
ar
X

iv
:1

30
3.

62
00

v1
 [

cs
.G

T
]

 2
5

M
ar

 2
01

3

How to Schedule the Marketing of Products with

Negative Externalities ∗

Zhigang Cao Xujin Chen Changjun Wang

Academy of Mathematics and Systems Science

Chinese Academy of Sciences, Beijing 100190, China

{zhigangcao,xchen,wcj}@amss.ac.cn

Abstract

In marketing products with negative externalities, a schedule which specifies an order of consumer
purchase decisions is crucial, since in the social network of consumers, the decision of each consumer
is negatively affected by the choices of her neighbors. In this paper, we study the problems of finding
a marketing schedule for two asymmetric products with negative externalites. The goals are two-fold:
maximizing the sale of one product and ensuring regret-free purchase decisions. We show that the
maximization is NP-hard, and provide efficient algorithms with satisfactory performance guarantees.
Two of these algorithms give regret-proof schedules, i.e. they reach Nash equilibria where no consumers
regret their previous decisions. Our work is the first attempt to address these marketing problems from
an algorithmic point of view.

Keywords: Negative externality, Social network, Nash equilibrium, Efficient algorithm, Marketing schedule

1 Introduction

The total value of any (consumer) product can be roughly classified into three parts: physical value, emotional
value, and social value [11]. With the fast development of economy, the basic physical needs of more and more
consumers are easily met. Consequently, people increasingly shift their attention to emotional and social
values when they consider whether to buy a product. In particular, the social value, whose amount is not
determined by what a consumer consumes alone or how she personally enjoys it, but by the comparisons with
what other people around her consume, is becoming a more and more crucial ingredient for both consumer
purchase and therefore seller marketing. For many products, whether they will be welcome depends mainly
on how much social value they can provide to the consumers. This is especially true for fashionable and
luxury goods, where the products often exhibit negative (consumption) externalities – they become less
valuable as more people use them [1, 9].

The comparison that a consumer makes, for calculating the social value of a product, is naturally restricted
to her neighbors in the social network. For a consumer, the social value of a product with negative externality
is often proportional to the number of her neighbors who do not consume this product [9]. In the market, the
purchase decisions of a consumer often depend on the values of the products at the time they are promoted
– the product of larger value will be selected. In contrast to the physical and emotional values, which are
relatively fixed, the social values of products vary with different marketing schedules. The goal of this paper
is to design good marketing schedules for promoting products with negative externalities in social networks.

∗Supported in part by NNSF of China under Grant No. 11222109, 11021161, 10928102 and 71101140, 973 Project of China

under Grant No. 2011CB80800 and 2010CB731405, and CAS under Grant No. kjcx-yw-s7.

1

http://arxiv.org/abs/1303.6200v1

Motivation and related work Our study is motivated by the practical marketing problem concerning
how to bring the products to consumers’ attention over time. Among a large literature on diffusion of compet-
ing products or opinions in social networks (see e.g., [2, 7, 8] and references therein), Chierichetti, Kleinberg
and Pancones [7] recently studied the scheduling aspect of the diffusion problem on two products – finding
an order of consumer purchase decision making to maximize the adoption of one product. In their model,
the two competing products both have positive (consumption) externalities and every consumer follows the
majority of her social network neighbors when the externalities outweigh her own internal preference. The
authors [7] provided an algorithm that ensures an expected linear number of favorable decisions.

The network-related consumption externalities have been classified into four categories [6]. Comparing
to the other three, the negative cross-consumer externality, as considered in this paper, has been far less
studied [1, 9], and was emphasized for its importance in management and marketing nowdays [6].

The model studied in this paper can also be taken as an extension of one side of the fashion game,
which was formulated by Jackson [10]. Very interestingly, people often have quite different, in fact almost
opposite, opinions on what is fashionable, e.g., “Lady Gaga is Godness of fashion” vs “This year’s fashion
color is black”. Following Jackson, we call consumers holding the former “personality reflection” idea of
fashion rebels and the latter “prevailing style” idea conformists. More generally, a consumer behaves like
a rebel (conformist) if the product, from her point of view, has negative (positive) externality. In an era
emphasizing personal identities, more and more consumers would like to be rebels. For example, they would
prefer Asian-style pants, when seeing many friends and colleagues (their social network neighbors) wearing
European-style. However, the rebel social network is still under-researched in comparison with vast literature
on conformist social networks. For a market where all the consumers are rebels, as considered in this paper,
it has been previously studied by several papers under the term of anti-coordination [4, 5].

Model formulation The market is represented by a social network G = (V,E), an undirected graph with
node set V consisting of n consumers and link set E of m connections between consumers. A seller has two
(types of) products Y and N with similar functions. We abuse notations by using Y and N to denote both
types and products.

The marketing is done sequentially: The seller is able to ask the consumers one by one whether they are
more interested in Y or in N . Each consumer buys (chooses) exactly one of Y and N , whichever provides her
a larger total value, only at the time she is asked. This is a simplification of the so called precision marketing
[13]. For every consumer, a product of type T ∈ {Y,N} provides her with total value p

T
+s

T
(x

T
), where p

T

is the sum of physical and emotional values, and s
T
(x

T
) is the social value determined by decreasing function

s
T
(·) and the number x

T
of her neighbors who have bought product T . We assume that Y is very similar to N

with p
Y
> p

N
and the externality outweighs the physical and emotional difference, i.e., for any permutation

T ,F of Y,N and any nonnegative integers x, y (x < y) we have s
T
(x)− s

F
(x) < p

Y
− p

N
< s

T
(x)− s

F
(y).

Actually, the above model can be summarized as the following scheduling problems on rebel social
networks.

Rebels. Every consumer is a rebel who, at her turn to choose from {Y,N}, will buy the product different
from the one currently possessed by the majority of her neighbors. If there are equal numbers of neighbors
having bought Y and N respectively, the consumer will always buy Y.
Scheduling. A (marketing) schedule π, for network G is an ordering of consumers in V which specifies the
order π(v) ∈ {1, 2, . . . , n} of consumer v ∈ V being asked to buy (choose) Y or N , or “being scheduled” for
short. We refer to the problem of finding a schedule for a rebel social network as the rebel scheduling problem.
Given schedule π, the choice (purchase decision) of each consumer v under π is uniquely determined, and
we denote it by π[v], which belongs to {Y,N}. The decisions of all consumers form the marketing outcome
(π[v] : v ∈ V) of π. The basic goal of the rebel scheduling problem is to find a schedule whose outcome
contains Y (resp. N) decisions as many as possible because Y (resp. N) is more profitable for the seller.

Equilibrium. As seen above, the value of a product changes as the marketing proceeds. Every schedule
corresponds to a dynamic game among consumers. We assume that consumers behave naively without
predictions. A natural question is: Can these simple behaviors (or equivalently, a schedule) eventually

2

lead to a Nash equilibrium – a state where no consumer regrets her previous decision? This question is of
both theoretical and practical interests. Schedules that lead to Nash equilibria are called regret-proof; they
guarantee high consumer satisfaction, which is beneficial to the seller’s future marketing.

Results and contribution We prove that it is NP-hard to find a marketing schedule that maximizes the
number of Y (resp. N) decisions. Complementary to the NP-hardness, we design O(n2)-time algorithms for
finding schedules that guarantee at least n/2 decisions of Y, and at least n/3 decisions of N , respectively.
The numbers n/2 and n/3 are best possible for any algorithm. Let α denote the size of maximum inde-
pendent set of G. We show that regret-proof schedules that guarantee at least n/2 decisions of Y and at
least max{

√
n+ 1 − 1, (n − α)/2} decisions of N , respectively, can be found in time O(mn2). In contrast,

decentralized consumer choices without a schedule might result in an arbitrarily worse outcome. This can
be seen from the star network, where in the worst case only one consumer chooses the product consistent
with the seller’s objective.

To the best of our knowledge, this paper is the first attempt to address the scheduling problems for
marketing products with negative externalities (i.e marketing in rebel social networks). Our algorithms for
maximizing the number of Y decisions can be extended to deal with the case of promoting one product where
Y and N are interpreted as buying and not buying, respectively.

2 Maximization

We study the rebel scheduling problem to maximize seller’s profits in Subsections 2.1 and 2.2, respectively,
for the cases of Y and N having higher net profits.

Throughout we consider G = (V,E) a connected rebel social network for which we have n = O(m). All
results can be extended to any network without isolated nodes. Let π be a schedule for G, and u, v ∈ V . We
say that π schedules v ∈ V with decision π[v] ∈ {Y,N}, and π schedules u before v if π(u) < π(v).

2.1 When Y is more profitable

It is desirable to find an optimal schedule that maximizes the number of consumers purchasing Y. Although
this turns out to be a very hard task (Theorem 2.1), we can guarantee that at least half of the consumers
choose Y (Theorem 2.2).

Theorem 2.1. The rebel scheduling problem for maximizing the number of Y decisions is NP-hard.

Proof. We prove by reduction from the maximum independent set problem. Given any instance of the
maximum independent set problem on connected graph H = (N,F), by adding some pendant nodes to H
we construct in polynomial time a network G (an instance of the rebel scheduling problem): For each node
u ∈ N with degree d(u) in H , we add a set Pu of d(u) nodes, and connect each of them to u. The resulting
network G = (V,E) is specified by V := N ∪ (∪u∈NPu) and E := F ∪ (∪u∈N{up : p ∈ Pu}), where each node
in V \N = ∪u∈NPu is pendant, and each node u ∈ N is non-pendant and has exactly 2d(u) neighbors: half
of them are non-pendant nodes in N and the other half are the d(u) pendant nodes in Pu.

We associate every schedule π for G with an integer θ(π), equal to the number of pendant nodes which
are scheduled (by π) after their unique neighbors. Clearly

θ(π) ≤ |V \N | = 2|F | for any schedule π of G. (2.1)

Claim 1. For any u ∈ N and any schedule π of G, if π schedules all nodes in Pu ∪ {u} with Y, then (all the
d(u) pendant neighbors of u in Pu have to be scheduled before u with decisions Y, therefore) all the d(u)
non-pendant neighbors of u have to be scheduled with N before u is scheduled.

Consider π being an optimal schedule for G. If θ(π) = 0, then π schedules all pendant nodes before their
neighbors, and hence all of these pendant nodes choose Y. It follows from Claim 1 that {v ∈ N : π[v] = Y}
is an independent set of H . Since π is optimal, the independence set is maximum in H . Thus, in view of
(2.1), to prove the theorem, it suffices to show the following.

3

Claim 2. Given an optimal schedule π for G with θ(π) > 0, another optimal schedule π′ for G with θ(π′) <
θ(π) can be found in polynomial time.

Since θ(π) > 0, we can take w ∈ N to be the last non-pendant node scheduled by π earlier than some
of its pendant neighbors. Under π, let P ′

w (∅ 6= P ′
w ⊆ Pw) be the set of all pendant neighbors of w that

are scheduled after w, let U be the set of non-pendant nodes scheduled after w, and let PU be the set of
the pendant nodes whose (non-pendant) neighbors belong to U (possibly U = ∅ = PU). The choice of w
implies that π schedules every node in PU before its neighbor. Without loss of generality we may assume
that under π,

• (Pendant) nodes in PU are scheduled before all other nodes (with Y).
• (Pendant) nodes in P ′

w are scheduled immediately after w one by one.

• (Non-pendant) nodes in U are scheduled at last.

If π schedules w with N , then at later time it schedules all pendant nodes in P ′
w with Y. Another optimal

schedule π′ (for G) with the same outcome as π can be constructed as follows: π′ schedules nodes in P ′
w

first, and then schedules other nodes of V in a relative order the same as π. Clearly, π′ with θ(π′) ≤ θ(π)− 1
is the desired schedule. It remains to consider the case where π schedules w with

π[w] = Y. (2.2)

It follows that π[p] = N for all p ∈ P ′
w. Let π′ be the schedule that first schedules nodes of V \ {w} in a

relative order the same as π, and schedules w finally. It is clear that θ(π′) ≤ θ(π) − 1 and π′[p] = Y for all
p ∈ P ′

w. We only need to show that π′ is optimal.
Observe that π′ first schedules every v ∈ V satisfying π(v) < π(w) with the same decision as in π

(particularly, all nodes in PU are scheduled with Y). Subsequently, π′ schedules nodes in P ′
w and U in the

same relative order as π Finally π′ schedules w. Since all pendant nodes in P ′
w (6= ∅) are scheduled by π′

with Y, and by π with N the optimality of π′ would follow if π′ schedules every node of U with the same
decision as π.

Suppose it were not the case. Let u ∈ U ⊆ N be the earliest node in U scheduled by π′ with a decision
π′[u] different from π[u]. It must be the case that w is a non-pendant neighbor of u and π[w] 6= π[u]. At the
time π′ schedules u, all pendant neighbors of u in Pu ⊆ PU have been scheduled with Y and the non-pendant
neighbor w has not been scheduled, it follows from Claim 1 that π′[u] = N . As π[u] 6= π′[u] and π[w] 6= π[u],
we have π[w] = π′[u] = N , a contradiction to (2.2). The optimality of π′ is established, which proves Claim 2
and therefore Theorem 2.1.

We next design an algorithm for finding a schedule that ensures at least n/2 decisions of Y. The algorithm
iteratively constructs a node set A for which there exist two schedules π′ and π′′ scheduling each node in
A with different decisions. In the end, at least half nodes of A can be scheduled by either π′ or π′′ with
Y decisions. Subsequently, the nodes outside A, which form an independent set, will all choose Y (in an
arbitrary order).

Algorithm 1. Input: Network G = (V,E). Output: Partial schedule π for G.

1. Initial setting: A← ∅, t← 1, π′ ← a null schedule

2. While ∃ w ∈ V \ A which has different numbers of neighbors in A choosing Y and N respectively
under π′ do

3. schedule w: π′(w)← t, π′′(w)← t;

A← A ∪ {w}, t← t+ 1

4. End-while

5. If ∃ uv ∈ E with u, v /∈ A

then schedule uv: π′(u)← t, π′(v)← t+ 1, π′′(v)← t, π′′(u)← t+ 1;

A← A ∪ {u, v}, t← t+ 2;

Go back to Step 2.

4

6. Let π be π′ or π′′ whichever schedules more nodes with Y (break tie arbitrarily)

For convenience, we reserve symbol “schedule” for the scheduling (constructing π and π′′) as conducted
at Steps 3 and 5 in Algorithm 1. Similarly, we also say “schedule a node” and “schedule an edge” with the
implicit understanding that the node and the edge satisfy the conditions in Step 2 and Step 5 of Algorithm 1.

Claim 3. π′[v] = Y if and only if π′′[v] = N for all v ∈ A.

Proof. The algorithm enlarges A gradually at Steps 3 and 5, producing a sequence of node sets A0 = ∅,
A1, . . . , Aℓ = A. We prove by induction on k that π′(v) = Y if and only if π′′(v) = N for all v ∈ Ak,
k = 0, 1, . . . , ℓ. The base case of k = 0 is trivial.

Suppose that k ≥ 1 and the statement is true for Ak−1. In case of Ak being produced at Step 2, suppose
w has n1 (resp. n2) neighbors in Ak−1 choosing Y (resp. N) under π′. By hypothesis, w has n1 (resp. n2)
neighbors in Ak−1 choosing N (resp. Y) under π′′. Since n1 6= n2, we see that π′[w] = Y if and only if
π′′[w] = N . In case of Ak being produced at Step 5, both u and v have equal number of neighbors in Ak−1

choosing Y and N , respectively, under π′, due to the implementation of the while-loop at Steps 2–4. By
hypothesis both u and v have equal number of neighbors in Ak−1 choosing Y and N , respectively, under π′′.
It follows from uv ∈ E that π′[u] = π′′[v] = Y and π′[v] = π′′[u] = N . In either case, the statement is true
for Ak, proving the claim.

Claim 4. (i) At least half nodes of A are scheduled by π with Y (by Step 6).

(ii) The nodes in V \A (if any) form an independent set of G (by Step 5).

(iii) Each node in V \ A has an equal number of neighbors in A choosing Y and N , respectively, under π′

(by Steps 2–4), and under π′′ (by Claim 3), and hence under π (by Step 6).

Theorem 2.2. A schedule that ensures at least n/2 decisions of Y can be found in O(n2) time.

Proof. It follows from Claim 4(ii) and (iii) that π can be extended to a schedule for G such that all node in
V \A choose Y. By Claim 4(i), the outcome contains at least n/2 decisions of Y.

Next we show the time complexity. Algorithm 1 keeps an n× 2 array [δv, δ
′
v], v ∈ V , where δv represents

the difference between the numbers of neighbors of node v in A choosing Y and N , and δ′v represents the
number of neighbors of node v in V \ A. The initial setting of the array [δv, δ

′
v] = [0, the degree of v in G],

v ∈ V , takes O(n2) time. Step 1 is to find a node w /∈ A with δw 6= 0 by visiting δv, v ∈ V \ A. Step 5 is
to find a node u ∈ V \ A with δ′u ≥ 1 and then find a neighbor u ∈ V \ A of v. The search in both Steps
2 and 5 takes O(n) time. Each time Algorithm 1 adds a node v to A, the algorithm updates the entries of
v’s neighbors in the array, which takes O(n) time. Since we can add at most n nodes to A, Algorithm 1
terminates in O(n2) time.

The tightness of n/2 in the above theorem can be seen from the case where the network G is a com-
plete graph. Moreover, the theorem implies that Algorithm 1 is a 2-approximation algorithm for the rebel
scheduling problem for maximizing Y decisions.

Remark 2.3. It is worth noting that Algorithm 1 can be used to solve the scheduling problem when only one
product is promoted, where a consumer buys the product only if at least a half of her neighbors do not have
the product. Given a schedule π output by Algorithm 1, π specifies an order of consumers who choose Y.
All these consumers will buy the product if the seller promotes the product to them according to this order.

2.2 When N is more profitable

In this subsection, the marketing scheduling is to maximize the number of N decisions. By reduction from
the bounded occurrence MAX-2SAT problem (see Appendix A), we obtain the following NP-hardness.

Theorem 2.4. The rebel scheduling problem for maximizing the number of N decisions is NP-hard.

5

Next, we design a 3-approximation algorithm for finding in O(n2) time a schedule which ensures at least
n/3 decisions of N . This is accomplished by a refinement of Algorithm 1 with some preprocessing.

The following terminologies will be used in our discussion. Given a graphH with node set U , let R,S ⊆ U
be two node subsets. We say that R dominates S if every node in S has at least a neighbor in R. We use
H \R to denote the graph obtained from H by deleting all nodes in R (as well as their incident links). Thus
H \R is the subgraph of H induced by U \R, which we also denote as H [U \R].

Preprocessing. Given a connected social network G = (V,E), let X be any maximal independent set of
G. It is clear that

• X and Y := V \X are disjoint node sets dominating each other.

We will partition X into X1, . . . , Xℓ and Y into Y0, Y1, . . . , Yℓ for some positive integer ℓ such that Algorithm
1 schedules Xi ∪ Yi before Xi−1 ∪ Yi−1 for all i = ℓ, ℓ− 1, . . . , 2.

• Set G0 = G and X0 = ∅. Find Y0 ⊆ Y such that Y \ Y0 is a minimal set that dominates X \X0 (= X)
in graph G0.

• Set graph G1 := G \ (X0 ∪ Y0) = G[(X \X0) ∪ (Y \ Y0)].

The minimality of Y \ Y0 implies that in graph G1 every node in Y \ Y0 is adjacent to at least one pendant
node in X \X0.

• Let X1 ⊆ X \X0 consist of all pendant nodes of G1 contained in X \X0.

If X \ (X0 ∪X1) 6= ∅, then Y \ Y0 still dominates X \ (X0 ∪X1), and we repeat the above process with G1,
X \X0, Y \ Y0 in place of G0, X , Y , respectively, and produce Y1, G2, X2 in place of Y0, G1, X1.

Inductively, for i = 1, 2, . . ., given graph Gi = G\∪i−1
j=0(Xj ∪Yj) = G[(X \∪i−1

j=0Xj)∪ (Y \∪i−1
j=0Yj)], where

Y \ ∪i−1
j=0Yj is a minimal set dominating X \ ∪i−1

j=1Xj, and Xi the set of all pendant nodes of Gi contained in

X \ ∪i−1
j=0Xj , when X \ ∪ij=0Xj 6= ∅, we can

• Find Yi ⊆ (Y \∪i−1
j=0Yj) such that Y \∪ij=0Yj is a minimal set that dominates X \∪ij=0Xj in graph Gi.

• Set graph Gi+1 := G \ ∪ij=1(Xj ∪ Yj) = G[(X \ ∪ij=0Xj) ∪ (Y \ ∪ij=0Yj)].

• Let Xi+1 ⊆ X \ ∪ij=0Xj consist of all pendant nodes of Gi+1 that are contained in X \ ∪ij=0Xj.

The procedure terminates at i = ℓ for which we have X \ ∪ℓj=0Xj = ∅, and

Gi = G[(∪ℓj=iYj)
⋃
(∪ℓj=iXj)] for i = 0, 1, . . . , ℓ; in particular G0 = G.

Note that Gi ⊆ Gi−1 for i = ℓ, ℓ − 1, . . . , 1, Y \ Y0 is the disjoint union of Y1, . . . , Yℓ, and X is the disjoint
union of X1, . . . , Xℓ. The minimality of ∪ℓj=iYj = Y \ ∪i−1

j=0Yj implies that in graph Gi every node in ∪ℓj=iYj

is adjacent to at least one pendant node in Xi.

Claim 5. For any i = ℓ, ℓ− 1, . . . , 1, in the subgraph Gi, all nodes in Xi are pendant, and every node in Yi

is adjacent to at least one node in Xi.

Refinement. Next we show that Algorithm 1 can be implemented in a way that all nodes of subgraph G1

are scheduled. If the implementation has led to at least n/3 decisions of N , we are done; otherwise, due to
the maximality of the independent set X , we can easily find another schedule that makes at least n/3 nodes
choose N .

Algorithm 2. Input: Network G = (V,E) together with Gj , Xj , Yj, j = 0, 1, . . . , ℓ. Output: Partial schedule
π for G.

1. Initial setting: A← ∅
2. For i = ℓ downto 0 do

3. While in the subgraph Gi, ∃ w ∈ (Xi ∪ Yi) \A which has different numbers

of neighbors in A choosing Y and N respectively do

6

4. schedule w; A← A ∪ {w}
5. End-while

6. If ∃ edge uv of Gi with u, v /∈ A

7. then schedule uv; A← A ∪ {u, v}; Go back to Step 3.

8. End-for

9. Let π be a schedule for G[A] that schedules at least 1
2 |A| nodes with N

The validity of Step 9 is guaranteed by Claim 3. Since X ∩ Y0 = ∅, the following claim implies X ⊆ A.

Claim 6. V \A ⊆ Y0.

Proof. We only need to show that each node w ∈ Xk ∪ Yk (k = 1, 2, · · · , ℓ) is selected to A when i = k in
Algorithm 2.

In case of w ∈ Xk, it is pendant and has only one neighbor u in subgraph Gk. If u ∈ A when w is checked
at Step 3, then w is selected to A at Step 4; Otherwise, w and u will be selected to A at the same time in
Step 7.

In case of w ∈ Yk, by Claim 5, w is adjacent to a pendant node v ∈ Xk of Gk. If, when checked at Step
3, w has different numbers of neighbors in A choosing Y and N , then it is selected to A at Step 4; otherwise,
node v must have not been selected to A, and subsequently w and v are put into A together at Step 7.

If |A| > 2n/3, then, by extending partial schedule π output by Algorithm 2, we obtain a schedule which
makes at least n/3 nodes choose N . Otherwise, |V \A| ≥ n/3, and all nodes in V \A can be scheduled with
N as follows: Schedule firstly the nodes in the maximal independent set X (all of them choose Y); secondly
the nodes in V \A, and finally all the other nodes. Recall that X dominates every node in Y ⊇ Y0. It follows
from Claim 6 that X dominates V \A. As V \A is an independent set in G (by Claim 4(ii)), the decisions
of all nodes in V \ A are N . We show in Appendix B that Algorithm 2 runs in square time, which implies
the following.

Theorem 2.5. A schedule that ensures at least n/3 decisions of N can be found in O(n2) time.

The tightness of n/3 can be seen from a number of disjoint triangles linked by a path, where each triangle
has exactly two nodes of degree two.

3 Regret-proof schedules

We are to find regret-proof schedules, where every consumer, given the choices of other consumers in the
outcome of the schedule, would prefer the product she bought to the other. Using link cuts as a tool, we
design algorithms for finding regret-proof schedules that ensure at least n/2 decisions of Y and at least√
n+ 1− 1 decisions of N , respectively.

3.1 Stable cuts

Given G = (V,E), let R and S be two disjoint subsets of V . We use [R,S] to denote the set of links (in
E) with one end in R and the other in S. If R ∪ S = V , we call [R,S] a link cut or simply a cut. For a
node v ∈ V , we use dS(v) to denote the number of neighbors of v contained in S. Each schedule π for G is
associated with a cut [S1, S2] of G defined by its outcome: S1 (resp. S2) is the set of consumers scheduled
with Y (resp. N). A schedule π is regret-proof if and only if its associated cut [S1, S2] is stable, i.e., satisfies
the following conditions:

dS2(v) ≥ dS1(v) for any v ∈ S1, and dS1(v) > dS2(v) for any v ∈ S2. (3.1)

Note that S1 and S2 are asymmetric. For clarity, we call S1 the leading set of cut [S1, S2]. Any node that
violates (3.1) is called violating (w.r.t. [S1, S2]).

7

A basic operation in our algorithms is “enlarging” unstable cuts by moving “violating” nodes from one
side to the other. Let [S1, S2] be an unstable cut of G for which some v ∈ Si (i = 1 or 2) is violating. We
define type-i move of v (from Si to S3−i) to be the setting: Si ← Si \ {v}, S3−i ← S3−i ∪{v}, which changes
the cut. The violation of (3.1) implies

(M1) type-1 move increases the cut size, and downsizes the leading set;

(M2) type-2 move does not decrease the cut size, and enlarges the leading set.

Both types of moves are collectively called moves. Note that moves are only defined for violating nodes,
and the cut size |[S1, S2]| is nondecreasing under moves. To find a stable cut, our algorithms work with a
cut [S1, S2] of G and change it by moves sequentially. By (M1) and (M2), the number m1 of type-1 moves
is O(m). Moreover, we have the following observation.

Lemma 3.1. (i) From any given cut of size s, O(m1 + n) moves produce a stable cut (i.e., a cut without
violating nodes) of of size at least s+m1.

(ii) If the leading set of the stable cut produced is smaller than that of the given cut, then the number of
type-2 moves is smaller than that of type-1 moves.

As a byproduct of (M1) and (M2), one can easily deduce that the rebel game on a network, where each
rebel switches between two choices in favor of the minority choice of her neighbors, is a potential game and
thus possesses a Nash equilibrium. The potential function is defined as the size of the cut between the rebels
holding different choices.

The following data structure is employed for efficiently identifying violations as well as verifying the
stability of the cut. For given cut [S1, S2], we create in O(m) time a 2-dimensional array (i(v),∆(v)), v ∈ V ,
of length n, where i(v) ∈ {1, 2} is the set index satisfying Si(v) ∋ v, and ∆(v) = dS3−i(v)

(v) − dSi(v)
(v)

together with i(v) is the indicator of whether v is violating. A node v is violating if and only if ∆(v) < 0
when i(v) = 1 or ∆(v) ≤ 0 when i(v) = 2. Therefore, in O(n) time we can find a violating node v (if any) and
move it. After the move, we update the array (to be the one for the current cut) in O(n) time by modifying
the entries corresponding to v and its neighbors. Without consideration of the O(m) time creation of the
array, we have the following lemma.

Lemma 3.2. In O(n) time, either the current cut is verified to be stable, or a move is found and conducted.

The following procedure, as a subroutine of our algorithm, finds a stable cut whose leading set contains
at least half nodes of G.

Procedure 1. Input: Cut [S1, S2] of G. Output: Stable cut [T1, T2] := Prc1(S1, S2)

1. Repeat

2. If |S1| < n/2 then [S1, S2]← [S2, S1] // swap S1 and S2

3. While ∃ violating node v w.r.t. [S1, S2] do move v // [S1, S2] is changing

4. Until |S1| ≥ n/2

5. Return [T1, T2]← [S1, S2]

Lemma 3.3. Procedure 1 produces in O(tn+n2) time a stable cut [T1, T2] of G such that |T1| ≥ n/2, where
t = |[T1, T2]| − |[S1, S2]| ≥ 0.

Proof. It follows from Lemma 3.1(i) that there are a number m′
1 (≤ m) of type-1 moves in total, and

|[T1, T2]| ≥ |[S1, S2]|+m′
1. By Lemma 3.2, it suffices to show that there are a total of O(m′

1 + n) moves.
Observe from Step 2 that each (implementation) of the while-loop at Step 3 starts with a cut whose

leading set has at least n/2 nodes. If this while-loop ends with a smaller leading set, by Lemma 3.1(ii)
it must be the case that the while-loop conducts type-1 moves more times than conducting type-2 moves.
Therefore after O(m′

1) moves, the procedure either terminates, or implements a while-loop that ends with a
leading set S1 not smaller than one at the beginning of the while-loop. In the latter case, the until-condition
at Step 4 is satisfied, and the procedure terminates. The number of moves conducted by the last while-loop
is O(m′

1 + n) as implied by Lemma 3.1(i).

8

3.2 Y-preferred schedules

When Y is more profitable, the basic idea behind our algorithms for finding regret-proof schedules goes as
follows: Given a stable cut [S1, S2], we try to schedule nodes in S1 with Y and nodes in S2 with N whenever
possible. If not all nodes can be scheduled this way, we obtain another stable cut of larger size, from which
we repeat the process. In the following pseudo-code description, scheduling an unscheduled node changes the
node to be scheduled.

Algorithm 3. Input: Cut [R1, R2] of network G. Output: A schedule for G

1. Initial setting: D1 ← Y, D2 ← N ; Ti ← ∅, S′
i ← Ri \ Ti (i = 1, 2)

2. Repeat

3. [S1, S2]← Prc1(S′
1 ∪ T2, S

′
2 ∪ T1) // |[S1, S2]| ≥ |[S′

1 ∪ T2, S
′
2 ∪ T1]|

4. Set all nodes of G to be unscheduled

5. While ∃ unscheduled v∈Si (i∈{1, 2}) whose decision is Di do schedule v

6. Ti ← {scheduled nodes with decision Di}, S′
i ← Si \ Ti (i = 1, 2) //Ti ⊆ Si

7. Until S′
1 = ∅ // Until all nodes of G are scheduled

8. Output the final schedule for G

Note that cuts [S1, S2] returned by Procedure 1 at Step 3 are stable. At the end of Step 6, if S′
1 = ∅, then

S′
2 = ∅ (otherwise, every node v ∈ S′

2 ⊆ S2 satisfies dS1(v) = dT1(v) ≤ dT2(v) ≤ dS2(v), saying that [S1, S2]
is not stable.) Thus the condition in Step 7 is equivalent to saying “until all nodes of G are scheduled”.

Theorem 3.4. Algorithm 3 finds in O(mn2) time a regret-proof schedule with at least n/2 decisions of Y.

Proof. Consider Step 6 setting S′
1 6= ∅. Since nodes in S′

1 ∪S′
2 cannot be scheduled, we have dT1(v) > dT2(v)

for every v ∈ S′
1 = S1 \ T1 and dT2(v) ≥ dT1(v) for any v ∈ S′

2 = S2 \ T2, which gives

0 <
∑

v∈S′
1

(dT1(v)− dT2(v)) +
∑

v∈S′
2

(dT2(v) − dT1(v))

= (|[S′
1, T1]| − |[S′

1, T2]|) + (|[S′
2, T2]| − |[S′

2, T1]|)
= |[S′

1 ∪ T2, S
′
2 ∪ T1]| − |[S′

1 ∪ T1, S
′
2 ∪ T2]|.

Thus cut [S′
1 ∪T2, S

′
2∪T1] has its size t > |[S′

1 ∪T1, S
′
2∪T2]| = |[S1, S2]|. Subsequently, at Step 3, with input

[S′
1 ∪ T2, S

′
2 ∪ T1], Procedure 1 returns a new cut [S1, S2], of size at least t, which is larger than the old one.

It follows that the repeat-loop can only repeat a number k (≤ m) of times.
By Lemma 3.3, for i = 1, 2, . . . , k, we assume that Procedure 1 in the i-th repetition (of Steps 3–6)

returns in O(tin + n2) time a cut whose size is ti larger than the size of its input. Then
∑k

i=1 ti ≤ m, and
overall Step 3 takes O(

∑k
i=1(tin+n2)) = O(mn2) time. The overall running time follows from the fact that

O(n2) time is enough for finishing a whole while-loop at Step 5.
Note from Lemma 3.3 that the final cut [S1, S2] produced by Procedure 1 is stable and satisfies |S1| ≥ n/2.

Since [S1, S2] is the cut associated with the final schedule output, the theorem is proved.

Similar to Remark 2.3, the output of Algorithm 3 specifies a regret-proof schedule for marketing one
product such that at least a half of consumers buy the product.

9

3.3 N -preferred schedules

The goal of this subsection is to design an algorithm for finding a regret-proof schedule with as many N
decisions as possible. In the following Algorithm 4, we work on a dynamically changing cut [S1, S2] of G
whose size keeps nondecreasing. Our algorithm consists of 2-layer nested repeat-loops.

• Inner loop: From any [S1, S2], by moving violating nodes, we make it stable. Then we try to schedule
nodes in S1 with Y and nodes in S2 with N whenever possible. If not all nodes can be scheduled, we
reset [S1, S2] to be a larger cut, and repeat; otherwise we obtain a schedule with associated cut [S1, S2].

• Outer loop: After obtaining a schedule, we swap S1 and S2, and repeat.

• Termination: We stop when we obtain (consecutively) two schedules whose associated cuts have equal
size.

• Output: Among the obtained schedules, we output the best one with a maximum number ofN decisions

In the following pseudo-code, we use r and s to denote the sizes of cuts associated with the two schedules
we find consecutively. We use K to denote the largest number of N decisions we currently achieve by some
schedule.

Algorithm 4. Input: Network G. Output: A regret-proof schedule for G.

1. D1 ← Y, D2 ← N ; [S1, S2]← any cut of G; s← 0; K ← 0

2. Repeat

3. r ← s; [S1, S2]← [S2, S1] // swap S1 and S2

4. Repeat

5. While ∃ violating node v w.r.t. [S1, S2] do move v //make [S1, S2] stable

6. Set all nodes of G to be unscheduled

7. While ∃ unscheduled v∈Si (i∈{1, 2}) whose decision is Di do schedule v

8. Ti ← {scheduled nodes with decision Di}, S′
i ← Si \ Ti (i = 1, 2) //Ti ⊆ Si

9. If S′
1 6= ∅ then [S1, S2]← [S′

1 ∪ T2, S
′
2 ∪ T1] //reset [S1, S2] to be a larger cut

10. Until S′
1 = ∅ // until all nodes are scheduled

11. If |S2| > K then π ← the current schedule, K ← |S2|
12. s← |[S1, S2]|
13. Until r = s //until Steps 4–10 produce 2 schedules whose associated cut have equal size

14. Output π

Throughout the algorithm, the size of [S1, S2] keeps nondecreasing, and may increase at Step 5 (see
Lemma 3.1) and Step 9. Note that Steps 7 and 8 are exactly Steps 5 and 6 of Algorithm 3. So, as shown in
the proof of Theorem 3.4, the resetting of [S1, S2] at Step 9 increases the cut size.

Lemma 3.5. Algorithm 4 runs in O(mn2) time.

Proof. An implementation of the inner repeat-loop executes Steps 5-9 at mostm times. From the termination
condition at Step 13, we see that the outer repeat-loop runs O(m) times. Furthermore, we may assume that
the algorithm implements Steps 5-9 for a number of ℓ times, where the i-th implementation of Step 5 (resp.
Step 9) increases the cut size by mi (resp. ni), i = 1, 2, . . . , ℓ, such that mi + ni ≥ 1 for i = 1, 2, . . . , ℓ − 1
and mℓ + nℓ = 0. Since

∑ℓ
i=1(mi + ni) ≤ m, we have ℓ = O(m) and

∑ℓ
i=1 mi = O(m). By Claim 3.1(i), all

implementations of Step 5 perform O(
∑ℓ

i=1(mi+n)) = O(m+ ℓn) = O(mn) moves, and thus, by Claim 3.2,
take O(mn2) time. Clearly all implementations of Steps 6–9 finish in O(ℓn2) = O(mn2) time. The overall
implementation time of other steps is O(mn).

10

Performance. Let r∗ ≥ 1 denote the final common value of r and s in Algorithm 4. It is easy to see that
the algorithm implements Step 5 at least twice (as otherwise, r∗ = 0). Let Wℓ−1 (resp. Wℓ) denote the
second-last (resp. last) implementation of (the while-loop at) Step 5. Let [K1,K2] and [L1, L2] denote the
cuts [S1, S2] at the end of Wℓ−1 and Wℓ, respectively. It follows that both [K1,K2] and [L1, L2] are stable,
and r∗ ≤ |[K1,K2]| ≤ |[L1, L2]| = r∗. Therefore [K1,K2]| = |[L1, L2]| = r∗, implying that between Wℓ−1

and Wℓ, no implementation of Step 9 increases the cut size. After Wℓ−1, the algorithm does not change the
cut [S1, S2] = [K1,K2] (i.e., it schedules all nodes of K1 with Y, and all nodes of K2 with N) until it swaps
S1 and S2 at Step 3. Subsequently, Wℓ starts with

[S1, S2] = [K2,K1], where [S2, S1] = [K1,K2] is stable. (3.2)

Since Wℓ does not increase the cut size, any violating node v satisfies dS1(v) = dS2(v) at the time it is moved.
Therefore, recalling (3.1), the moves conducted by Wℓ (if any) are type-2 ones, which move nodes from S2

to S1. Let T (⊆ K1) denote the set of all these nodes moved. It is clear that V is the disjoint union of K2,
L2 and T such that

[K2,K1] = [K2, L2 ∪ T] and [L1, L2] = [K2 ∪ T, L2]. (3.3)

After Wℓ, the algorithm schedules all nodes of L1 with Y and all nodes of L2 with N , finishing the last run
of the inner repeat-loop.

Claim 7. If T 6= ∅, then T is an independent set of graph G, and dL1(v) = dL2(v) ≥ 1 holds for every v ∈ T .

Proof. Suppose on the contrary that two nodes x, y ∈ T are adjacent, and the while-loop Wℓ moves x
earlier than moving y (from S2 to S1). By (3.2), at the beginning of Wℓ, cut [S2, S1] is stable. Therefore
dS2(v) ≤ dS1(v) holds for all v ∈ S2 at any time of this while-loop. At the time Wℓ considers y, node x
has been moved to S1 and dS2(y) = dS1(y). The adjacency of x and y implies that dS2(y) > dS1(y) and
y ∈ S2 hold before x is removed from S2, which is a contradiction. So T is an independent set. It follows
that throughout the while-loop, dS1(v) = dS2(v) holds for any v ∈ T . Moreover, dS2(v) ≥ 1 for any v ∈ T
follows from the fact that G is connected, and T is independent.

Theorem 3.6. Algorithm 4 finds a regret-proof schedule of G that ensures at least max{
√
n+ 1 −1, 12 (n− α)}

decisions of N , where α is the independence number of G.

Proof. Note that the schedule output by the algorithm has its associated cut stable. Thus the algorithm
does output a regret-proof schedule. Suppose the output schedule ensures a number of k decisions of N .
Since the algorithm has scheduled all nodes of K2 (resp. L2) with N , Step 11 guarantees that

k ≥ max{|K2|, |L2|} ≥ (|V | − |T |)/2 ≥ (|V | − α)/2,

as V is the disjoint union of K2, L2, T , and T is either empty or an independent set of G. It remains to prove
k ≥ λ :=

√
n+ 1− 1.

Suppose on the contrary that k < λ, saying |K2| < λ and |L2| < λ. It follows that |[K2, L2]| ≤
|K2| · |L2| ≤ λ2 and |T | = |V \ K1 \ L2| = |V | − |K2| − |L2| > n − 2λ. Notice from Claim 7 that each
node of T is adjacent to at least one node of L2, implying [L2, T] ≥ |T | > n − 2λ. By (3.2) and (3.3), the
stability of [K1,K2] = [L2 ∪ T,K2] implies that every node v ∈ L2 satisfies dK2(v) ≥ dK1(v) ≥ dT (v), giving
[K2, L2] ≥ [T, L2]. Hence λ2 > n− 2λ, implying λ >

√
n+ 1− 1, a contradiction.

4 Conclusion

In this paper, we have studied, from an algorithmic point of view, the marketing schedule problem for
promoting products with negative externalities, aiming at profit maximization (from the seller’s perspective)
and regret-free decisions (from the consumers’ perspective). We have shown that the problem of finding
a schedule with maximum profit is NP-hard and admits constant approximation. We find in strongly

11

polynomial time schedules that lead to regret-free decisions. These regret-proof schedules have satisfactory
performance in terms of profit maximization, while it is left open whether both regret-proof-ness and constant
profit approximation can be guaranteed in case of product N being more profitable.

Our model and results apply to marketing one or two (types of) products with negative externalities in
undirected social networks. An interesting question is what happens when marketing three or more (types
of) products and/or the network is directed.

Acknowledgments. The authors are indebted to Professor Xiaodong Hu for stimulating and helpful
discussions.

References

[1] T. Adachi, Third-degree price discrimination, consumption externalities and social welfare, Economica
72 (2005) 171-178.

[2] K. Apt, E. Markakis, Diffusion in social networks with competing products, In Proc. 4th international
conference on Algorithmic game theory, pp.212-223, 2011

[3] A. Borodin, Y. Filmus, and J. Oren, Threshold models for competitive influence in social networks, In
Proc. 6th International Workshop on Internet and Network Economics, pp.539-550, 2010

[4] Y. Bramoulle, Anti-coordination and social interactions. Games and Economic Behavior, 58 (2007)
30-49.

[5] Z. Cao, X. Yang, A note on anti-coordination and social interactions, Journal of Combinatorial Opti-
mization. 2012, online first, DOI: 10.1007/s10878-012-9486-7

[6] D.M. Chiang, C. Teng, Consumption externalities: review and future research opportunities, Electroinic
Commerce Studies 3 (2005) 15-38.

[7] F. Chierichetti, J. Kleinberg, A. Panconesi, How to schedule a cascade in an arbitrary graph, In Proc.
13th ACM Conference on Electronic Commerce, pp.355-368, 2012

[8] S. Goyal, M. Kearns, Competitive contagion in networks, In Proc. 44th Symposium on Theory of Com-
puting, pp.759-774, 2012.

[9] R.G. Holcombe, R.S. Sobel, Consumption externalities and economic welfare, Eastern Economic Journal
26 (2000)157-170.

[10] M.O. Jackson, Social and economic networks. Princeton University Press, Princeton, NJ, 2008.

[11] N. van Nes, Understanding replacement behaviour and exploring design solutions, in Longer Lasting
Products: Alternatives to the Throwaway Society, T. Cooper (ed), 2010.

[12] C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, Journal of
Computer and System Science 43 (1991) 425-440.

[13] J. Zabin, G. Brebach. Precision Marketing: The New Rules for Attracting, Retaining and Leveraging
Profitable Customers. John Wiley & Sons, Inc., Hoboken, 2004.

12

APPENDIX

A Proof of Theorem 2.4

We prove the NP-hardness of maximizing the number of N decisions by reduction from the 3-OCC-MAX-
2SAT problem. It is a restriction of the MAX-2SAT problem, which, given a collection of disjunctive clauses
of literals, each clause having at most two literals, and each literal occurring in at most three clauses, is
to find a truth assignment to satisfy as many clauses as possible. It is known that 3-OCC-MAX-2SAT is
NP-hard [12].

Construction. Consider any instance I of the 3-OCC-MAX-2SAT problem: N boolean variables x1, x2, . . . ,
xN and M clauses yj = (xj1 ∨ xj2), j = 1, 2, . . . ,M , where xj1, xj2 ∈ {x1, x2, · · · , xN ,¬x1,¬x2, · · · ,¬xN},
j = 1, 2, . . . ,M . We construct an instance G = (V,E) of the rebel scheduling problem in polynomial time
as follows.

• Create a pair of literal nodes xi and ¬xi representing, respectively, variable xi and its negation, i =
1, 2, . . . , N ;

• Create a clause node yj representing clause yj , j = 1, 2, . . . ,M ;

• Link literal node x with clause node y iff literal x occurs in clause y;

• Create a gadget Gi for each pair of literal nodes xi and ¬xi, i = 1, 2, . . . , N (see Fig. 1) as follows: let
L = 10N +M ,

– add four groups of nodes, Ai = {ai1, ai2}, Bi = {bi1, bi2}, Ci = {ci1, ci2, . . . , ci9},Di = {dik1, dik2, . . . , dikL :
k = 1, 2, . . . , 9};

– link xi and ¬xi with all 13 nodes in Ai ∪Bi ∪ Ci;

– link bi1 and bi2 with all nodes in Ci;

– link cik with all nodes in {cik+1, d
i
k1, d

i
k2, . . . , d

i
kL} for k = 1, 2, . . . , 9, where ci10 = ci1.

Clearly, |V | = 2N+M+N(13+9L) = M+(15+9L)N . Clause nodes are not contained in any gadget. Each
literal node is contained in a unique gadget Gi; it has exactly 13 neighbors in Gi, and at most 3 neighbors
outside Gi, which correspond to the clauses containing it. Each node in Ai has exactly two neighbors xi and
¬xi. Each Ci induces a cycle. All nodes in Di are pendant.

Let opt(I) denote the optimal value for the 3-OCC-MAX-2SAT instance I. Let opt(G) denote the
maximum number of N decisions contained in the outcome of a schedule for G. We will prove in Lemmas
A.1 and A.2 that opt(G) = opt(I) + (5 + 9L)N , which establishes Theorem 2.4. Under the optimality, we
will show that the literal nodes with Y decisions in an optimal schedule correspond to TRUE literals in an
optimal truth assignment. The gadget Gi is used to guarantee that exactly one of xi and ¬xi chooses Y.

Schedule. We construct a schedule π for G under which opt(I) clause nodes, N literal nodes and all
N(4 + 9L) nodes in ∪Ni=1Ai ∪Bi ∪Di choose N , which proves the following lemma.

Lemma A.1. opt(G) ≥ opt(I) + (5 + 9L)N.

Proof. Let T be the set of TRUE literals in an optimal truth assignment of I. Then T is an independent
set of literal nodes in G such that for each i = 1, 2, . . . , N , exactly one of xi and ¬xi is contained in T . The
schedule π proceeds in two stages.

In the first stage, π schedules the (literal) nodes in T and then theM clause nodes. Since T is independent,
all its nodes choose Y. Therefore, the opt(I) clause nodes (which correspond to the satisfied clauses) all choose
N .

13

Figure 1: Gadget Gi.

In the second stage, π schedules gadgets one after another in an arbitrary order. For each gadget Gi, let
x be xi or ¬xi whichever belongs to T and thus has chosen Y. Within subnetwork Gi, schedule π proceeds
in five steps. (1) π schedules the nodes in the independent set Ai ∪Bi first; obviously these nodes all choose
N due to their common neighbor x. (2) Then π schedules ci1, c

i
2, . . ., c

i
8 in this order. When ci1 is scheduled,

she has exactly one neighbor choosing Y, i.e., x, and two neighbors choosing N , i.e., bi1, b
i
2. Therefore ci1

chooses Y. Inductively, for k = 2, 3, . . . , 8, given π[cik−1] = Y, when π schedules cik, the node cik has exactly
two neighbors choosing Y (i.e., x, cik−1) and exactly two neighbors choosing N (i.e., bi1, b

i
2), which implies

π[cik] = Y. (3) Next, π schedules ¬x. At that time, inside Gi node ¬x has exactly |Ai ∪ Bi| = 4 neighbors
choosing N and |Ci| − 1 = 8 neighbors choosing Y; outside Gi, node ¬x has at most 3 neighbors. It follows
that ¬x chooses N . (4) Now π schedules ci9. At this time ci9 has exactly three neighbors choosing Y (i.e., x,
ci8, c

i
1) and exactly three neighbors choosing N (i.e., bi1, b

i
2,¬x). Therefore ci9 chooses Y as all other nodes of

Ci do. (5) In the last step, π schedules the nodes in Di, all with decisions N .
Since π schedules each Gi with |Ai| + |Bi| + |{¬x}| + |Di| = 5 + 9L decisions of N , it follows that π

schedules G with opt(I) +N(5 + 9L) decisions of N , establishing the lemma.

Assignment. Let π∗ be a schedule for G that leads to a maximum number opt(G) of N decisions. To
establish the reverse inequality of the one in Lemma A.1, we will construct a truth assignment for I based
on π∗’s schedule of literal node. Notice from Lemma A.1, |V | = M + (15 + 9L)N and L = 10N +M that
opt(G) > N(5 + 9L) = |V | − L.

Claim 8. π∗ schedules all 9N nodes in ∪Ni=1Ci with decision Y, and therefore (by the maximality of opt(G))
schedules all nodes in Di

k after cik with N decisions for any i = 1, 2, . . . , N and k = 1, 2, . . . , 9.

Proof. If π∗ schedules some cik ∈ Ci with decision N , then all the L nodes dik1, d
i
k2, . . . , d

i
kL choose Y under

π∗, a contradiction to opt(G) > |V | − L.

Claim 9. Let T ∗ be the set of literal nodes who choose Y under π∗. For each i = 1, 2, . . . , N , at most one of
xi and ¬xi is contained in T ∗.

14

Proof. Suppose that π∗ schedules some literal node x ∈ {xi,¬xi} with decision Y for some i ∈ {1, 2, . . . , N}.
Note that x has at most 16 neighbors; 9 of them belong to Ci and are scheduled by π∗ with decisions Y (see
Claim 8). It must be the case that π∗ schedules x before the last scheduled node c ∈ Ci. At the time π∗

schedules c, by Claim 8, c has exactly two neighbors in Ci choosing Y, and has no neighbor in Di that has
been scheduled. The other four neighbors of c are x,¬x, b1, b2. It follows from π∗[c] = Y and π∗[x] = Y that
π∗ schedules ¬x, b1 and b2 before c with decision N .

Lemma A.2. opt(G) ≤ opt(I) + (5 + 9L)N .

Proof. By Claim 9, {1, 2, . . . , N} is the disjoint union of two sets K1 and K2 such that π∗ schedules exactly
one of xi and ¬xi with N for every i ∈ K1, and schedules xi and ¬xi with N for every i ∈ K2. Note that
|K1| = |T ∗|, |T ∗|+ |K2| = N and π∗ schedules all nodes in {ai1, ai2 : i ∈ K2} with Y.

Define a truth assignment of I by setting a literal to be TRUE if and only if it belongs to T ∗∪{xi : i ∈ K2}.
Note that any clause node y with decision π∗[y] = N must have a neighbor (which is a literal node) choosing
Y under π∗. This neighbor thus belongs to T ∗. Thus clause y is satisfied by the truth assignment. It follows
that π∗ schedules at most opt(I) clause nodes with N . From Claim 8 we deduce that

opt(G) ≤ |V \ ∪Nj=1Cj \ T ∗ \ {ai1, ai2 : i ∈ K2} \ {yj : j = 1, 2, . . . ,M}|+ opt(I)

= |V | − 9N − |T ∗| − 2|K2| −M + opt(I)

= |V | − 10N − |K2| −M + opt(I).

It follows from |V |=M + (15 + 9L)N that opt(G)≤(5 + 9L)N + opt(I)− |K2|.

B Time complexity in Theorem 2.5

Preprocessing. Initially, we set graph H to be G = (V,E), We find in O(m) time a maximal independent
set X of H , and set Y := V \X .

To find Xi, Yi, i = 0, 1, 2, . . . , ℓ, we will modify H step by step via removing some nodes (together with
their incident links). At any step, we call a node of H an X-node (resp. a Y node) if this node belongs to
X (resp. Y). In H , a Y -node is critical if it is adjacent to a pendant X-node. Any single non-critical node
can be removed from H without destroying the Y -node domination of X-nodes.

Inductively, we consider i = 0, 1, . . . , ℓ in this order. The i-th stage of the process starts with H = Gi

and Yi = ∅. Subsequently,

(i) whenever H has a non-critical Y -node v, we remove v from H , add v to Yi, and update H .

The repetition finishes when all Y -nodes in H are critical. At that time, the i-th stage finishes with

(ii) outputting Yi and Xi+1 the set of pendant nodes;

(iii) removing all nodes of Xi+1 from H , and updates H which gives Gi+1 = H .

Running time. Next we show that all the above ℓ+ 1 stages finish in O(m) time. At the initiation step,
in O(m) time we find the set of pendant X-nodes, and the set of non-critical Y -nodes of H , where H = G.

As our preprocessing proceeds, when we remove a Y -node v from H , we update H by modifying the
adjacency list representation of H , and

• updating the degrees of all X-nodes;

• updating the set of pendant X-nodes (using the degrees updated);

• updating the set of non-critical Y -nodes (using the pendant X-nodes created).

15

These can be done in O(d(v)) time, where d(v) is the degree of v in G. Thus in the whole process, the
removals of Y -nodes and their corresponding update in (i) take O(

∑
v∈Y d(v)) = O(|E|) = O(m) time.

When we remove all pendant X-nodes from H , we update by modifying the adjacency list representation
of H ,

• updating the set of pendant X-nodes (i.e., setting it to be empty);

• updating the set of non-critical Y -nodes (i.e., enlarging it by the unique Y -neighbors of the removed
X-nodes).

Hence throughout removals of pendant X-nodes and their corresponding update in (iii) takes O(|X |) = O(n)
time.

Since throughout the process, we have an updated set of non-critical Y -nodes at hand, at any time,
finding a non-critical node of H takes O(1) time. The overall running time of (i) is O(m), so is that of (iii).
Note that all Xi, Yi, i = 1, 2, . . . , ℓ, are mutually disjoint. Hence, overall, (ii) takes O(n) time. Recall that
X0 = ∅. We have the following results.

Lemma B.1. All Xi and Yi, i = 0, 1, . . . , ℓ can be found in O(m) time.

Since Gi ⊆ Gi−1 for i = ℓ, ℓ− 1, . . . , 1, the refinement of Algorithm 1, stated in Algorithm 2, runs O(n2)
time.

16

	1 Introduction
	2 Maximization
	2.1 When Y is more profitable
	2.2 When N is more profitable

	3 Regret-proof schedules
	3.1 Stable cuts
	3.2 Y-preferred schedules
	3.3 N-preferred schedules

	4 Conclusion
	A Proof of Theorem ??
	B Time complexity in Theorem ??

