Skip to main content

Hitting and Piercing Rectangles Induced by a Point Set

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7936))

Abstract

We consider various hitting and piercing problems for the family of axis-parallel rectangles induced by a point set. Selection Lemmas on induced objects are classical results in discrete geometry that have been well studied and have applications in many geometric problems like weak epsilon nets and slimming Delaunay triangulations. Selection Lemma type results typically bound the maximum number of induced objects that are hit/pierced by a single point. First, we prove an exact result on the strong and the weak variant of the First Selection Lemma for rectangles. We also show bounds for the Second Selection Lemma which improve upon previous bounds when there are near-quadratic number of induced rectangles. Next, we consider the hitting set problem for induced rectangles. This is a special case of the geometric hitting set problem which has been extensively studied. We give efficient algorithms and show exact combinatorial bounds on the hitting set problem for two special classes of induced axis-parallel rectangles. Finally, we show that the minimum hitting set problem for all induced lines is NP-Complete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronov, B., Aurenhammer, F., Hurtado, F., Langerman, S., Rappaport, D., Seara, C., Smorodinsky, S.: Small weak epsilon-nets. Computational Geometry 42(5), 455–462 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aronov, B., Chazelle, B., Edelsbrunner, H.: Points and triangles in the plane and halving planes in space, vol. 6, pp. 435–442 (1991)

    Google Scholar 

  3. Aronov, B., Dulieu, M., Hurtado, F.: Witness (delaunay) graphs. Comput. Geom. 44(6-7), 329–344 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aronov, B., Dulieu, M., Hurtado, F.: Witness gabriel graphs. Computational Geometry (2011)

    Google Scholar 

  5. Aronov, B., Ezra, E., Sharir, M.: Small-size ε-nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39(7), 3248–3282 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ashok, P., Govindarajan, S., Kulkarni, J.: Small strong epsilon nets. In: CCCG, pp. 155–158 (2010)

    Google Scholar 

  7. Bárány, I.: A generalization of carathéodory’s theorem. Discrete Mathematics 40(2-3), 141–152 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Basit, A., Mustafa, N.H., Ray, S., Raza, S.: Hitting simplices with points in ℝ3. Discrete & Computational Geometry 44(3), 637–644 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boros, E., Füredi, Z.: The number of triangles covering the center of an n-set. Geometriae Dedicata 17, 69–77 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, T.: Conflict-free coloring of points with respect to rectangles and approximation algorithms for discrete independent set. In: Proceedings of the 2012 Symposuim on Computational Geometry, pp. 293–302. ACM (2012)

    Google Scholar 

  11. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Hershberger, J., Seidel, R., Sharir, M.: Selecting heavily covered points. SIAM J. Comput. 23(6), 1138–1151 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, X., Pach, J., Szegedy, M., Tardos, G.: Delaunay graphs of point sets in the plane with respect to axis-parallel rectangles. Random Struct. Algorithms 34(1), 11–23 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Czyzowicz, J., Kranakis, E., Urrutia, J.: Dissections, cuts and triangulations. In: CCCG (1999)

    Google Scholar 

  14. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the plane are np-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grant, E., Chan, T.M.: Exact algorithms and apx-hardness results for geometric set cover. In: CCCG (2011)

    Google Scholar 

  17. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and vlsi. J. ACM 32(1), 130–136 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Katchalski, M., Meir, A.: On empty triangles determined by points in the plane. Acta Mathematica Hungarica 51(3-4), 323–328 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lueker, S.: A data structure for orthogonal range queries. In: Proceedings of the 19th Annual Symposium on Foundations of Computer Science, SFCS 1978, pp. 28–34. IEEE Computer Society, Washington, DC (1978)

    Google Scholar 

  20. Matousek, J.: Lectures on Discrete Geometry. Springer (2002)

    Google Scholar 

  21. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Operations Research Letters 1(5), 194–197 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete & Computational Geometry 44(4), 883–895 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rado, R.: A theorem on general measure. Journal of the London Mathematical Society 1(4), 291–300 (1946)

    Article  Google Scholar 

  24. Smorodinsky, S., Sharir, M.: Selecting points that are heavily covered by pseudo-circles, spheres or rectangles. Combinatorics, Probability & Computing 13(3), 389–411 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rajgopal, N., Ashok, P., Govindarajan, S., Khopkar, A., Misra, N. (2013). Hitting and Piercing Rectangles Induced by a Point Set. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38768-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38767-8

  • Online ISBN: 978-3-642-38768-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics