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Abstract. We consider the following open question in the spirit of Ram-
sey theory: Given an aperiodic infinite word w, does there exist a finite
coloring of its factors such that no factorization of w is monochromatic?
We show that such a coloring always exists whenever w is a Sturmian
word or a standard episturmian word.

1 Introduction

Ramsey theory (including Van der Waerden’s theorem) (see [5]) is a topic of great
interest in combinatorics with connections to various fields of mathematics. A re-
markable consequence of Ramsey’s Infinitary Theorem applied to combinatorics
on words yields the following unavoidable regularity of infinite words1:

Theorem 1. Let A be a non-empty alphabet, w be an infinite word over A, C
a finite non-empty set (the set of colors), and c : Fact+ w → C any coloring of
the set Fact+w of all non-empty factors of w. Then there exists a factorization
of w of the form w = V U1U2 · · ·Un · · · such that for all positive integers i and
j, c(Ui) = c(Uj).

One can ask whether given an infinite word there exists a suitable coloring
map able to avoid the monochromaticity of all factors in all factorizations of the
word. More precisely, the following variant of Theorem 1 was posed as a question
by T.C. Brown [3] and, independently, by the third author [11]:

Question 1 . Let w be an aperiodic infinite word over a finite alphabet A. Does
there exist a finite coloring c : Fact+ w → C with the property that for any
factoring w = U1U2 · · ·Un · · · , there exist positive integers i, j for which c(Ui) 6=
c(Uj) ?

1 Actually, the proof of Theorem 1 given by Schützenberger in [10] does not use Ram-
sey’s theorem
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Let us observe that for periodic words the answer to the preceding question
is trivially negative. Indeed, let w = Uω, and c : Fact+w → C be any finite
coloring. By factoring w as w = U1U2 · · ·Un · · · , where for all i ≥ 1, Ui = U one
has c(Ui) = c(Uj) for all positive integers i and j. It is easy to see that there exist
non recurrent infinite words w and finite colorings such that for any factoring
w = U1U2 · · ·Un · · · there exist i 6= j for which c(Ui) 6= c(Uj). For instance,
consider the infinite word w = abω and define the coloring map as follows: for
any non-empty factor U of w, c(U) = 1 if it contains a and c(U) = 0, otherwise.
Then for any factoring w = U1U2 · · ·Un · · · , c(U1) = 1 and c(Ui) = 0 for all
i > 1.

It is not very difficult to prove that there exist infinite recurrent words for
which Question 1 has a positive answer, for instance square-free, overlap-free
words, and standard Sturmian words [11].

In this paper we show that Question 1 has a positive answer for every Stur-
mian word where the number of colors is equal to 3. This solves a problem raised
in [3] and in [11]. The proof requires some noteworthy new combinatorial prop-
erties of Sturmian words. Moreover, we prove that the same result holds true for
aperiodic standard episturmian words by using a number of colors equal to the
number of distinct letters occurring in the word plus one.

For all definitions and notation not explicitly given in the paper, the reader
is referred to the books of M. Lothaire [7, 8]; for Sturmian words see [8, Chap. 2]
and for episturmian words see [4, 6] and the survey of J. Berstel [1].

2 Sturmian words

There exist several equivalent definitions of Sturmian words. In particular, we
recall (see, for instance, Theorem 2.1.5 of [8]) that an infinite word s ∈ {a, b}ω

is Sturmian if and only if it is aperiodic and balanced, i.e., for all factors u and
v of s such that |u| = |v| one has:

||u|x − |v|x| ≤ 1, x ∈ {a, b},

where |u|x denotes the number of occurrences of the letter x in u. Since a Stur-
mian word s is aperiodic, it must have at least one of the two factors aa and
bb. However, from the balance property, it follows that a Sturmian word cannot
have both the factors aa and bb.

Definition 1. We say that a Sturmian word is of type a (resp. b) if it does not
contain the factor bb (resp. aa).

We recall that a factor u of a finite or infinite word w over the alphabet A is
called right special (resp. left special) if there exist two different letters x, y ∈ A

such that ux, uy (resp. xu, yu) are factors of w.
A different equivalent definition of a Sturmian word is the following: A binary

infinite word s is Sturmian if for every integer n ≥ 0, s has a unique left (or
equivalently right) special factor of length n. It follows from this that s is closed
under reversal, i.e., if u is a factor of s so is its reversal u∼.



A Sturmian word s is called standard (or characteristic) if all its prefixes are
left special factors of s. As is well known, for any Sturmian word s there exists
a standard Sturmian word t such that Fact s = Fact t, where for any finite or
infinite word w, Factw denotes the set of all its factors including the empty
word.

Definition 2. Let s ∈ {a, b}ω be a Sturmian word. A non-empty factor w of s
is rich in the letter z ∈ {a, b} if there exists a factor v of s such that |v| = |w|
and |w|z > |v|z.

From the aperiodicity and the balance property of a Sturmian word one easily
derives that any non-empty factor w of a Sturmian word s is rich either in the
letter a or in the letter b but not in both letters. Thus one can introduce for any
given Sturmian word s a map

rs : Fact
+ s → {a, b}

defined as: for any non-empty factor w of s, rs(w) = z ∈ {a, b} if w is rich in the
letter z. Clearly, rs(w) = rs(w

∼) for any w ∈ Fact+ s.
For any letter z ∈ {a, b} we shall denote by z̄ the complementary letter of z,

i.e., ā = b and b̄ = a.

Lemma 1. Let w be a non-empty right special (resp. left special) factor of a
Sturmian word s. Then rs(w) is equal to the first letter of w (resp. rs(w) is
equal to the last letter of w).

Proof. Write w = zw′ with z ∈ {a, b} and w′ ∈ {a, b}∗. Since w is a right special
factor of s one has that v = w′z̄ is a factor of s. Thus |w| = |v| and |w|z > |v|z ,
whence rs(w) = z. Similarly, if w is left special one deduces that rs(w) is equal
to the last letter of w. ⊓⊔

3 Preliminary Lemmas

Lemma 2. Let s be a Sturmian word such that

s =
∏

i≥1

Ui,

where the Ui’s are non-empty factors of s. If for every i and j, rs(Ui) = rs(Uj),
then for any M > 0 there exists an integer i such that |Ui| > M .

Proof. Suppose to the contrary that for some positive integer M we have that
|Ui| ≤ M for each i ≥ 1. This implies that the number of distinct Ui’s in the
sequence (Ui)i≥1 is finite, say t. Let rs(Ui) = x ∈ {a, b} for all i ≥ 1 and set for
each i ≥ 1:

fi =
|Ui|x
|Ui|

.



Thus {fi | i ≥ 1} is a finite set of at most t rational numbers. We set r =
min{fi | i ≥ 1}.

Let fx(s) be the frequency of the letter x in s defined as

fx(s) = lim
n→∞

|s[n]|x

n
,

where for every n ≥ 1, s[n] denotes the prefix of s of length n. As is well known
(see Prop. 2.1.11 of [8]), fx(s) exists and is an irrational number.

Let us now prove that r > fx(s). From Proposition 2.1.10 in [8] one derives
that for all V ∈ Fact s

|V |fx(s)− 1 < |V |x < |V |fx(s) + 1.

Now for any i ≥ 1, Ui is rich in the letter x, so that there exists Vi ∈ Fact s such
that |Ui| = |Vi| and |Ui|x > |Vi|x. From the preceding inequality one has:

|Ui|x = |Vi|x + 1 > |Vi|fx(s) = |Ui|fx(s),

so that for all i ≥ 1, fi > fx(s), hence r > fx(s).
For any n > 0, we can write the prefix s[n] of length n as:

s[n] = U1 · · ·UkU
′
k+1,

for a suitable k ≥ 0 and U ′
k+1 a prefix of Uk+1. Thus

|s[n]|x =

k
∑

i=i

|Ui|x + |U ′
k+1|x.

Since |Ui|x = fi|Ui| ≥ r|Ui| and |U ′
k+1| ≤ M , one has

|s[n]|x ≥ r

k
∑

i=1

|Ui| = r(n− |U ′
k+1|) ≥ rn− rM.

Thus
|s[n]|x

n
≥ r − r

M

n
,

and

fx(s) = lim
n→∞

|s[n]|x

n
≥ r,

a contradiction. ⊓⊔

In the following we shall consider the Sturmian morphism Ra, that we simply
denote R, defined as:

R(a) = a and R(b) = ba. (1)

For any finite or infinite word w, Pref w will denote the set of all its prefixes.
The following holds:



Lemma 3. Let s be a Sturmian word and t ∈ {a, b}ω such that R(t) = s. If
either

1) the first letter of t (or, equivalently, of s) is b

or

2) the Sturmian word s admits a factorization:

s = U1 · · ·Un · · · ,

where each Ui, i ≥ 1, is a non-empty prefix of s terminating in the letter a

and rs(Ui) = rs(Uj) for all i, j ≥ 1,

then t is also Sturmian.

Proof. Let us prove that in both cases t is balanced. Suppose to the contrary
that t is unbalanced. Then (see Prop. 2.1.3 of [8]) there would exists v such that

ava, bvb ∈ Fact t.

Thus
aR(v)a, baR(v)ba ∈ Fact s.

If ava 6∈ Pref t, then t = λavaµ, with λ ∈ {a, b}+ and µ ∈ {a, b}ω. There-
fore R(t) = R(λ)R(ava)R(µ). Since the last letter of R(λ) is a, it follows that
aaR(v)a ∈ Fact s. As baR(v)b ∈ Fact s we reach a contradiction with the bal-
ance property of s. In case 1), t begins in the letter b, so that ava 6∈ Pref t
and then t is balanced. In case 2) suppose that ava ∈ Pref t. This implies that
aR(v)a ∈ Pref s. From the preceding lemma in the factorization of s in prefixes
there exists an integer i > 1 such that |Ui| > |aR(v)a|. Since Ui−1 terminates
in a and Ui−1Ui ∈ Fact s, it follows that aaR(v)a ∈ Fact s and one contradicts
again the balance property of s. Hence, t is balanced.

Trivially, in both cases t is aperiodic, so that t is Sturmian. ⊓⊔

Let us remark that, in general, without any additional hypothesis, if s = R(t),
then t need not be Sturmian. For instance, if f is the Fibonacci word f =
abaababaaba · · · , then af is also a Sturmian word. However, it is readily verified
that in this case the word t such that R(t) = s is not balanced, so that t is not
Sturmian.

For any finite or infinite word w over the alphabet A, alphw denotes the
set of all distinct letters of A occurring in w. We will make use of the following
lemma:

Lemma 4. Let s be a Sturmian word having a factorization

s = U1 · · ·Un · · · ,

where for i ≥ 1, Ui are non-empty prefixes of s. Then for any p ≥ 1, U1 6= cp

where c is the first letter of s.

Proof. Suppose that U1 = cp. Since s is aperiodic there exists a minimal in-
teger j such that card(alphUj) = 2. Since Uj is a prefix of s, one has then
U1 · · ·Uj−1Uj = Ujξ, with ξ ∈ {a, b}∗. As U1 · · ·Uj−1 = cq for a suitable q ≥ p,
it follows that ξ = cq and Uj ∈ cc∗, a contradiction. ⊓⊔



4 Main results

Proposition 1. Let s be a Sturmian word of type a having a factorization

s = U1 · · ·Un · · · ,

where for i ≥ 1, Ui are non-empty prefixes of s such that rs(Ui) = rs(Uj) for all
i, j ≥ 1. Then one of the following two properties holds:

i) All Ui, i ≥ 1, terminate in the letter a.
ii) For all i ≥ 1, Uia ∈ Pref s.

Proof. Let us first suppose that s begins in the letter b. All prefixes Ui, i ≥ 1,
of s begin in the letter b and, as s is of type a, have to terminate in the letter a.
Thus in this case Property i) is satisfied.

Let us then suppose that s begins in the letter a. Now either all prefixes Ui,
i ≥ 1, terminate in the letter a or all prefixes Ui, i ≥ 1, terminate in the letter
b or some of the prefixes terminate in the letter a and some in the letter b. We
have then to consider the following cases:

Case 1. All prefixes Ui, i ≥ 1, terminate in the letter b.
Since s is of type a, no one of the prefixes Ui, i ≥ 1, can be a right special

factor. This implies that Uia ∈ Pref s and Property ii) is satisfied.

Case 2. Some of the prefixes Ui, i ≥ 1, terminate in the letter a and some in the
letter b.

We have to consider two subcases:

a). rs(Ui) = b, for all i ≥ 1.
As all Ui, i ≥ 1, begin in a, if any Ui were right special, then by Lemma 1,

rs(Ui) = a, a contradiction. It follows that for all i ≥ 1, Uia ∈ Pref s.

b). rs(Ui) = a, for all i ≥ 1.
Some of the prefixes Uj , j ≥ 1, terminate in a (since otherwise we are in

Case 1). Let Uk be a prefix terminating in a for a suitable k ≥ 1. If a prefix
Ui terminates in b, then aUi is not a factor of s. Indeed, otherwise, the word
aUib

−1 is such that |aUib
−1| = |Ui| and |aUib

−1|b < |Ui|b, so that rs(Ui) = b a
contradiction. Thus one derives that all Ul with l ≥ k terminate in a. Moreover,
if some Ui terminate in b, by Lemma 2 there exists j > k such that Uj has the
prefix Ui, so that Uj−1Ui ∈ Fact s. Since Uj−1 terminates in a, one has that aUi

is a factor of s, a contradiction. Thus all Ui, i ≥ 1, terminate in a. ⊓⊔

Proposition 2. Let s be a Sturmian word having a factorization

s = U1 · · ·Un · · · ,

where for i ≥ 1, Ui are non-empty prefixes of s such that rs(Ui) = rs(Uj) for all
i, j ≥ 1. Then there exists a Sturmian word t such that

t = V1 · · ·Vn · · · ,

where for all i ≥ 1, Vi are non-empty prefixes of t, rt(Vi) = rt(Vj) for all i, j ≥ 1,
and |V1| < |U1|.



Proof. We can suppose without loss of generality that s is a Sturmian word of
type a. From Proposition 1 either all Ui, i ≥ 1, terminate in the letter a or for
all i ≥ 1, Uia ∈ Pref s. We consider two cases:

Case 1. For all i ≥ 1, Uia ∈ Pref s.
We can suppose that s begins in the letter a. Indeed, otherwise, if the first

letter of s is b, then all Ui, i ≥ 1, begin in the letter b and, as s is of type a, they
have to terminate in the letter a. Thus the case that the first letter of s is b will
be considered when we will analyze Case 2.

We consider the injective endomorphism of {a, b}∗, La, or simply L, defined
by

L(a) = a and L(b) = ab.

Since s is of type a, the first letter of s is a, and X = {a, ab} is a code having
a finite deciphering delay (cf. [2]), the word s can be uniquely factorized by the
elements of X . Thus there exists a unique word t ∈ {a, b}ω such that s = L(t).
The following holds:

1. The word t is a Sturmian word.
2. For any i ≥ 1 there exists a non-empty prefix Vi of t such that L(Vi) = Ui.
3. The word t can be factorized as t = V1 · · ·Vn · · · .
4. |V1| < |U1|.
5. For all i, j ≥ 1, rt(Vi) = rt(Vj).

Point 1. This is a consequence of the fact that L is a standard Sturmian morphism
(see Corollary 2.3.3 in Chap. 2 of [8]).

Point 2. For any i ≥ 1, since Uia ∈ Pref s and any pair (c, a) with c ∈ {a, b} is
synchronizing for X∞ = X∗ ∪Xω (cf. [2]), one has that Ui ∈ X∗, so that there
exists Vi ∈ Pref t such that L(Vi) = Ui.

Point 3. One has L(V1 · · ·Vn · · · ) = U1 · · ·Un · · · = s = L(t). Thus t = V1 · · ·Vn · · · .

Point 4. By Lemma 4, U1 is not a power of a so that in U1 there must be at
least one occurrence of the letter b. This implies that |V1| < |U1|.

Point 5. We shall prove that for all i ≥ 1, rt(Vi) = rs(Ui). From this one has
that for all i, j ≥ 1, rt(Vi) = rt(Vj).

Since t is a Sturmian word, there exists V ′
i ∈ Fact t such that

|Vi| = |V ′
i | and either |Vi|a > |V ′

i |a or |Vi|a < |V ′
i |a.

In the first case rt(Vi) = a and in the second case rt(Vi) = b. Let us set

Fi = L(V ′
i ).

Since Ui = L(Vi), from the definition of the morphism L one has:

|Fi|a = |V ′
i |a + |V ′

i |b = |V ′
i |, |Fi|b = |V ′

i |b. (2)

|Ui|a = |Vi|a + |Vi|b = |Vi|, |Ui|b = |Vi|b. (3)



Let us first consider the case rt(Vi) = a, i.e., |Vi|a = |V ′
i |a + 1 and |Vi|b =

|V ′
i |b − 1. From the preceding equations one has:

|Fi| = |Ui|+ 1.

Moreover, from the definition of L one has that Fi begins in the letter a. Hence,
|a−1Fi| = |Ui| and |a−1Fi|a = |Fi|a− 1 = |Ui|a− 1. Thus |Ui|a > |a−1Fi|a. Since
a−1Fi ∈ Fact s, one has

rs(Ui) = rt(Vi) = a.

Let us now consider the case rt(Vi) = b, i.e., |Vi|a = |V ′
i |a−1 and |Vi|b = |V ′

i |b+1.
From (2) and (3) one derives:

|Ui| = |Fi|+ 1,

and |Ui|b > |Fi|b. Now Fia is a factor of s. Indeed, Fi = L(V ′
i ) and for any

c ∈ {a, b} such that V ′
i c ∈ Fact t one has L(V ′

i c) = FiL(c). Since for any letter
c, L(c) begins in the letter a it follows that Fia ∈ Fact s. Since |Fia| = |Ui| and
|Ui|b > |Fi|b = |Fia|b, one has that Ui is rich in b. Hence, rs(Ui) = rt(Vi) = b.

Case 2. All Ui, i ≥ 1, terminate in the letter a.
We consider the injective endomorphism of {a, b}∗, Ra, or simply R, defined

in (1). Since s is of type a and X = {a, ba} is a prefix code, the word s can
be uniquely factorized by the elements of X . Thus there exists a unique word
t ∈ {a, b}ω such that s = R(t). The following holds:

1. The word t is a Sturmian word.
2. For any i ≥ 1 there exists a non-empty prefix Vi of t such that R(Vi) = Ui.
3. The word t can be factorized as t = V1 · · ·Vn · · · .
4. |V1| < |U1|.
5. For all i, j ≥ 1, rt(Vi) = rt(Vj).

Point 1. From Lemma 3, since R(t) = s it follows that t is Sturmian.

Point 2. For any i ≥ 1, since Ui terminates in the letter a and any pair (a, c)
with c ∈ {a, b} is synchronizing for X∞, one has that Ui ∈ X∗, so that there
exists Vi ∈ Pref t such that R(Vi) = Ui.

Point 3. One hasR(V1 · · ·Vn · · · ) = U1 · · ·Un · · · = s = R(t). Thus t = V1 · · ·Vn · · · .

Point 4. By Lemma 4, U1 is not a power of the first letter c of s, so that in U1

there must be at least one occurrence of the letter c̄. This implies that |V1| < |U1|.

Point 5. We shall prove that for all i ≥ 1, rt(Vi) = rs(Ui). From this one has
that for all i, j ≥ 1, rt(Vi) = rt(Vj).

Since t is a Sturmian word, there exists V ′
i ∈ Fact t such that

|Vi| = |V ′
i | and either |Vi|a > |V ′

i |a or |Vi|a < |V ′
i |a.

In the first case rt(Vi) = a and in the second case rt(Vi) = b. Let us set

Fi = R(V ′
i ).



Since Ui = R(Vi), from the definition of the morphism R one has that equations
(2) and (3) are satisfied.

Let us first consider the case rt(Vi) = a, i.e., |Vi|a = |V ′
i |a + 1 and |Vi|b =

|V ′
i |b − 1. From the preceding equations one has:

|Fi| = |Ui|+ 1.

From the definition of the morphism R one has that Fi = R(V ′
i ) terminates in

the letter a. Hence, |Fia
−1| = |Ui| and |Fia

−1|a = |Fi|a − 1 = |Ui|a − 1. Thus
|Ui|a = |Fia

−1|a + 1, so that Ui is rich in a and rs(Ui) = rt(Vi) = a.
Let us now suppose that rt(Vi) = b, i.e., |Vi|a = |V ′

i |a−1 and |Vi|b = |V ′
i |b+1.

From (2) and (3) one derives:

|Ui| = |Fi|+ 1,

and |Ui|b > |Fi|b. We prove that aFi ∈ Fact s. Indeed, Fi = R(V ′
i ) and for any

c ∈ {a, b} such that cV ′
i ∈ Fact t one has R(c)R(V ′

i ) = R(c)Fi. Note that such a
letter c exists always as t is recurrent. Since for any letter c,R(c) terminates in the
letter a it follows that aFi ∈ Fact s. Since |aFi| = |Ui| and |Ui|b > |aFi|b = |Fi|b,
one has that Ui is rich in b. Hence, rs(Ui) = rt(Vi) = b. ⊓⊔

Theorem 2. Let s be a Sturmian word having a factorization

s = U1 · · ·Un · · · ,

where each Ui, i ≥ 1, is a non-empty prefix of s. Then there exist integers i, j ≥ 1
such that rs(Ui) 6= rs(Uj).

Proof. Let s be a Sturmian word and suppose that s admits a factorization

s = U1 · · ·Un · · · ,

where for i ≥ 1, Ui are non-empty prefixes such that for all i, j ≥ 1, rs(Ui) =
rs(Uj). Among all Sturmian words having this property we can always consider
a Sturmian word s such that |U1| is minimal. Without loss of generality we can
suppose that s is of type a. By Proposition 2 there exists a Sturmian word t

such that

t = V1 · · ·Vn · · · ,

where for all i ≥ 1, Vi are non-empty prefixes, rt(Vi) = rt(Vj) for all i, j ≥ 1,
and |V1| < |U1|, that contradicts the minimality of the length of U1. ⊓⊔

Theorem 3. Let s be a Sturmian word. There exists a coloring c of the non-
empty factors of s, c : Fact+ s → {0, 1, 2} such that for any factorization

s = V1 · · ·Vn · · ·

in non-empty factors Vi, i ≥ 1, there exist integers i, j such that c(Vi) 6= c(Vj).



Proof. Let us define the coloring c as: for any V ∈ Fact+ s

c(V ) =







0 if V is not a prefix of s
1 if V is a prefix of s and rs(V ) = a

2 if V is a prefix of s and rs(V ) = b

Let us suppose to contrary that for all i, j, c(Vi) = c(Vj) = x ∈ {0, 1, 2}. If x = 0
we reach a contradiction as V1 is a prefix of s so that c(V1) ∈ {1, 2}. If x = 1
or x = 2, then all Vi have to be prefixes of s having the same richness, but this
contradicts Theorem 2. ⊓⊔

5 The case of standard episturmian words

An infinite word s over the alphabet A is called standard episturmian if it is
closed under reversal and every left special factor of s is a prefix of s. A word
s ∈ Aω is called episturmian if there exists a standard episturmian t ∈ Aω such
that Fact s = Fact t. We recall the following facts about episturmian words [4,
6]:

Fact 1. Every prefix of an aperiodic standard episturmian word s is a left
special factor of s. In particular an aperiodic standard episturmian word on a
two-letter alphabet is a standard Sturmian word.

Fact 2. If s is a standard episturmian word with first letter a, then a is
separating, i.e., for any x, y ∈ A if xy ∈ Fact s, then a ∈ {x, y}.

For each x ∈ A, let Lx denote the standard episturmian morphism [6] defined
for any y ∈ A by Lx(y) = x if y = x and Lx(y) = xy for x 6= y.

Fact 3. The infinite word s ∈ Aω is standard episturmian if and only if there
exist a standard episturmian word t and a ∈ A such that s = La(t). Moreover,
t is unique and the first letter of s is a.

The following was proved in [9]:

Fact 4. A recurrent word w over the alphabet A is episturmian if and only if
for each factor u of w, a letter b exists (depending on u) such that AuA∩Factw ⊆
buA ∪ Aub.

Definition 3. We say that a standard episturmian word s is of type a, a ∈ A,
if the first letter of s is a.

Theorem 4. Let s be an aperiodic standard episturmian word over the alphabet
A and let s = U1U2 · · · be any factoring of s with each Ui, i ≥ 1, a non-empty
prefix of s. Then there exist indices i 6= j for which Ui and Uj terminate in a
different letter.

Proof. Suppose to the contrary that there exists an aperiodic standard epistur-
mian word s over the alphabet A admitting a factorization s = U1U2 · · · in
which all Ui are non-empty prefixes of s ending in the same letter. Amongst all



aperiodic standard episturmian words over the alphabet A having the preceding
factorization, we may choose one such s for which |U1| is minimal. Let a ∈ A be
the first letter of s, so that s is of type a.

Let us now prove that for every i ≥ 0, one has that Uia is a prefix of s. Let us
first suppose that for all i ≥ 1, Ui ends in a letter x 6= a. Since a is separating (s
is of type a), x can be followed only by a, so that the prefix Ui can be followed
only by a. This implies that Uia is a prefix of s.

Let us then suppose that for all i ≥ 1, Ui ends in a. Since U1 is a prefix of
s, and all Ui, i ≥ 1, begin in a one has that U1a is a prefix of s. Now let i > 1.
Since Ui−1 ends in a it follows that aUia is a factor of s.

Let Uix be a prefix of s; we want to show that x = a. Since Uix is left special
(as it is a prefix of s), there exists a letter y 6= a such that yUix is a factor of
s. Now from this and by Fact 4, there exists a letter b (depending only on Ui)
such that either x = b or y = b.

So now, by Fact 4, since aUia and yUix are both factors of s, we deduce
b = a and either x = a or y = a. Since y 6= a, it follows that x = a. Therefore,
we have proved that for every i ≥ 1, Uia is a prefix of s.

Let us now observe that U1 must contain the occurrence of a letter x 6= a.
Indeed, otherwise, suppose that U1 = ak and consider the least i > 1 such that
x occurs in Ui. This implies, by using an argument similar to that of the proof
of Lemma 4, that Ui cannot be a prefix of s.

By Fact 3, one has that there exists a unique standard episturmian word s′ such
that s = La(s

′) and alph s′ ⊆ alph s ⊆ A. Moreover, since s is aperiodic, trivially
one has that also s′ is aperiodic.

Let us observe that the set X = {a} ∪ {ax | x ∈ A} is a code having deci-
phering delay equal to 1 and that any pair (x, a) with x ∈ A is synchronizing for
X∞. This implies that s can be uniquely factored by the words of X . Moreover,
since Uia is a prefix of s, from the synchronization property of X∞, it follows
that for each i ≥ 1,

Ui = La(U
′
i),

where U ′
i is a prefix of s′. From the definition of La and the preceding formula,

one has that the last letter of Ui is equal to the last letter of U ′
i .

Moreover,

La(U
′
1 · · ·U

′
n · · · ) = U1 · · ·Un · · · = s = La(s

′).

Thus s′ = U ′
1 · · ·U

′
n · · · , where each U ′

i , i ≥ 1, is a non-empty prefix of s′ and for
all i, j ≥ 1, U ′

i and U ′
j terminate in the same letter. Since in U1 = La(U

′
1) there

is the occurrence of a letter different from a one obtains that |U ′
1| < |U1| which

is a contradiction. ⊓⊔

Let us observe that in the case of a standard Sturmian word, Theorem 4 is
an immediate consequence of Theorem 2 and Lemma 1.

Theorem 5. Let s be an aperiodic standard episturmian word and let k =
card(alph s). There exists a coloring c of the non-empty factors of s, c : Fact+ s →



{0, 1, . . . , k} such that for any factorization

s = V1 · · ·Vn · · ·

in non-empty factors Vi, i ≥ 1, there exist integers i, j such that c(Vi) 6= c(Vj).

Proof. Let alph s = {a1, . . . , ak}. We define the coloring c as: for any V ∈ Fact+ s

c(V ) =



















0 if V is not a prefix of s
1 if V is a prefix of s terminating in a1
...
...

k if V is a prefix of s terminating in ak

Let us suppose by contradiction that for all i, j, c(Vi) = c(Vj) = x ∈ {0, 1, . . . , k}.
If x = 0 we reach a contradiction as V1 is a prefix of s so that c(V1) ∈ {1, . . . , k}.
If x ∈ {1, . . . , k}, then all Vi have to be prefixes of s terminating in the same
letter, but this contradicts Theorem 4. ⊓⊔
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