Skip to main content

Optimal Stopping Meets Combinatorial Optimization

  • Conference paper
Book cover Computing and Combinatorics (COCOON 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7936))

Included in the following conference series:

  • 1851 Accesses

Abstract

Optimal stopping theory considers the design of online algorithms for stopping a random sequence subject to an optimization criterion. For example, the famous secretary problem asks to identify a stopping rule that maximizes the probability of selecting the maximum element in a sequence presented in uniformly random order. In a similar vein, the prophet inequality of Krengel, Sucheston, and Garling establishes the existence of an online algorithm for selecting one element from a sequence of independent random numbers, such that the expected value of the chosen element is at least half the expectation of the maximum.

A rich set of problems emerges when one combines these models with notions from combinatorial optimization by allowing the algorithm to select multiple elements from the sequence, subject to a combinatorial feasibility constraint on the set selected. A sequence of results during the past ten years have contributed greatly to our understanding of these problems. I will survey some of these developments and their applications to topics in algorithmic game theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kleinberg, R. (2013). Optimal Stopping Meets Combinatorial Optimization. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38768-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38767-8

  • Online ISBN: 978-3-642-38768-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics