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Abstract

An NP-complete coloring or homomorphism problem may become polynomial time solvable
when restricted to graphs with degrees bounded by a small number, but remain NP-complete
if the bound is higher. For instance, 3-colorability of graphs with degrees bounded by 3 can
be decided by Brooks’ theorem, while for graphs with degrees bounded by 4, the 3-colorability
problem is NP-complete. We investigate an analogous phenomenon for digraphs, focusing on
the three smallest digraphs H with NP-complete H-colorability problems. It turns out that
in all three cases the H-coloring problem is polynomial time solvable for digraphs with degree
bounds ∆+ ≤ 1, ∆− ≤ 2 (or ∆+ ≤ 2, ∆− ≤ 1). On the other hand with degree bounds ∆+ ≤ 2,
∆− ≤ 2, all three problems are again NP-complete. A conjecture proposed for graphs H by
Feder, Hell and Huang states that any variant of the H-coloring problem which is NP-complete
without degree constraints is also NP-complete with degree constraints, provided the degree
bounds are high enough. Our study is the first confirmation that the conjecture may also apply
to digraphs.

1 Introduction

Graph coloring problems arise naturally in several contexts of both theoretical and applied nature.
Be it scheduling events, solving pattern matching problems, or allocating registers to processes,
many constraint satisfaction problems can be easily modeled in the graph coloring setting. A
slightly more general problem is that of H-coloring.

Consider a fixed graph H. A homomorphism f : G → H is a mapping f : V (G) → V (H) such
that f(u)f(v) is an edge of H for each edge uv of G. An H-coloring of G is a homomorphism
G → H. The definition is formally the same for digraphs G,H: since the edges are directed, the
homomorphism f is a mapping that preserves both the edges and their direction.

The H-coloring problem is the decision problem which asks the following question:

Given a graph G, is it possible to H-color G ?

The complexity of the H-coloring problem for graphs H has been widely studied [10]. It is
shown in [9] that the H-coloring problem is polynomial time solvable if H is bipartite or contains
a loop, and is NP-complete otherwise. A number of variants of this basic family of problems have
been considered, and in [8] the authors have set up a framework for these variants. One of the
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Figure 1: The digraphs A,B, and C

parameters in this framework is a restriction to graphs with a given upper bound on the vertex
degrees. For graphs with degrees bounded by 3, some H-coloring problems that are NP-complete in
general, become polynomial time solvable. However, these problems tend to be NP-complete again
when the degree bound is 4. Such is, for instance, the situation with H = K3, i.e. with 3-colorings.
The theorem of Brooks ensures that a connected graph with degrees at most 3, other than K4,
is 3-colorable [3]. Thus 3-colorability of such graphs is decidable in polynomial time. However,
it is known that the 3-colorability of graphs with degrees at most 4 is NP-complete [11]. (Our
results also imply this fact, see Section 4.) Based on additional evidence of this kind, Feder, Hell
and Huang conjectured that any variant of the H-coloring problem which is NP-complete without
degree constraints is also NP-complete with degree constraints, provided the degree bound is high
enough [4].

In contrast, for digraphs H, the boundary between easy and hard H-coloring problems is not
well-understood. Some partial results have been published in [12, 1, 7, 2] and in several other
papers, but it is still not known whether all directed H-coloring problems are polynomial or NP-
complete. This statement is in fact equivalent to the well-known Dichotomy Conjecture of CSP
[5]. Even less is known about the complexity of H-coloring for digraphs with bounded degrees, and
its relation to the conjecture of Feder, Hell, and Huang mentioned above. Of course, K3 can be
viewed as a symmetric digraph, namely the digraph C in Figure 1, and in this context C-coloring of
a digraph G is precisely a 3-coloring of the underlying undirected graph of G. The digraphs A,B,
and C, in Figure 1, are the smallest three digraphs H with NP-complete H-coloring problems. All
other digraphs H with three vertices have polynomial-time solvable H-coloring problems [1, 12].
(All digraphs H with fewer than three vertices have H-coloring problems that can be solved in
polynomial time by 2-SAT [10].) We investigate these first three interesting cases. We confirm that
the H-coloring problems for these three digraphs, H = A,B, and C, are polynomial time solvable
for low degree bounds, and become NP-complete again when the degree bounds are high enough.

Interestingly, we can determine very precisely the highest allowable degrees that ensures the
polynomiality of these problems. Let ∆+ denote the maximum out-degree and ∆− the maximum
in-degree in a digraph. We show that digraphs with ∆+ ≤ 1, ∆− ≤ 2, or with ∆+ ≤ 2, ∆− ≤ 1, have
polynomial time A-coloring, B-coloring, and C-coloring algorithms, but for digraphs with ∆+ ≤ 2,
∆− ≤ 2, all three problems are again NP-complete. The NP-completeness of C-coloring will imply
the theorem of Holyer [11] mentioned earlier.

For the polynomial cases, we provide algorithms for the more general problem of list H-coloring.

2 General Digraphs

In this section, we will present new NP-completeness proofs for the A-coloring, B-coloring, and
C-coloring of general digraphs, i.e. without any degree restrictions. It is a folklore result that these
three problems are NP-complete [1, 12]. The proofs we provide here will facilitate extensions to
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Figure 2: NP-completeness of A-coloring

graphs with bounded degrees.
As is standard in such proofs, we will have a variable gadget for each variable and a clause gadget

for each clause. We will reduce the problem 1-in-3-SAT to the A- and B-coloring problems, i.e.,
for each formula φ produce a graph Gφ in such a way that φ is satisfiable if and only if Gφ has an
H-coloring. For the C-coloring problem, we will show a reduction from the 3-SAT problem.

We begin with A-coloring. We construct a reduction from 1-in-3-SAT as follows. Let φ be a
given 3-CNF formula. Consider the variable gadget U shown in Figure 2(a). For each variable X
in φ, we have one such gadget, with the two endpoints of U corresponding to the variable X and
its negation X.

Figure 2(b) depicts the clause gadget W , for a generic clause Ci = (`∨ `′∨ `′′) with three literals
`, `′, `′′. The vertices `, `′, `′′ are identified with the same literals of the corresponding variable
gadgets, producing a graph Gφ. Note that an endpoint of a variable gadget has an outgoing edge
for each occurence of the corresponding variable (or its negation) in a clause of φ.

The graph A has only one digon, with the vertices 0 and 1. Thus, there are exactly two ways of
A-coloring the variable gadget U , with X colored either 0 or 1 and X colored 1 or 0, respectively,
as depicted in Figure 2(a). The inner 3-cycle of the clause gadet W requires three different colors,
and in fact the colors must appear in the cyclic order 0, 2, 1, as depicted in the figure, up to the
symmetry of W . Consider now the possible colors of the vertices `, `′, `′′ (up to symmetry):

• (0,0,0) : as 00 is not an edge, this would not allow a 0 on the inner cycle;

• (1,1,1) : as 11 is not an edge, this would not allow a 1 on the inner cycle;

• (0,1,1) : as 10 is the only edge from 1, this would force two 0’s on the inner cycle;

• (0,0,1) : Figure 2(c) depicts the unique A-coloring

It follows that in any A-coloring of Gφ, exactly one literal in each clause is colored by 1. Thus if
we assign the value True to the literals colored 1 and value False to the literals colored 0, we obtain
a satisfying truth assignment for φ. Conversely, if we start with a truth assignment and color all
vertices of the variable gadgets 0 if the literal is False and 1 if the literal is True, there is, in each
clause, exactly one literal that is colored 1, and so the above analysis shows that the colors can be
extended to the inner cycles of all the clause gadgets. In conclusion, φ is satisfiable if and only if
Gφ is A-colorable.

Since the A-coloring problem is clearly in NP, we have the following theorem.
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Theorem 1. The A-coloring problem is NP-complete.

A similar analysis applies for B-coloring. The variable gadget V is shown in Figure 3(a). It is
more complex than for A-coloring, but there are still two vertices corresponding to the variable X
and its negation X. It is important to observe that V can be B-colored so that X,X are colored
by 0, 1 or by 1, 0, but no other pair of colors. To see this, note that the vertex lying in the two
adjoining triangles must be colored 1 in any B-coloring of V , thus forcing the colors of the adjoining
triangles of V as depicted in the figure. Therefore, the color of X is either 0 or 1 (since it has an
out-neighbor colored 2). On the other hand, the color of X cannot be 2, since X has two adjacent
out-neighbors. Thus coloring X by 0 forces X to be colored 1 and vice versa, and no other pair of
colors for X,X is possible.

Figure 3(b) depicts the clause gadget Ŵ for Ci = (`∨`′∨`′′) of the 3-CNF formula. This gadget
is similar to the gadget W used for A coloring, except the edges now point away from the center
cycle, into the variable gadgets. In any B-coloring, the inner cycle requires three different colors.
Again, colors in the order of 0, 2, 1, as depicted, give the only B-coloring for such a cycle (up to
symmetry). The vertices `, `′, `′′ are identified with the corresponding literals. They can only be
colored 0 or 1. This again gives rise to four possibilities for the colors of `, `′, `′′ (up to symmetry),
but here only (0,1,1) is a valid choice:

1. (0,0,0) : as 00 is not an edge, this would not allow a 0 on the inner cycle;

2. (1,1,1) : as 11 is not an edge, this would not allow a 1 on the inner cycle;

3. (0,0,1) : as 20 is not an edge, this would force two 1’s on the inner cycle;

4. (0,1,1) : Figure 3(b) depicts the unique B-coloring.

Now, if we assign a truth value of True to the literals that are colored 0, and False to the literals
that are colored 1, we have a satisfying assignment for the 1-in-3-SAT problem, and vice-versa.
Thus, we have the following theorem.

Theorem 2. The B-coloring problem is NP-complete.

Finally, we handle the case of C-coloring.
Recall that a C-coloring of a digraph G is precisely a 3-coloring of the underlying undirected

graph of G. Thus we can use the proof from [6], which constructs a reduction from 3-SAT using
the clause gadget depicted in Figure 4(b). The variable gadget depicted in Figure 4(a), and the
identification of the literals `, `′, `′′ with the same literals of the appropriate clause gadgets of Gφ
are made as before. Assuming the top vertex of the clause gadget is colored 1 as depicted, the
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three vertices labelled `, `′, `′′ (corresponding to the literals) cannot be colored by 0, 0, 0, but can
be colored by any other combination of 0, 1. Now it is easy to see that an instance φ of 3-SAT
is satisfiable if and only if the corresponding digraph Gφ (i.e., its underlying undirected graph) is
3-colorable cf. [6].

Theorem 3. The C-coloring problem is NP-complete.

3 Bounded Degree Digraphs

We observed in the previous section that the A-, B-, and C-coloring problems are NP-complete for
general digraphs. Now, we investigate the same problems restricted to the class of digraphs with
bounded in- and out-degrees.

We begin by presenting a polynomial-time H-coloring algorithm for digraphs H with degrees
∆+ ≤ 2, ∆− ≤ 1, or ∆+ ≤ 1, ∆− ≤ 2.

Let H be any fixed digraph. A digraph G with degrees ∆+ ≤ 2, ∆− ≤ 1, or ∆+ ≤ 1, ∆− ≤ 2 is
either a binary tree or a directed cycle with binary trees attached at vertices of the cycle (see Figure
5(c) illustrating the case ∆+ ≤ 2, ∆− ≤ 1). Oriented cycles and multiple directed cycles in a single
component are not possible since they would violate the degree requirement at some vertex.

As mentioned earlier, we actually solve a more general problem called list H-coloring. To begin
with, let us introduce it formally. Given a fixed digraph H, the problem of list H-coloring is the
following:

Given an input graph G, and for each v ∈ V (G), a list L(v) ⊆ V (H), is there a
homomorphism f : G→ H such that f(v) ∈ L(v) for all vertices v ∈ V (G) ?

We note that by setting all lists L(v) = V (H), we reduce the H-coloring problem to the list
H-coloring problem. Thus, solving the list H-coloring problem in polynomial time also solves the
H-coloring problem in polynomial time.

Algorithm. Arc Consistency is a basic technique from artificial intelligence, useful for solving
list homomorphism problems [10]. In particular, it consists of considering an edge uv of the input
graph G and reducing the lists L(u), L(v) so that for each x ∈ L(u) there exists a y ∈ L(v) with
xy ∈ E(H), and for each z ∈ L(v) there exists a w ∈ L(u) with wz ∈ E(H). This kind of constraint
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Figure 5: Bounded digraphs: ∆+ ≤ 2, ∆− ≤ 1

propagation will make the entire graph arc consistent by repeating this removal as long as possible,
while the lists in G are changing. Since H is fixed, after linearly many updates we obtain final lists
satisfying all these constraints. It is easy to observe that if there is at least one empty final list,
there is no homomorphism from G to H satisfying the original lists.

When G is a tree and the final lists are all non-empty, there is a list homomorphism G → H
satisfying the original lists - simply choose one element from the final list of one fixed vertex and
propagate this choice to all other vertices using the fact that both constraints were satisfied. This
is not true, however, in general. For instance, when H is the 2-cycle with edges 01, 10 and G is a
directed cycle of odd length (see Figure 5(b)) with all lists equal to {0, 1}, then the conditions are
satisfied but there is no homomorphism. If we choose one vertex of the 5-cycle and map it to 0,
say, then the constraints will propagate around the cycle and arrive requiring the choice 1 at the
chosen vertex (and vice versa). However, if at least one vertex of a cycle has a list of size one, the
constraint propagation around the cycle will work properly.

With this knowledge in mind, we propose our list H-coloring algorithm:

1. Run an arc-consistency algorithm over all the edges of G.

2. If some vertex has an empty list after the arc-consistency process, then, there is no list
homomorphism.

3. Else, find an H-coloring for each weak component of G separately.

If the component is a tree, choose one vertex and map it to one member of its list and
propagate this choice to the entire component.

If the component is a directed cycle, choose one vertex u, and consider |L(u)| subproblems,
in which the list L(u) is reduced to a single vertex of H, i.e. for each of the possible L(u)
choices. Perform constraint propagation through the component based on this choice. If at
least one choice leads to a homomorphism, then we have a solution, otherwise there is no
solution.

If the component has a directed cycle with hanging trees, follow the procedure to find a
homomorphism for the directed cycle first. Then, extend it to find a homomorphism for each
of the hanging trees.

Lemma 1. Let H be a fixed digraph. The list H-coloring problem is polynomial time solvable for
digraphs with ∆+ ≤ 2, ∆− ≤ 1, or ∆+ ≤ 1, ∆− ≤ 2.

In particular, this applies to H = A,B,C.
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We now focus on input digraphs with ∆+ ≤ 2, ∆− ≤ 2. In order to prove the NP-completeness
of this bounded degree setting, we need to make modifications to the gadgets used in the unbounded
degree case, as the variable gadgets used in Section 2 could potentially have very high outdegree
or indegree at the literal vertices. So, to keep the degree constraints satisfied, we need to construct
multiple copies of each literal to join the clause gadgets of various clauses in which the literal occurs.
At the same time, we have to ensure that the color assigned to the literal vertex remains same in
all copies, so that we have a consistent truth value assignment.

Lemma 2. The A-coloring problem is NP-complete, even when restricted to digraphs with ∆+ ≤ 2,
∆− ≤ 2.

Consider the variable gadget U used in Figure 2(a). If a literal occurs x times in φ, then the
NP-completeness construction gives the corresponding vertex in U an out-degree of x+1. Therefore,
we shall consider a modified variable gadget U ′, see Figure 6(a), which has multiple copies of each
literal vertex. If X occurs x times in φ, and X occurs x′ times in φ, then we construct U ′ using
digons U1, U2, . . . , Uk, where k = max(x, x′).

As before, in any A-coloring each digon must be colored by 0 and 1. Because of the vertex i1,
the first two copies of X must be colored by the same color, 0 or 1. (Indeed, there is no vertex in
A that has an edge to both 0 and 1.) Similarly, the vertex i2 ensures that the second and third
copy of X are colored by the same color. Repeating this argument we conclude that all vertices
corresponding to X have the same color, and similarly for X. This allows us to apply the previous
proof to a new graph Gφ in which each literal vertex in U ′ is adjacent to at most one clause gadget
W (the same clause gadget as before). Thus Gφ has all in- and out-degrees bounded by 2. It follows
from the above remarks that each A-coloring of Gφ yields a satisfying truth assignment of φ, and
it is also easy to see that any satisfying truth assignment of φ can be extended to an A-coloring of
Gφ.

The analysis is again similar for B-coloring.

Lemma 3. The B-coloring problem is NP-complete, even when restricted to digraphs with ∆+ ≤ 2,
∆− ≤ 2.

In this case, we consider construct Gφ from the modified variable gadget V ′ in Figure 6(b), and
the same clause gadget Ŵ as before. If X occurs x times in φ, and X occurs x′ times in φ, then we
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construct V ′ using triangles V1, V2, . . . , Vk, where k = max(x, x′), allowing for a sufficient number
of copies of X and X to keep the in- and out-degrees bounded by 2. It remains to verify that the
repeated copies of X and X must obtain the same color in any B-coloring of Gφ. As noted earlier,
the third vertex of V1 must be colored 2, and hence the vertex j1 must be colored 1. This means
that the third vertex of V2 is colored 0 or 2; but 0 is not possible as the vertex has in-degree two and
20 is not an edge of B. Thus the third vertex of each Vi is 2. It now follows that in any B-coloring
of V ′ all copies of X (and all copies of X) receive the same color, 0 or 1. Therefore, we can repeat
the previous proof of NP-completeness.

Finally, we discuss C-coloring.

Lemma 4. The C-coloring problem is NP-complete, even when restricted to digraphs with ∆+ ≤ 2,
∆− ≤ 2.

Here, we use the variable gadget depicted in Figure 7(b). It is an orientation of a chain of copies
of K1,1,3, and K1,1,3 is a graph that takes the same color for every vertex of degree two. Thus
assuming the leftmost vertex is colored 2 as depicted, all the vertices corresponding to X and X
are colored by 0 and 1 or 1 and 0 respectively. The overall construction is depicted in Figure 8.
There is a basis triangle from which the construction emanates, and which is assumed to be colored
by 0, 1, 2 as depicted (by renaming the colors if necessary). There is a clause chain (of copies of
K1,1,3) providing us with a sufficient number of vertices colored 1 for each clause Ci of φ. We use
the same clause gadget W ′ as in the unbounded setting. Finally, there is a variable chain (of copies
of K1,1,3) yielding a sufficient number of vertices colored 2 for each variable Xj . The literal vertices
of the clause gadgets are identified with the corresponding literals in the variable chains as before.
It is easy to check that the maximum in- and out-degree is two, and that φ is satisfiable if and only
if Gφ is 3-colorable.

Combining all the results for the restricted setting of bounded degree input graphs, we have our
main theorem.

Theorem 4. Deciding A-, B-, and C-colorability is in P for input digraphs with ∆+ ≤ 2,∆− ≤ 1
or ∆+ ≤ 1,∆− ≤ 2, and is NP-complete for digraphs with ∆+ ≤ 2,∆− ≤ 2.

4 Conclusions

There are three smallest digraphs H with NP-complete H-coloring problems, namely A,B, and C
from Figure 1. We have shown that for all three, the H-coloring problem remains NP-complete if
the in- and out-degrees are bounded from above by 2, but become polynomial-time solvable if either
of these degree bounds is lowered to 1. This suggests that the conjecture of Feder, Hell, and Huang,
claiming that NP-complete coloring problems remain NP-complete even for bounded degree graphs
provided the degree bound is high enough, may also hold for digraphs. This is the first result of this
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type. Moreover, we were successful at delineating very precisely the boundary between the degree
bounds that imply polynomiality and those that do not.

We conclude by noting that our proof implies the following classical result. The proof is exactly
the same as for Lemma 4, except the edges of the gadgets are not oriented.

Theorem 5. [11] The 3-coloring problem is NP-complete even when restricted to graphs with max-
imum degree 4.
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