the sense that coalition S is allowed to
keep only (1 − ε)v(S) on its own. Thus, the ε-core provides an ε-approximation
to balancedness. If the value function v is nonnegative, the 1-core is obviously
nonempty. In order to approximate the core as close as possible, one would
like to have the taxation rate ε as small as possible while keeping the ε-core
nonempty. Discussions of the ε-core allocation for other cooperative games, say,
facility location games, TSP games etc. can be found in [10],[11],[8],[5].

As motivated at the beginning of this paper, we study a specific game of the
following kind: There are two disjoint sets of players, say, A and B. Each player
i ∈ A possesses an item of value/size ai, for i = 1, · · · , n, and each player j ∈ B
possesses a truck /bin of capacity 1. The items produce a profit proportional to
their size ai if they are brought to the market place. The value v(N) of the grand
coalition thus represents the maximum profit achievable. How should v(N) be
allocated to the owners of the items and the owners of the trucks?

Bin packing games were first investigated by Faigle and Kern [6]. In their pa-
per, they considered the non-uniform bin packing game (i.e., bin capacities are
distinct) and showed that the 1/2-core is nonempty if any item can be packed to
any bin. Later, researchers focused on the uniform case, where all bins have the
same capacity. Woeginger [17] showed that the 1/3-core is always nonempty. Re-
cently, Kern andQiu [13] improved this result to 1/3−1/108.Eventually, however,
it turned out that the standard (unmodified) version of the set packing heuristic,
combined with the matching arguments already used in [7] and yet another heuris-
tic based on replacing complete bins as described in detail in section 3 led to the
improvement εN ≥ 1/4. As v′(N) ≥ v(N), this amounts to a strengthening of the
main result in [3], hopefully also providing additional insight.

Other previous results on bin packing games can be summarized as follows. In
[7], Faigle and Kern show that the integrality gap, defined by the difference of the
optimum fractional packing value and the optimum integral packing value (cf.
section 2) is bounded by 1/4, if all item sizes are strictly larger than 1/3, thereby
implying that the 1/7-core is nonempty in that case (which was independently
shown by Kuipers [15]). Moreover, in the general case, given a fixed ε ∈ (0, 1),
they prove that the ε-core is always non-empty if the number of bins is sufficiently
large (k ≥ O(ε−5)). Liu [16] gives complexity results on testing emptiness of the
core and core membership for bin packing games, stating that both problems
are NP-complete. Also, Kern and Qiu [14] studied the non-uniform bin packing
game and showed that the 1/2-core is nonempty for any instance. Moreover, the
problem of approximating the maximum packing value v(N) is also studied in
literature (called “multiple subset sum problem”): PTAS and 3/4 approximation
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algorithms are proposed in [2] and [3]. Other variants of the bin packing game
can also be found in [1], [18], [4], [9] etc..

The rest of the paper is organized as follows. In section 2, we give a formal
definition of bin packing games and introduce fractional packings. In section 3,
we prove that the 1/4-core is always nonempty. Finally, in section 4, we remark
on some open problems.

2 Preliminaries

A bin packing game N is defined by a set A of n items 1, 2, · · · , n of sizes
a1, a2, · · · , an, and a set B of k bins, of capacity 1 each, where we assume,
w.l.o.g., 0 ≤ ai ≤ 1.

A feasible packing of an item set A′ ⊆ A into a set of bins B′ ⊆ B is an
assignment of some (or all) elements in A′ to the bins in B′ such that the total
size of items assigned to any bin does not exceed its capacity. Items that are
assigned to a bin are called packed and items that are not assigned are called
not packed. The value or size of a feasible packing is the total size of packed
items.

The player setN consists of all items and all bins. The value v(S) of a coalition
S ⊆ N , where S = AS ∪ BS with AS ⊆ A and BS ⊆ B, is the maximum value
of all feasible packings of AS into BS . A corresponding feasible packing is called
an optimum packing.

Let F be an item set, and denote by aF =
∑

i∈F ai the value of F . F is called
a feasible set if aF ≤ 1. Denote by F the set of all feasible sets, w.r.t. all items
of N . Then the total earning v(N) of the grand coalition N equals

max
∑

F∈F
aF yF

s.t.
∑

F∈F
yF ≤ k,

∑

F�i

yF ≤ 1 (i = 1, 2, · · · , n),

yF ∈ {0, 1} .

(2.1)

The value v′(N) of an optimum fractional packing is defined by the relaxation
of (2.1), i.e.,

max
∑

F∈F
aF yF

s.t.
∑

F∈F
yF ≤ k,

∑

F�i

yF ≤ 1 (i = 1, 2, · · · , n),

yF ∈ [0, 1].

(2.2)
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A fractional packing is a vector y satisfying the constraints of the linear pro-
gram (2.2). We call a feasible set F selected/packed by a packing y′ if y′F > 0.
Accordingly, we refer to the original “feasible packing” as integral packing, which
meets the constraints of (2.1). To illustrate the definition of the fractional pack-
ing, we consider an example as follows.

Example. Given 2 bins and 4 items of sizes ai = 1/2 for i = 1, 2, 3 and
a4 = 1/2 + ε, with a small ε > 0.

Obviously, packing items 1, 2 into the first bin and packing item 4 to the
second bin results in an optimum integral packing of total value v(N) = 3/2+ ε.
Let F1 = {1, 2}, F2 = {2, 3}, F3 = {1, 3}, F4 = {4}. By solving the linear
program (2.2), the optimum fractional packing y′ = (y′F ) selects F1, · · · , F4 with
a fraction 1/2 each, resulting in a value

v′(N) =

4∑

j=1

y′Fj
aFj =

7

4
+

ε

2
> v(N).

An intriguing problem is to find the “minimal” taxation rate εmin such that
the εmin-core is nonempty for all instances of the bin packing game. Due to the
following observation of Faigle and Kern in [7], this amounts to bounding the
relative gap (v′(N)− v(N))/v′(N) for any bin packing game instance N .

Lemma 1 ([7]). Given ε ∈ (0, 1) and a bin packing game N , the ε-core �= ∅ if
and only if ε ≥ 1− v(N)/v′(N).

We let εN denote the relative gap of N . Trivially, if all items are packed in
a feasible integral packing, we get v(N) = v′(N), implying that εN = 0, so
the core is nonempty. Thus let us assume in what follows that no feasible inte-
gral packing packs all items. Clearly, any feasible integral packing y with corre-
sponding packed sets F1, ..., Fk yields a lower bound v(N) ≥ w(y) =

∑k
i=1 aFi .

In view of Lemma 1 we are particularly interested in integral packings y of
value w(y) ≥ (1 − ε)v′(N) for certain ε > 0. For ε = 1/2, such integral pack-
ings are easy to find by means of a simple greedy packing heuristic, that con-
structs a feasible set Fj to be packed into bin j in the following way: First order
the available (yet unpacked) items non-increasingly, say, a1 ≥ a2 ≥ .... Then,
starting with Fj = ∅, keep adding items from the list as long as possible (i.e.,
aFj + ai ≤ 1 ⇒ Fj ← Fj ∪ {i}, else proceed to i + 1). Clearly, this eventually
yields a feasible Fj of size > 1

2 . Indeed - unless all items get packed - the final
Fj has size > 1− a, where a is the minimum size of an unpacked item. Applying
greedy packing to all bins will exhibit an integral packing y with aFj > 1

2 for
all j, so w(y) > k/2 ≥ v′(N)/2, thus proving non-emptiness of the 1

2 -core by
Lemma 1.

A bit more work is required to exhibit integral packings with w(y) ≥ 2
3v

′(N)
(c.f. [17], [13]). We end this section by mentioning two trivial cases, namely
k = 1 and k = 2: Indeed, in case k = 1, we obviously have v(N) = v′(N), thus
εN = 0 and in case k = 2, the bound εN ≤ 1

4 can be seen as follows: Let y′ be
an optimal fractional solution and let F be a largest (most valuable) feasible set
in the support of y′. Then the integral packing y that packs F into the first bin
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and fills the second bin greedily to at least 1/2 (as explained above) is easily
seen to yield a value w(y) ≥ 3

4w(y
′), so that εN ≤ 1

4 .

3 Proof of Non-emptiness of the 1/4-Core

Throughout this section, we assume that N is a smallest counterexample, i.e.,
a game with 1/4-core(N)= ∅ and n + k, the number of players is as small
as possible. We start with a simplification, similar to that in [17] for the case
ε = 1/3. The following result is a special case of Lemma 2.3 in [13], but we
include a proof for convenience:

Lemma 2. All items have size ai > 1/4.

Proof. Assume to the contrary that some item, say, item n has size an ≤ 1/4.
Let N̄ denote the game obtained from N by removing this item. Thus 1/4-
core(N̄)�= ∅ or, equivalently, v(N̄ ) ≥ 3

4v
′(N̄). Adding item n to N̄ can clearly

not increase v′ by more than an, i.e.,

v′(N) ≤ v′(N̄) + an. (3.1)

Let ȳ be any optimal integer packing for N̄ , i.e., w(ȳ) = v(N̄). Then either item
n can be packed “on top of ȳ” (namely when some bin is filled up to ≤ 1−an) – or
not. In the latter case, the packing y fills each bin to more than 1−an ≥ 3/4, thus
w(ȳ) ≥ 3

4k ≥ 3
4v

′(N), contradicting the assumption that 1
4 -core(N)= ∅. Hence,

item n can indeed be packed on top of ȳ, yielding v(N) ≥ w(ȳ)+an = v(N̄ )+an.
Together with (3.1) this yields v′(N)− v(N) ≤ v′(N̄)− v(N̄) and hence

εN =
v′(N)− v(N)

v′(N)
≤ v′(N̄)− v(N̄)

v′(N̄)
= εN̄ ≤

1

4
,

– a contradiction again. ��
Note that this property implies each feasible set contains at most 3 items. In the
following we reconsider (slight variants of) two packing heuristics that have been
introduced earlier in [2] resp. [13]. The first one, which we call Item Packing, seeks
to first pack large items, then small ones on top of these, without regarding the
optimum fractional solution. The second one, which we call Set Packing, starts
out from the optimum fractional solution y′ and seeks to extract an integer
packing based on the feasible sets that are (fractionally) packed by y′.

We first deal with Item Packing. Call an item i large if ai > 1/3 and small
otherwise. Let L and S denote the set of large resp. small items. If no misun-
derstanding is possible, we will also interpret L as the game N restricted to the
large items (and k bins). Note that at most two large items fit into a bin. Thus
packing L is basically a matching problem. This is why we can easily solve it to
optimality and why the gap is fairly small (just like in the example from section
2). More precisely, Theorem 3.2 from [7] can be stated as

Lemma 3 ([7]). gap(L) = v′(L)− v(L) ≤ 1
4 .
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This motivates the following Item Packing heuristic:

Item Packing

· Compute an optimum integral packing y for L.

· Try to add as many small items on top of y as possible.

There is no need to specify how exactly small items are added in step 2. A
straightforward way would be to sort the small items non-increasingly and apply
some first or best fit heuristic. Let F̂1, · · · , F̂k denote the feasible sets in the
integral packing ŷ produced by Item Packing, i.e.,

Output Item Packing: ŷ =̂ (F̂1, · · · , F̂k). (3.2)

Note that, due to Lemma 3, Item Packing performs quite well w.r.t. the large
items. Thus we expect Item Packing to perform rather well in case there are
only a few small items or, more generally, if Item Packing leaves only a few
small items unpacked. Let S1 ⊆ S denote the set of small items that get packed
in step 2 and let S2 := S\S1 be the set of unpacked items. We can then prove
the following bounds:

Lemma 4. aF̂j
> 2

3 for all j = 1, ..., k. Hence, v(N) > 2
3k and v′(N) > 8

9k.

Proof. By definition, the first step of Item Packing produces an optimum integral
packing of L of value v(L). Thus the final outcome ŷ has value w(ŷ) = v(L)+aS1 .
Hence v(N) ≥ v(L) + aS1 . The fractional value, on the other hand, is clearly
bounded by v′(N) ≤ v′(L) + aS . Thus in case S2 = ∅ (i.e., S1 = S) we find

v′(N)− v(N) ≤ v′(L)− v(L) ≤ 1/4,

implying that

εN =
v′(N)− v(N)

v′(N)
≤ 1/4

k/2
≤ 1

4
for k ≥ 2,

contradicting our assumption that 1/4-core(N)=∅. (Note that for k = 1 we
always have v = v′, i.e., εN = 0, as remarked earlier in section 2.)

Thus we conclude that S2 �= ∅. But this means that the packing ŷ produced by
Item Packing fills each bin to more than 2/3, i.e., aF̂j

> 2/3 for all j (otherwise,

if aF̂j
≤ 2/3, any item in S could be packed on top of F̂j). Hence v(N) ≥ w(ŷ) =

∑
j aF̂j

> 2
3k. Furthermore, due to our assumption that εN > 1/4, we know that

v′(N) > 4
3v(N) > 8

9k. ��

As we have seen in the proof of Lemma 4, we may assume S2 �= ∅. The following
result strengthens this observation:

Lemma 5. |S2| ≥ 2
3k − 3

4 .
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Proof. As in the proof of Lemma 4 we find

v′(N) ≤ v′(L) + aS1 + aS2 ,

v(N) ≥ v(L) + aS1 .

Thus, using Lemma 3, we get

v′(N)− v(N) ≤ aS2 +
1

4
≤ |S2|

3
+

1

4
. (3.3)

On the other hand, εN > 1/4 and v′(N) > 8
9k (Lemma 4) imply

v′(N)− v(N) = εNv′(N) >
2

9
k. (3.4)

Combining (3.3) and (3.4), the bound on |S2| follows. ��
Thus we are left to deal with instances where Item Packing leaves a considerable
amount |S2| of small items unpacked. As it turns out, a completely different kind
of packing heuristic, so-called Greedy Selection, first analyzed in [13] is helpful
in this case. The basic idea is simple: We start with an optimum fractional
packing y′ of value w(y′) = v′(N). Let F ′

1, · · · , F ′
m denote the feasible sets in the

support of y′ (i.e., those that are fractionally packed) and assume that aF ′
1
≥

· · · ≥ aF ′
m
. Greedy Selection starts with F1 := F ′

1 and then, after having selected
F1, · · · , Fj−1, defines Fj to be the first set in the sequence F ′

1, · · · , F ′
m that is

disjoint from F1 ∪ · · · ∪ Fj−1. It is not difficult to see (cf. below) that we can
select disjoint feasible sets F1, · · · , Fr with r = �k/3� in this way.

Greedy Selection
(Input: Opt. fractional y′ with supp y′=̂ {F ′

1, · · · , F ′
m}, aF ′

1
≥ · · · ≥ aF ′

m
)

Initiate: F ′
1 := {F ′

1, · · · , F ′
m}

FOR j = 1 to r = �k/3� DO
· Fj ← first set in the list F ′

j

· F ′
j+1 ← F ′

j\ {F ′
t | F ′

t ∩ Fj �= ∅}
End

Note that Greedy Selection starts with F ′ = supp y′, a system of feasible sets
of total length y′F ′ :=

∑
F ′∈F ′ y′F ′ = k. In each step, since |Fj | ≤ 3, we remove

feasible sets F ′
t of total length

∑
F ′

t∈F ′
j,F

′
t∩Fj �=∅ y

′
F ′

t
bounded by

∑

F ′
t∈F′

j

F ′
t∩Fj �=∅

y′F ′
t
≤

∑

i∈Fj

∑

F ′
t∈F′
F ′
t�i

yF ′
t
≤

∑

i∈Fj

1 ≤ 3.

Actually, the upper bound ≤ 3 is strict since F ′
t = Fj is counted |Fj | times (once

for each i ∈ Fj).
Thus, in each step we remove feasible sets of total length at most 3, so we

certainly can continue the construction for k = �k/3� steps.
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Lemma 6. Greedy Selection constructs feasible sets F1, · · · , Fr ∈ F ′ with r =
�k/3� = 1

3 (k+ s), s ≡ −k mod 3, of total value aF1 + · · ·+ aFr ≥ 1
3 (v

′(N)+ 2
3s).

Proof. The first part has been argued already above. (Note that if we write
r = 1

3 (k + s), then s = 3r − k, so s ≡ −k mod 3.) To prove the lower bound,
we first prove

Claim 1: aFr > 2
3 .

Proof of Claim 1. Assume to the contrary that aFr ≤ 2/3. In the constructive
process of Greedy Selection, when we have selected F1, · · · , Fr−1, the remaining
feasible set system F ′

r has still length ≥ k − 3(r − 1) = 3 − s ≥ 1. As Fr has
maximum size (value) among all sets in F ′

r, we know that each set in F ′
r has size

≤ 2/3. Decrease y′ on F ′
r arbitrarily such that the resulting fractional packing

ỹ′ has total length
∑

F ỹ′F = k− 1. By construction, the corresponding game Ñ
with one bin removed has fractional value

v′(Ñ) ≥ w(ỹ′) ≥ w(y′)− 2

3
= v′(N)− 2

3
.

By minimality of our counterexample N , the game Ñ admits an integral packing
ỹ of value

v(Ñ) = w(ỹ) ≥ 3

4
v′(Ñ) ≥ 3

4
(v′(N)− 2

3
) =

3

4
v′(N)− 1

2
.

Extending this packing ỹ by filling the kth bin to at least 1/2 in a simple greedy
manner (order not yet packed items non-increasingly in size and try to pack
them into bin k in this order) yields an integral packing y for N of value

w(y) ≥ w(ỹ) +
1

2
≥ 3

4
v′(N),

contrary to our assumption on N. This finishes the proof of Claim 1.
To prove the bound on aF1 + · · ·+ aFr in Lemma 6, let R′

j ⊆ F ′
j denote those

feasible sets that are removed from F ′
j in step j, i.e., R′

j = F ′
j\F ′

j+1. As we have
seen, R′

j has total length y′R′
j
=

∑
F ′∈R′

j
y′F ′ ≤ 3. Assume that we, in addition,

also decrease the y′-value on the least valuable sets in F ′
r by a total of 3 − y′R′

j

in each step. Thus we actually decrease the length of y′ by exactly 3 in each
step without any further impact on the construction. The total amount of value
removed this way in step j is bounded by 3aFj . If k ≡ 0 mod 3, we remove in
all r = k/3 rounds exactly v′(N). Thus

v′(N) ≤
r∑

j=1

3aFj ,

as claimed.
When k �≡ 0 mod 3, the same procedure yields a reduced length of F ′

r after
r−1 steps, namely y′F ′

r
= k−3(r−1) = 3−s. So in the last step we remove a set
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R′
r of value at most (3−s)aFr ≥ 2

3 (3−s) = 2− 2
3s in the last step. Summarizing,

the total value removed is

v′(N) ≤ 3aF1 + · · ·+ 3aFr−1 + (3 − s)aFr

= 3(aF1 + · · ·+ aFr)− saFr

≤ 3(aF1 + · · ·+ aFr)−
2

3
s,

proving the claim. ��
A natural idea is to extend the greedy selection F1, · · · , Fr in a straightforward
manner to an integral packing y =̂ (F1, · · · , Fk), where Fr+1, · · · , Fk are deter-
mined by applying Item Packing to the remaining items and remaining k − r
bins. However, this does not necessarily yield a sufficiently high packing value
w(y): Indeed, it may happen that the remaining k−r ≈ 2

3k bins get only filled to
roughly 1/2, so the total packing value is approximately w(y) ≈ 1

3v
′(N)+ 1

2 · 23k,
which equals 2

3v
′(N) in case v′(N) ≈ k.

However, the estimate aFr+1 + · · · + aFk
≈ 1

2 (k − r) is rather pessimistic. In
particular, if we assume that the packing y (obtained by Greedy Selection plus
Item Packing the remaining k− r bins) leaves some small items unpacked, then
each of the k − r bins must necessarily be filled to at least 2/3 (otherwise any
small item could be added on top of y). This would yield

w(y) ≈ 1

3
v′(N) +

2

3
k · 2

3
≥ (

1

3
+

4

9
)k ≥ 7

9
k ≥ 7

9
v′(N),

which is certainly sufficient for our purposes. (We do not use this estimate later
on: It is only meant to guide our intuition.) Thus the crucial instances are those
where y packs all small items – and hence does not pack all large items. Thus,
when Item Packing is performed on the k − r remaining bins, the first phase
will pack large items into these k − r bins until each bin is at least filled to
1/2. Packing small items on top of any such bin would result in a bin filled
to at least 3/4. Thus, again, the worst case appears to happen when all small
items (and there are quite a few of these, cf. Lemma 5) are already contained in
F1 ∪ · · · ∪ Fr. Assume for a moment that each of F1, · · · , Fr (r ≈ k/3) contains
two of the small items in S2. (Recall that |S2| � 2

3k.) Then each of F1, · · · , Fr can

contain only one other item in addition. Thus about 2
3k of the sets F̂j computed

by Item Packing must be disjoint from F1 ∪ · · · ∪Fr (as no F̂j contains any item
from S2). Thus we could extend F1, · · · , Fr by roughly 2

3k ≈ k − r sets, say,

F̂r+1, · · · , F̂k from Item Packing to obtain a packing (F1, · · · , Fr, F̂r+1, · · · , F̂k)
of value ≥ 1

3v
′(N) + 2

3k · 23 (as each F̂j has size ≥ 2
3 ), which is again enough.

In general, the Greedy Selection F1, · · · , Fr will contain some – but not all –
of S2 and we will have to work out a trade-off between the two extreme cases
considered above: Let

γ := |S2 ∩ (F1 ∪ · · · ∪ Fr)| .
Thus F1 ∪ · · · ∪Fr contains at most 3r− γ items that are not in S2 – and hence
possibly contained in some F̂j . So there are at most 3r−γ different F̂j that inter-

sect F1∪· · ·∪Fr – and hence at least k−(3r−γ) different F̂j that do not intersect
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F1∪· · ·∪Fr . We add these k−3r+γ = γ−s different F̂j , say, F̂r+1, · · · , F̂r+γ−s

to F1, · · · , Fr to obtain a “partial” packing F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s. Here
we may assume that r+γ−s < k. Otherwise, we finish with a complete packing
ȳ=F1, · · · , Fr, F̂r+1, · · · , F̂k of value (use Lemma 6 and aF̂j

≥ 2/3).

w(ȳ) ≥ 1

3
(v′(N) +

2

3
s) + (k − r) · 2

3

=
1

3
v′(N) +

2

9
s+ (

2

3
k − 1

3
s)
2

3

=
1

3
v′(N) +

4

9
k

≥ (
1

3
+

4

9
)v′(N)

>
3

4
v′(N),

contrary to our assumption that v(N) < 3
4v

′(N).
Thus r + γ − s < k holds indeed and therefore we may complete our partial

packing F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s by Item Packing the remaining items to
the remaining k − (r + γ − s) bins, resulting in an integral packing

ȳ =̂ F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s, Fr+γ−s+1, · · · , Fk.

This completes the description of our heuristic

Set Packing
· Get F1, · · · , Fr from Greedy Selection and let γ := |S2 ∩ (F1 ∪ · · · ∪ Fr)|
· Extend with sets F̂j from Item Packing to F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s

· Complete by Item Packing to F1, · · · , Fr, F̂r+1, · · · , F̂r+γ−s, Fr+γ−s+1, · · · , Fk.

Lemma 7. Set Packing packs all of S (and hence not all of L).

Proof. If Set Packing leaves some small item unpacked, then necessarily aFj >
2/3 for j = r + γ − s+ 1, · · · , k. Thus the same computation as above yields

w(ȳ) ≥ 1

3
(v′(N) +

2

3
s) + (k − r)

2

3
>

3

4
v′(N),

a contradiction. Thus all of S gets packed. If, in addition, all of L would get
packed, then the value of the resulting packing ȳ were w(ȳ) ≥ aS + aL ≥ v′(N),
a contradiction again. ��
Thus, in phase 3 of Set Packing, when we apply Item Packing to the last k −
(r+ γ− s) bins, each bin gets first filled to at least 1/2 by large items, and then
(possibly among other small items), the remaining |S2| − γ items from S2 get
packed on top of (some of ) the last k−(r+γ−s) bins. So these last k−(r+γ−s)
bins contribute at least

1

2
(k − (r + γ − s)) +

1

4
(|S2| − γ)

to the total value of ȳ.
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Summarizing, w(ȳ) can be estimated as

w(ȳ) ≥ 1

3
(v′(N) +

2

3
s) + (γ − s) · 2

3

+
1

2
(k − (r + γ − s)) +

1

4
(|S2| − γ).

(3.5)

In case k ≡ 0 mod 3, we have s = 0, r = k/3 and |S2| ≥ 2
3k (by Lemma 5). So

(3.5) simplifies to

w(ȳ) ≥ 1

3
v′(N) +

1

2
· 2
3
k +

1

4
· 2
3
k − 1

12
γ ≥ 3

4
v′(N) +

1

12
k − 1

12
γ,

proving that w(ȳ) ≥ 3
4v

′(N) if γ ≤ k. But this is true: Indeed, as we have already
argued above, we may even assume that r + γ − s = r + γ < k. (Recall that we
consider the case s = 0 here.) In case k �≡ 0 mod 3, by similar computation, we
can show that w(ȳ) ≥ 3

4v
′(N) still holds.

Summarizing, both cases (k ≡ 0 and k �≡ 0 mod 3) yield that N cannot be a
counterexample, so we have proved

Theorem 8 εN ≤ 1/4 for all instances of the bin packing game.

4 Remarks and Open Problems

We like to note that – even though our proof in section 3 is indirect – it can easily
be turned into a constructive proof. Indeed, we implicitly show that either Item
Packing or Set Packing yields an integral packing y of value w(y) ≥ 3

4v
′(N).

Also note that an optimum fractional packing y′ (as input to Greedy Selection)
is efficiently computable: Indeed, as any feasible set may contain at most 3
items, the total number of feasible sets is O(n3), so the LP for computing y′ has
polynomial size. Thus, in particular, our approach also yields a strengthening of
the result in [3] (efficient 3/4 approximation).

In [13] it was conjectured that εN ≤ 1/7 is true for all instances. (This
bound would be tight as can be seen from the small example presented in sec-
tion 2.) We do not expect that our arguments provide any clue about how to
approach 1/7.

A probably even more challenging conjecture due to Woeginger states that
the integrality gap

gap(N) = v′(N)− v(N)

is bounded by a constant. Until now, this has only been verified for item sizes
> 1/3 (cf. Lemma 3). It would be interesting to investigate the case of item sizes
ai > 1/4. The largest gap found (cf. [12]) so far is gap(N) ≈ 1/3, for a game
with 6 bins and 18 items.
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