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Abstract. We investigate the approximation for computing the sum
a1 + · · ·+ an with an input of a list of nonnegative elements a1, · · · , an.
If all elements are in the range [0, 1], there is a randomized algorithm
that can compute an (1+ ǫ)-approximation for the sum problem in time

O(n(log log n)
∑

n

i=1
ai

), where ǫ is a constant in (0, 1). Our randomized algorithm

is based on the uniform random sampling, which selects one element
with equal probability from the input list each time. We also prove a
lower bound Ω( n

∑

n

i=1
ai

), which almost matches the upper bound, for

this problem.
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1 Introduction

Computing the sum of a list of elements has many applications. This problem
can be found in the high school textbooks. In the textbook of calculus, we often
see how to compute the sum of a list of elements, and decide if it converges when
the number of items is infinite. Let ǫ be a real number at least 0. Real number

s is an (1 + ǫ)-approximation for the sum problem a1, a2, · · · , an if

∑

n

i=1
ai

1+ǫ ≤
s ≤ (1 + ǫ)

∑n
i=1 ai. When we have a huge number of data items and need to

compute their sum, an efficient approximation algorithm becomes essential. Due
to the fundamental importance of this problem, looking for the sublinear time
solution for it is an interesting topic of research.

A similar problem is to compute the mean of a list of items a1, a2, · · · , an,
whose mean is defined by a1+a2+···+an

n . Using O( 1
ǫ2 log

1
δ ) random samples, one

can compute the (1 + ǫ)-approximation for the mean, or decides if it is at
most δ [5]. In [3], Canetti, Even, and Goldreich showed that the sample size
is tight. In [6], Motwani, Panigrahy, and Xu showed an O(

√
n) time approx-

imation scheme for computing the sum of n nonnegative elements. A priority
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sampling approach for estimating subsets were studied in [1, 4, 2]. Using differ-
ent cost and application models, they tried to build a sketch so that the sum of
any subset can be computed approximately via the sketch.

We feel the uniform sampling is more justifiable than the weighted sampling.
In this paper, we study the approximation for the sum problem under both
deterministic model and randomized model. In the randomized model, we still
use the uniform random samplings, and show how the time is reversely depend
on the total sum

∑n
i=1 ai. We also prove a lower bound that matches this time

bound. An algorithm of time complexity O(n(log logn)
∑

n

i=1
ai

) for computing a list of

nonnegative elements a1, · · · , an in [0, 1] can be extended to a general list of

nonnegative elements. It implies an algorithm of time complexity O( MC(n)
∑

n

i=1
ai

)

for computing a list of nonnegative elements of size at most M by converting
each ai into

ai

M , which is always in the range [0, 1].

2 Randomized Algorithm for the Sum Problem

In this section, we present a randomized algorithm for computing the approxi-
mate sum of a list of numbers in [0, 1].

2.1 Chernoff Bounds

The analysis of our randomized algorithm often use the well known Chernoff
bounds, which are described below. All proofs of this paper are self-contained
except the following famous theorems in probability theory.

Theorem 1 ([7]). Let X1, . . . , Xn be n independent random 0-1 variables, where
Xi takes 1 with probability pi. Let X =

∑n
i=1 Xi, and µ = E[X ]. Then for any

θ > 0,

1. Pr(X < (1 − θ)µ) < e−
1
2µθ

2

, and

2. Pr(X > (1 + θ)µ) <
[

eθ

(1+θ)(1+θ)

]µ

.

We follow the proof of Theorem 1 to make the following versions (Theorem 3,
and Theorem 2) of Chernoff bound for our algorithm analysis.

Theorem 2. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability at least p for i = 1, . . . , n. Let X =
∑n

i=1 Xi, and

µ = E[X ]. Then for any θ > 0, Pr(X < (1 − θ)pn) < e−
1
2 θ

2pn.

Theorem 3. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability at most p for i = 1, . . . , n. Let X =
∑n

i=1 Xi. Then for

any θ > 0, Pr(X > (1 + θ)pn) <
[

eθ

(1+θ)(1+θ)

]pn

.
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Define g1(θ) = e−
1
2 θ

2

and g2(θ) =
eθ

(1+θ)(1+θ) . Define g(θ) = max(g1(θ), g2(θ)).

We note that g1(θ) and g2(θ) are always strictly less than 1 for all θ > 0. It is
trivial for g1(θ). For g2(θ), this can be verified by checking that the function
f(x) = x− (1 + x) ln(1 + x) is decreasing and f(0) = 0. This is because f ′(x) =
− ln(1+x) which is strictly less than 0 for all x > 0. Thus, g2(θ) is also decreasing,
and less than 1 for all θ > 0.

2.2 A Sublinear Time Algorithm

In this section, we show an algorithm to compute the approximate sum in a
sublinear time in the cases that

∑n
i=1 ai is at least (log logn)

1+ǫ for any constant
ǫ > 0. This is a randomized algorithm with uniform random sampling.

Theorem 4. Let ǫ be a positive constant in (0, 1). There is a sublinear time
algorithm such that given a list of items a1, a2, · · · , an in [0, 1], it gives a (1+ ǫ)-

approximation in the time O(n(log log n)
∑

n

i=1
ai

).

Definition 1.

– For each interval I and a list of items L, define A(I, L) to be the number of
items of L in I.

– For δ, and γ in (0, 1), a (δ, γ)-partition for [0, 1] divides the interval [0, 1]
into intervals I1 = [π1, π0], I2 = [π2, π1), I3 = [π3, π2), . . . , Ik = [0, πk−1)
such that π0 = 1, πi = πi−1(1 − δ) for i = 1, 2, . . . , k − 1, and πk−1 is the
first element πk−1 ≤ γ

n2 .
– For a set A, |A| is the number of elements in A. For a list L of items, |L|

is the number of items in L.

A brief description of the idea is presented before the formal algorithm and its
proof. In order to get an (1 + ǫ)-approximation for the sum of n input numbers
in the list L, a parameter δ is selected with 1 − ǫ

2 ≤ (1 − δ)3. For a (δ, δ)-
partition I1∪I2 . . .∪Ik for [0, 1], Algorithm Approximate-Sum(.) below gives the
estimation for the number of items in each Ij if interval Ij has a sufficient number
of items. Otherwise, those items in Ij can be ignored without affecting much of
the approximation ratio. We have an adaptive way to do random samplings in a
series of phases. Let st denote the number of random samples in phase t. Phase
t + 1 doubles the number of random samples of phase t (st+1 = 2st). Let L be
the input list of items in the range [0, 1]. Let dj be the number items in Ij from
the samples. For each phase, if an interval Ij shows sufficient number of items
from the random samples, the number of items A(Ij , L) in Ij can be sufficiently

approximated by Â(Ij , L) = dj · n
st
. Thus, Â(Ij , L)πj also gives an approximation

for the sum of the sizes of items in Ij . The sum apx sum =
∑

Ij
Â(Ij , L)πj for

those intervals Ij with large number of samples gives an approximation for the
total sum

∑n
i=1 ai of the input list. In the early stages, apx sum is much smaller

than n
st
. Eventually, apx sum will surpass n

st
. This happens when st is more than

n
∑

n

i=1
ai

and apx sum is close to the sum
∑n

i=1 ai of all items from the input list.



4 Bin Fu, Wenfeng Li, and Zhiyong Peng

This indicates that the number of random samples is sufficient for approximation
algorithm. For those intervals with small number of samples, their items only
form a small fraction of the total sum. This process is terminated when ignoring
all those intervals with none or small number of samples does not affect much of
the accuracy of approximation. The algorithm gives up the process of random
sampling when st surpasses n, and switches to use a deterministic way to access
the input list, which happens when the total sum of the sizes of input items is
O(1).

The computation time at each phase i is O(si). If phase t is the last phase,
the total time is O(st+

st
2 + st

22 + · · ·) = O(st), which is close to O( n
∑

n

i=1
ai

). Our

final complexity upper bound is O(n(log logn)
∑

n

i=1
ai

), where log logn factor is caused

by the probability amplification of O(log n) stages and O(log n) intervals of the
(δ, δ) partition in the randomized algorithm.

Algorithm Approximate-Sum(ǫ, α, n, L)
Input: a parameter, a small parameter ǫ ∈ (0, 1), a failure probability upper

bound α, an integer n, a list L of n items a1, . . . , an in [0, 1].
Steps:

1. Phase 0:
2. Select δ = ǫ

6 that satisfies 1− ǫ
2 ≤ (1− δ)3.

3. Let P be a (δ, δ)-partition I1 ∪ I2 . . . ∪ Ik for [0, 1].
4. Let ξ0 be a parameter such that 8(k + 1)(logn)g(δ)(ξ0 log logn)/2 < α for

all large n.
5. Let z := ξ0 log logn.

6. Let parameters c1 := δ2

2(1+δ) , and c2 := 12ξ0
(1−δ)c1

.

7. Let s0 := z.
8. End of Phase 0.
9. Phase t:
10. Let st := 2st−1.
11. Sample st random items ai1 , . . . , aist from the input list L.
12. Let dj := |{h : aih ∈ Ij and 1 ≤ h ≤ st}| for j = 1, 2, . . . , k.
13. For each Ij ,
14. if dj ≥ z,

15. then let Â(Ij , L) :=
n
st
dj to approximate A(Ij , L).

16. else let Â(Ij , L) := 0.

17. Let apx sum :=
∑

dj≥z Â(Ij , L)πj to approximate
∑n

i=1 an.

18. If apx sum ≤ 2c2n log logn
st

and st < n then enter Phase t+ 1.
19. else
20. If st < n

21. then let apx sum :=
∑

dj≥z Â(Ij , L)πj to approximate
∑

1≤i≤n ai.

22. else let apx sum :=
∑n

i=1 ai.
23. Output apx sum and terminate the algorithm.
24. End of Phase t.
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End of Algorithm

Several lemmas will be proved in order to show the performance of the algo-
rithm. Let δ, ξ0, c1, and c2 be parameters defined as those in the Phase 0 of the
algorithm Approximate-Sum(.).

Lemma 1.

1. For parameter δ in (0, 1), a (δ, δ)-partition for [0, 1] has the number of in-

tervals k = O(
log n+log 1

δ

δ ).

2. g(x) ≤ e−
x2

4 when 0 < x ≤ 1
2 .

3. The parameter ξ0 can be set to be O(
log 1

αδ

log 1
g(δ)

) = O(
log 1

αδ

δ2 ) for line 4 in the

algorithm Approximate-Sum(.).
4. Function g(x) is decreasing and g(x) < 1 for every x > 0.

Proof. Statement 1: The number of intervals k is the least integer with (1−δ)k ≤
δ
n2 . We have k = O(

log n+log 1
δ

δ ).

Statement 2: By definition g(x) = max(g1(x), g2(x)), where g1(x) = e−
1
2x

2

and g2(x) =
ex

(1+x)(1+x) . We just need to prove that g2(x) ≤ e−
x2

4 when x ≤ 1
2 .

By Taylor theorem ln(1 + x) ≥ x− x2

2 . Assume 0 < x ≤ 1
2 . We have

ln g2(x) = x− (1 + x) ln(1 + x)

≤ x− (1 + x)(x − x2

2
)

= −x2

2
(1− x)

≤ −x2

4
.

Statement 3: We need to set up ξ0 to satisfy the condition in line line 4 in
the algorithm. It follows from statement 1 and statement 2.

Statement 4: It follows from the fact that g2(x) is decreasing, and less than
1 for each x > 0. We already explained in section 2.1.

We use the uniform random sampling to approximate the number of items in
each interval Ij in the (δ, δ)-partition. Due to the technical reason, we estimate
the failure probability instead of the success probability.

Lemma 2. Let Q1 be the probability that the following statement is false at the
end of each phase:

(i) For each interval Ij with dj ≥ z, (1 − δ)A(Ij , L) ≤ Â(Ij , L) ≤ (1 +
δ)A(Ij , L).

Then for each phase in the algorithm, Q1 ≤ (k + 1) · g(δ) z
2 .

Proof. An element of L in Ij is sampled (by an uniform sampling) with prob-

ability pj =
A(Ij ,L)

n . Let p′ = z
2st

. For each interval Ij with dj ≥ z, we discuss
two cases.
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– Case 1. p′ ≥ pj .
In this case, dj ≥ z ≥ 2p′st ≥ 2pjst. Note that dj is the number of ele-
ments in interval Ij among st random samples ai1 , . . . , aist from L. By The-

orem 3 (with θ = 1), with probability at most P1 = g2(1)
pjmt ≤ g2(1)

p′st ≤
g2(1)

z/2 ≤ g(1)z/2, there are at least 2pjst samples are from interval Ij .
Thus, the probability is at most P1 for the condition of Case 1 to be true.

– Case 2. p′ < pj .

By Theorem 3, we have Pr[dj > (1 + δ)pjmt] ≤ g2(δ)
pjmt ≤ g2(δ)

p′st ≤
g2(δ)

z
2 ≤ g(δ)

z
2 .

By Theorem 2, we have Pr[dj ≤ (1 − δ)pjmt] ≤ g1(δ)
pjmt ≤ g1(δ)

p′st =
g1(δ)

z
2 ≤ g(δ)

z
2 .

For each interval Ij with dj ≥ z and (1 − δ)pjmt ≤ dj ≤ (1 + δ)pjmt, we

have (1− δ)A(Ij , L) ≤ Â(Ij , L) ≤ (1+ δ)A(Ij , L) by line 15 in Approximate-
Sum(.).
There are k intervals I1, . . . , Ik. Therefore, with probability at most P2 = k ·
g(δ)

z
2 , the following is false: For each interval Ij with dj ≥ z, (1−δ)A(Ij , L) ≤

Â(Ij , L) ≤ (1 + δ)A(Ij , L).

By the analysis of Case 1 and Case 2, we have Q1 ≤ P1+P2 ≤ (k+1) · g(δ) z
2

(see statement 4 of Lemma 1). Thus, the lemma has been proven.

Lemma 3. Assume that st ≥ c2n log log n
∑

n

i=1
ai

. Then right after executing Phase t in

Approximate-Sum(.), with probability at most Q2 = 2kg(δ)ξ0 log logn, the follow-
ing statement is false:

(ii) For each interval Ij with A(Ij , L) ≥ c1
∑n

i=1 ai, A). (1 − δ)A(Ij , L) ≤
Â(Ij , L) ≤ (1 + δ)A(Ij , L); and B). dj ≥ z.

Proof. Assume that st ≥ c2n log logn
∑

n

i=1
ai

. Consider each interval Ij with A(Ij , L) ≥

c1
∑n

i=1 ai. We have that pj =
A(Ij ,L)

n ≥ c1
∑

n

i=1
ai

n . An element of L in Ij
is sampled with probability pj . By Theorem 3, Theorem 2, and Phase 0 of
Approximate-Sum(.), we have

Pr[dj < (1− δ)pjmt] ≤ g1(δ)
pjmt ≤ g1(δ)

c1c2 log logn ≤ g(δ)ξ0 log log n. (1)

Pr[dj > (1 + δ)pjmt] ≤ g2(δ)
pjmt ≤ g2(δ)

c1c2 log logn ≤ g(δ)ξ0 log log n. (2)

Therefore, with probability at most 2kg(δ)ξ0 log log n, the following statement
is false:

For each interval Ij with A(Ij , L) ≥ c1
∑n

i=1 ai, (1− δ)A(Ij , L) ≤ Â(Ij , L) ≤
(1 + δ)A(Ij , L).

If dj ≥ (1 − δ)pjst, then we have

dj ≥ (1 − δ)
A(Ij , L)

n
st

≥ (1 − δ)
(c1

∑n
i=1 ai)

n
· c2n log logn

∑n
i=1 ai
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= (1 − δ)c1c2 log logn

≥ ξ0 log logn = z. (by Phase 0 of Approximate-Sum(.))

Lemma 4. The total sum of the sizes of items in those Ijs with A(Ij , L) <

c1
∑n

i=1 ai is at most δ
2 (
∑n

i=1 ai) +
δ
n .

Proof. By Definition 1, we have πj = (1− δ)j for j = 1, . . . , k− 1. We have that

– the sum of sizes of items in Ik is at most n · δ
n2 = δ

n ,
– for each interval Ij with A(Ij , L) < c1

∑n
i=1 ai, the sum of sizes of items in

Ij is at most (c1
∑n

i=1 ai)πj−1 ≤ (c1
∑n

i=1 ai)(1− δ)j−1 for j ∈ [1, k − 1].

The total sum of the sizes of items in those Ijs with A(Ij , L) < c1
∑n

i=1 ai is at
most

k−1
∑

j=1

(c1

n
∑

i=1

ai)πj−1) +
∑

ai∈Ik

ak ≤
k−1
∑

j=1

(c1

n
∑

i=1

ai)(1 − δ)j−1) + n · r

n2

≤ c1

δ
(

n
∑

i=1

ai) +
δ

n

≤ δ

2
(

n
∑

i=1

ai) +
δ

n
. (by Phase 0 of Approximate-Sum(.))

Lemma 5. Assume that at the end of phase t, for each Ij with Â(Ij , L) >

0, A(Ij , L)(1− δ) ≤ Â(Ij , L) ≤ A(Ij , L)(1 + δ); and dj ≥ z if A(Ij , L) ≥
c1

∑n
i=1 ai. Then (1 − ǫ

2 )(
∑n

i=1 ai − 4δ
n ) ≤ apx sum ≤ (1 + δ)(

∑n
i=1 ai) at the

end of phase t.

Proof. By the assumption of the lemma, we have apx sum =
∑

dj≥z Â(Ij , L)πj ≤
(1 + δ)

∑n
i=1 ai. For each interval Ij with j 6= k, we have A(Ij , L)πj ≥ (1 −

δ)
∑

ai∈Ij
ai by the definition of (δ, δ)-partition. Thus,

A(Ij , L)πj ≥ (1− δ)
∑

ai∈Ij

ai for j 6= k. (3)

By the condition of this lemma and Lemma 4,we have

∑

dj<z

∑

ai∈Ij

ai ≤
δ

2
(

n
∑

i=1

ai) +
δ

n
(4)

We have the following inequalities:

apx sum =
∑

dj≥z

Â(Ij , L)πj (by line 18 in Approximate-Sum(.))

≥ (1− δ)
∑

dj≥z

A(Ij , L)πj
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≥ (1− δ)
∑

dj≥z,j 6=k

A(Ij , L)πj

≥ (1− δ)2
∑

dj≥z,j 6=k





∑

ai∈Ij

ai



 (by inequality (3))

≥ (1− δ)2(
n
∑

i=1

ai −
∑

dj<z

∑

ai∈Ij

ai −
∑

ai∈Ik

ai)

≥ (1− δ)2(

n
∑

i=1

ai − (
δ

2
(

n
∑

i=1

ai) +
δ

n
)− n · δ

n2
) (by inequality (4))

≥ (1− δ)3(

n
∑

i=1

ai −
4δ

n
)

≥ (1− ǫ

2
)(

n
∑

i=1

ai −
4δ

n
). (By line 2 in Phase 0 of the algorithm)

Lemma 6. With probability at most Q5 = (k + 1) · (logn)g(δ) z
2 , at least one of

the following statements is false:

A. For each phase t with st <
c2n log log n
∑

n

i=1
ai

, the condition apx sum ≤ 2c2n log logn
st

in line 18 of the algorithm is true.

B. If
∑n

i=1 ai ≥ 4, then the algorithm stops some phase t with st ≤ 16c2n log logn
∑

n

i=1
ai

.

C. If
∑n

i=1 ai < 4, then it stops at a phase t in which the condition st ≥ n first
becomes true, and outputs apx sum =

∑n
i=1 ai.

Proof. By Lemma 2, with probability at most (k+1) · g(δ) z
2 , the statement i of

Lemma 2 is false for a fixed m. The number of phases is at most logn since st is
double at each phase. With probability (k+1) · (logn) · g(δ) z

2 , the statement i of
Lemma 2 is false for each phase t with st ≤ n. Assume that statement i of Lemma
2 is true for every phase t executed by the algorithm Approximate-Sum(.).

Statement A. Assume that st < c2n log log n
∑

n

i=1
ai

. We have n
st

> n
c2n log log n
∑

n

i=1
ai

=

∑

n

i=1
ai

c2 log logn . Therefore,
∑n

i=1 ai < ( n
st
)c2 log logn = c2n log logn

st
.

Since statement i of Lemma 2 is true, the condition of Lemma 5 is satis-
fied. By Lemma 5, apx sum ≤ (1 + δ)

∑n
i=1 ai. Since (1 + δ) < 2 (by line 6 in

Approximate-Sum(.)), we have

apx sum ≤ (1 + δ)

n
∑

i=1

ai ≤ 2

n
∑

i=1

ai < 2 · c2n log logn

st
=

2c2n log logn

st
.

Statement B. The variable st is doubled in each new phase.
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Assume that the algorithm enters phase t with 8c2n log logn
∑

n

i=1
ai

≤ st ≤ 16c2n log logn
∑

n

i=1
ai

.

We have

n

st
≤ n

8c2n log logn
∑

n

i=1
ai

=

∑n
i=1 ai

8c2 log logn
. (5)

Since
∑n

i=1 ai ≥ 4, (
∑n

i=1 ai − 4δ
n ) ≥ (1− δ)(

∑n
i=1 ai).

By Lemma 5, we have the inequality

apx sum ≥ (1− ǫ

2
)(1− δ)(

n
∑

i=1

ai). (6)

By the setting at Phase 0 of the algorithm, we have

(1− ǫ

2
)(1− δ) ≥ 1

2
· 3
4
=

3

8
. (7)

We have

apx sum ≥ (1 − ǫ

2
)(1 − δ)(

n
∑

i=1

ai) (by inequality (6)) (8)

≥ (1 − ǫ

2
)(1 − δ)(

n

st
· 8c2 log logn) (by inequality (5)) (9)

≥ 3

8
(
n

st
· 8c2 log logn) (10)

=
3c2n log logn

st
. (by inequality (7)) (11)

Thus, it makes the condition at line 18 in Approximate-Sum(.) be false. Thus,
the algorithm stops at some stage t with st ≤ 16c2n log logn

∑

n

i=1
ai

by the setting at

line 18 in Approximate-Sum(.).

Statement C. It follows from statement A and the setting in line 18 of the
algorithm.

Lemma 7. The complexity of the algorithm is O(
log 1

αδ

δ4 min( n
∑

n

i=1
ai

, n) log logn).

In particular, the complexity is O(min( n
∑

n

i=1
ai

, n) log logn) if α is fixed in (0, 1).

Proof. We check the size st of random samplings according by statement B and
statement C of Lemma 6 to determine when to stop the algorithm. We have

ξ0 = O(
log 1

αδ

δ2 ) by Lemma 1. By the setting in line 6 in Approximate-Sum(.), we
have

c2 =
12ξ0

(1− δ)c1
= O(

log 1
αδ

δ4
).
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Since si is doubled every phase, and each phase i costs O(si) time. The total
time of the algorithm is O(s1 + s2 + · · ·+ st) = O(st), where phase t is the last
phase.

The computational time complexity of the algorithm follows from state-
ment B and statement C of Lemma 6.

Lemma 8. With probability at most α, at least one of the following statements
is false after executing the algorithm Approximate-Sum(ǫ, α, n, L):

1. If
∑n

i=1 ai ≥ 4, then (1 − ǫ)(
∑n

i=1 ai) ≤ apx sum ≤ (1 + ǫ
2 )(

∑n
i=1 ai);

2. If
∑n

i=1 ai < 4, then apx sum =
∑n

i=1 ai; and

3. It runs in O(
log 1

αδ

δ4 min( n
∑

n

i=1
ai

, n) log logn) time. In particular, the complex-

ity of the algorithm is O(min( n
∑

n

i=1
ai

, n) log logn) if α is fixed in (0, 1).

Proof. As st is doubled each new phase in Approximate-Intervals(.), the number
of phases is at most logn. With probability at most (logn)(Q1 +Q2) +Q5 ≤ α

(by line 5 in Approximate-Intervals(.)), at least one of the statements (i) in
Lemma 2, (ii) in Lemma 3, A, B, C in Lemma 6 is false.

Assume that the statements (i) in Lemma 2, (ii) in Lemma 3, A, B, and C
in Lemma 6 are all true.

Statement 1: The condition of Statement 1 implies n ≥ 4. By Lemma 5, we
have

(1 − ǫ

2
)(

n
∑

i=1

ai −
4δ

n
) ≤ apx sum ≤ (1 + δ)(

n
∑

i=1

ai); (12)

Since
∑n

i=1 ai ≥ 4, we have

(
n
∑

i=1

ai −
4δ

n
) ≥ (1− δ)(

n
∑

i=1

ai). (13)

We have the inequality

apx sum ≥ (1 − ǫ

2
)(1 − δ)(

n
∑

i=1

ai) (by inequalities (13) and (12)) (14)

≥ (1 − ǫ)(

n
∑

i=1

ai). (by Phase 0 in Approximate-Sum(.)) (15)

Statement 2 follows from Statement C of Lemma 6.
Statement 3 for the running time follows from Lemma 7.
Thus, with probability at most α, at least one of the statements 1 to 3 is

false.

Now we have the proof for our main theorem.
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Proof (for Theorem 4). Let α = 1
4 and ǫ ∈ (0, 1). It follows from Lemma 8 via a

proper setting for those parameters in the algorithm Approximate-Sum(.).

The (δ, δ)-partition P : I1∪I2 . . .∪Ik for [0, 1] can be generated inO(
log n+log 1

δ

δ )
time by Lemma 1. Let L be a list of n numbers in [0, 1]. Pass δ, α, P, n, and L

to Approximate-Sum(.), which returns an approximate sum apx sum.
By statement 1 and statement 2 of Lemma 8, we have an (1+ǫ)-approximation

for the sum problem with failure probability at most α. The computational time

is bounded by O(
log 1

αδ

δ4 min( n
∑

n

i=1
ai

, n) log logn) by statement 3 of Lemma 8.

Definition 2. Let f(n) be a function from n to (0, n] and a parameter c > 1.
Define

∑

(c, f(n)) be the class of sum problem with an input of nonnegative

numbers a1, · · · , an with
∑n

i=1 ai ∈ [ f(n)c , cf(n)].

Corollary 1. Assume that f(n) is a function from n to (0, n] and c is a given

constant c greater than 1. There is a O(n(log logn)
f(n) ) time algorithm such that given

a list of nonnegative numbers a1, a2, · · · , an in
∑

(c, f(n)), it gives a (1 − ǫ)-
approximation.

Proof. It follows from Theorem 4.

We can extend our sublinear time algorithm to the more general list of non-
negative elements.

Theorem 5. Assume that ǫ is a positive constant in (0, 1). Then there is an

O(Mn(log logn)
∑

n

i=1
ai

) time algorithm to compute (1 + ǫ)-approximation for a list of

nonnegative numbers a1, · · · , an of in the range [0,M ].

Proof. A list of nonnegative elements a1, · · · , an can be converted into the list
a1

M , · · · , an

M in [0, 1]. It follows from Theorem 4.

3 Lower Bound

We show a lower bound for those sum problems with bounded sum of sizes
∑n

i=1 ai. The lower bound always matches the upper bound.

Theorem 6. Assume f(n) is an nondecreasing unbounded function from N to
N with f(n) = o(n). Every randomized (

√
c − ǫ)-approximation algorithm for

the sum problem in
∑

(c, f(n)) needs Ω( n
f(n) ) time, where c is a constant greater

than 1, and ǫ is an arbitrary small constant in (0,
√
c− 1).

Proof. The first list L1 contains f(n) elements of size 1
c , and its rest n − f(n)

items are 0. The sum of numbers in the first list is f(n)
c . Therefore, the first list

is a sum problem in
∑

(c, f(n)).
The second list L2 contains f(n) elements of value 1, and its rest n − f(n)

items are 0. The sum of numbers in the second list is f(n). Therefore, the second
list is a sum problem in

∑

(c, f(n)).
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Assume that an algorithm only has computational time o( n
f(n)) for computing

k-approximation for sum problems in
∑

(c, f(n)) with k = (
√
c − ǫ). For each

uniform random sampling, with probability f(n)
n , it gets an number greater than

0 in each Li. The algorithm has an o(1) probability to access at least one item
greater than 0 in each list in a path of computation. Therefore, L1 and L2 have
the same output for approximation by the same randomized algorithm. If s is a
k-approximation for the both sum problems, we have

f(n)

ck
≤ s ≤ kf(n)

c
, and (16)

f(n)

k
≤ s ≤ kf(n) (17)

We have kf(n)
c ≥ f(n)

k for k =
√
c− ǫ. This brings a contradiction.

Corollary 2. There is no o( n
∑

n

i=1
ai

) time randomized approximation scheme

algorithm for the sum problem.

4 Conclusions

We studied the approximate sum in a few models. We show that the approximate

sum can be computed in time O(n(log log n)
∑

n

i=1
ai

) if the input list in the range [0, 1].

Our lower bound almost matches the upper bound. An interesting theoretical
problem is to close the small gap between the lower bound and upper bound for
the approximate sum problem.
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