
A relational approach to tool-use learning in robots

Author:
Brown, Solly Ashley

Publication Date:
2009

DOI:
https://doi.org/10.26190/unsworks/23166

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/45362 in https://
unsworks.unsw.edu.au on 2024-05-06

http://dx.doi.org/https://doi.org/10.26190/unsworks/23166
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/45362
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

A relational approach to tool-use
learning in robots

Solly Brown

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy, September 2009.

School of Computer Science and Engineering, University of New

South Wales, Sydney, Australia

Originality Statement

‘I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, or substantial proportions of material which have been accepted for the

award of any other degree or diploma at UNSW or any other educational institu-

tion, except where due acknowledgment is made in the thesis. Any contribution

made to the research by others, with whom I have worked at UNSW or elsewhere,

is explicitly acknowledged in the thesis. I also declare that the intellectual content

of this thesis is the product of my own work, except to the extent that assistance

from others in the project’s design and conception or in style, presentation and

linguistic expression is acknowledged.’

Solly Brown

Copyright Statement

‘I hereby grant to the University of New South Wales or its agents the right to

archive and to make available my thesis or dissertation in whole or part in the

University libraries in all forms of media, now or hereafter known, subject to the

provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent

rights. I also retain the right to use in future works (such as articles or books)

all or part of this thesis or dissertation. I also authorise University Microfilms

to use the abstract of my thesis in Dissertations Abstract International (this is

applicable to doctoral theses only). I have either used no substantial portions of

copyright material in my thesis or I have obtained permission to use copyright

material; where permission has not been granted I have applied/will apply for a

partial restriction of the digital copy of my thesis or dissertation.’

Solly Brown

Authenticity Statement

‘I certify that the Library deposit digital copy is a direct equivalent of the final

officially approved version of my thesis. No emendation of content has occurred

and if there are any minor variations in formatting, they are the result of the

conversion to digital format.’

Solly Brown

Abstract

This thesis presents a robot agent which learns to exploit objects in its environment

as tools, allowing it to solve problems which would otherwise be impossible to

achieve. Our agent learns by watching a single demonstration of tool use by

a teacher, and then by experimenting in the world with a variety of available

tools. The emphasis in our approach is on learning tool-use in a relational context,

and our agent is able to generalise across objects and tasks to learn the spatial

and structural constraints which describe useful tools and how they should be

employed.

Two learning mechanisms are employed to achieve this: learning by explana-

tion, and learning by trial-and-error. A form of explanation-based learning is used

to identify the most important sub-goals the teacher was able to achieve by us-

ing the tool. The action model constructed via this explanation is then refined

through trial-and-error experimentation and the use of a novel Inductive Logic

Programming (ILP) algorithm.

Acknowledgements

I’d firstly like to thank my supervisor, Claude Sammut, for his advice and guid-

ance during the course of this PhD. Claude encouraged me to explore a new and

interesting area in this research, and has always been supportive of my work.

Thank-you Claude!

I would also like to acknowledge the assistance of Morri Pagnucco, Bernhard

Hengst, Mike Bain, Will Uther, and Alan Blair, who have all at one time or another

provided me with helpful and insightful advice. Morri was also good enough to

proof-read large sections of my thesis, and help me out in his role as post-graduate

coordinator.

This research has been supported financially through an Australian Postgrad-

uate Award, National ICT Australia (NICTA) Postgraduate Award, and Centre

for Autonomous Systems (CAS) scholarship. The support of the Australian gov-

ernment, along with both CAS and NICTA, is gratefully acknowledged.

I’ve enjoyed my time spent in the robotics lab at CSE and would like to tip

my hat to everyone who has made it a fun place to work. Thanks to Martin de

Groot, Cameron Stone, Min Sub Kim, James Wong, David Johnson, Raymond

Sheh, Nawid Jamali and Anna Wong (apologies to anyone I’ve forgotten!). A

special mention to John Zaitseff for always being willing to help with the dark arts

of linux systems admin!

Lastly, the biggest thank-you must go to my family and friends for supporting

me through the many ups and downs of this PhD. Mum, who’s no longer with us,

would have been delighted to see me finished. Dad, thanks for your unwavering

country, to help me print out this thesis! Jess, I’m really sorry I took so long to

finish so thank you for your love, patience and understanding — and I promise

never to do a PhD ever again!

support and for staying up till 3am the night before I was due to fly out of the

Contents

1 Introduction 1

1.1 Tool use in animals . 1

1.2 A tool-use learning robot . 2

1.3 What makes an object a tool? . 4

1.3.1 The definition of tool-use used in this thesis 4

1.4 An example tool-use learning task 5

1.4.1 The tube problem . 6

1.5 An outline of our approach . 9

1.6 Action representation . 10

1.6.1 Learning by explanation . 12

1.6.2 Learning by experimentation 17

1.7 Experimental method . 20

1.8 Research objectives and scope . 22

1.9 Contributions . 23

1.10 Overview of the thesis . 24

2 Background and related work 27

2.1 Tool-use and object manipulation in robotics 27

2.1.1 Robot tool-use learning . 27

2.1.2 Learning object manipulation 33

2.2 Learning actions for tool-use . 36

2.2.1 Action-learning architectures 36

2.2.2 Learning abstract models of actions 37

2.2.3 Motion planning . 47

i

2.2.4 Learning from demonstration 51

2.2.5 Learning primitive behaviours by trial and error 57

3 State and action representation 59

3.1 Overview of the architecture . 59

3.2 State representation . 60

3.2.1 Primitive state . 60

3.2.2 Abstract (relational) state 61

3.3 Action representation . 62

3.3.1 Abstract action models . 63

3.3.2 Generating a behaviour from an abstract action 64

3.3.3 Manipulation recognition models 67

3.3.4 Discussion . 68

4 Learning 71

4.1 Assumptions: Structure of a tool use action 71

4.2 Learning from explanation . 74

4.2.1 Segmentation of the teacher’s demonstration 76

4.2.2 Matching segments to abstract actions 81

4.2.3 Explanation-based learning of the STRIPS model 83

4.3 Learning by trial and error . 87

4.3.1 Generation of learning tasks 89

4.3.2 Representation of examples 89

4.3.3 Representation of the hypothesis 91

4.3.4 Testing a hypothesis . 94

4.3.5 Learning a new hypothesis: ILP algorithm 101

5 Experimental evaluation 107

5.1 Evaluation method and learning tasks 107

5.2 Pull-tool problem: A detailed experimental trace and analysis . . . 108

5.2.1 The learning task . 108

5.2.2 Background knowledge . 112

5.2.3 Explanation-based learning of a new action model 114

ii

5.2.4 Learning from experimentation 123

5.3 Push-tool problem . 141

5.3.1 Background knowledge . 143

5.3.2 Learnt action and tool pose concept 143

5.4 Ramp tool problem . 144

5.4.1 Background knowledge . 145

5.4.2 Learnt action and tool pose concept 146

5.5 Discussion . 149

6 System architecture and implementation 153

6.1 Robot and simulator . 153

6.1.1 Robot . 153

6.1.2 Simulator . 154

6.2 Running times . 156

6.3 System architecture . 157

6.3.1 User interface . 157

6.3.2 STRIPS Planner . 162

6.3.3 Motion planner . 162

6.3.4 Constraint solver . 163

6.3.5 Finding a solution: General case 168

6.3.6 Collision detector . 170

6.3.7 Primitive controller . 171

6.3.8 Learning by explanation module 171

6.3.9 Learning by trial-and-error module 180

7 Conclusions and future work 189

7.1 Summary . 189

7.2 Lessons and limitations . 190

7.3 Future work . 194

7.3.1 Learning complex manipulation behaviours 195

7.3.2 Richer action models . 196

7.3.3 Repetitive tool actions . 197

7.3.4 Analogical problem solving 197

iii

7.3.5 Implementation on a real-world robot 197

iv

List of Figures

1.1 Using a pull-tool to reach an object placed in a closed “tube”. This

task is used in the experimental evaluation in Chapter 5. 6

1.2 Illustration of learning in our agent architecture. 10

1.3 Illustration of how behaviours are generated in our agent architec-

ture. The action model defines a set of composite object motion

primitives which can be input into a path planner. The abstract

goals of the action are extracted from the effects list and passed

to a constraint solver, which produces a primitive goal state. The

path planner finds a path to move objects to this goal state, and the

generated behaviour is produced by a controller tracking the path. . 12

1.4 Illustration of an unrecognised action occurring during the teacher’s

demonstration. The green line represents the parts of the demon-

stration which were recognised by the learner. 13

1.5 Illustration of a useful effect occurring within a novel tool action

during the teacher’s demonstration. We define a useful effect as one

which enables the precondition of an action occurring later in the

demonstration trace. In this case the effect ¬in(box,tube) enables

the precondition of pickup(box). We can use this explanation to

identify the important effects of the novel action. 16

v

1.6 The preconditions of the novel action model are constructed by

examining the effects of actions occurring earlier in the agent’s ex-

planation. Any effects which are still true when the precondition

state of the tool action is reached are included in the action model

preconditions. In this case holding(stick) occurs as the result of

an earlier action, so it becomes a literal in the precondition. 17

1.7 Positive and negative examples of correct tool use with a pull-

tool. The leftmost example shows a positive example, whilst the

other two are negative. Note that a correct example requires sat-

isfying both structural constraints (which describe how the tool is

constructed) and spatial constraints (which describe how the tool

should be placed). If either is incorrect then the tool sub-goal will

not be achieved. 18

1.8 Examples of tools available for the pull-from-tube task. Only the

two hook sticks on the left of the figure are suitable tools, and the

exact one which should be chosen depends on the location of the box

in the tube. A box on the left side of the tube requires a left-sided

hook and vice-versa. 19

1.9 The most-specific (hs) and most-general (hg) boundaries on the hy-

pothesis space. The + and− symbols in the figure represent positive

and negative examples respectively. 21

1.10 Pioneer 2 robot used in our experiments. 21

2.1 An Aibo robot using a stick tool to knock a ball off a platform in

Wood (2005). The agent uses a geometric model consisting of four

line segments representing the robot body, neck, head and the tool

(as shown in the photo). The tool is considered to be an extension of

the agent’s body, and the same recurrent network is used to control

the posture whether the tool is present or not. 28

vi

2.2 Experimental apparatus used in Stoytchev (2007). The robot arm is

given a goal of pushing the orange puck on to the brown square using

the tool. An interesting feature of Stoytchev’s functional approach

is that no geometric model of the tool is used to achieve this goal. . 31

2.3 Katz et al. (2008) learnt simple relational kinematic models of artic-

ulated objects. The object on the left consists of two rotational (R)

joints (in red) and three sliding (S) joints (in green). The object on

the right possesses an extra rotational and slider joint. The agent

is able to learn the kinematic structure SRSRS of the first object,

and transfer this knowledge to learn the SRSRSRS structure of the

second object more quickly than an inexperienced learner. 35

2.4 Our approach to a tool learning agent, represented as a three layer

architecture. Note that learning occurs only at the deliberative level. 37

2.5 Categorisation of action model learning approaches. Our learning

system uses both inductive and explantation-based algorithms. The

inductive component is a statistical, relational learner. 44

2.6 Sequence showing a solution for planning in the presence of movable

objects, reproduced from Stilman et al. (2007). The goal was for

the robot arm to obtain the green block. 49

2.7 A sequence of episodes making up “pickup object” sub-activity. A

new episode occurs at the point where a spatial connectedness pred-

icate changes (from Sridhar et al. (2008)). 57

vii

3.1 The agent uses a simple two-layer representation of states and ac-

tions. It receives primitive state information from the environment

and replaces this primitive state description with an abstract state

description based upon predicates defined in its background knowl-

edge. High-level actions are represented by STRIPS-like models,

and a planner is used to select the appropriate action to execute

according to the current world state and the agent’s goal. Abstract

actions are translated into executable primitive behaviours through

a more complicated process involving a constraint satisfaction solver

and a motion planning algorithm. This process is described in detail

in Section 3.3.2. 60

3.2 Illustration of the onaxis predicate. 61

3.3 Illustration of how behaviours are generated in our agent architec-

ture. The action model’s moving object list, movement primitives,

and preconditions define a set of composite object motion primi-

tives which can be input into a path planner. The abstract goals

of the action are extracted from the STRIPS effects and passed to

a constraint solver, which produces a ground goal state. The path

planner finds a path to move objects to the goal state, and the gen-

erated behaviour is produced by a controller tracking this path to

achieve the desired (ground) goal state and abstract action sub-goals. 66

4.1 Illustration of the “tool pose state”. The tool action has the struc-

ture L1, L2, . . . , Ln, E where Li denotes a positioning step, and E

an effects step. 72

4.2 Illustration of an unrecognised action occurring during the teacher’s

demonstration. The green line represents the parts of the demon-

stration which were recognised by the learner. 74

viii

4.3 Summary of learning a new action model by explanation. The steps

involved are: 1. Watch the teacher’s demonstration; 2. (a) Segment

the demonstration; (b) Match the segments to existing action mod-

els; 3. Create a new action to represent the unknown segments; 4.

Build a corresponding STRIPS model by explanation. 75

4.4 Recognition of actions using STRIPS models alone can be problem-

atic, since the action preconditions give only limited information

about when the action actually commenced. 78

4.5 Segmentation of the broom problem using the object motion heuris-

tic. The numbered segments correspond to those in Table 4.1. . . . 79

4.6 Merging segment boundaries: Boundaries are merged if they fall

within ∆t < tmerge of each other. 80

4.7 Illustration of an unsupported precondition and corresponding un-

explained effect in the broom problem. Unsupported preconditions

in the teacher’s explanation are used to identify the important ef-

fects of a novel action, as in general many of them are irrelevant. . . 86

4.8 Positive and negative examples of correct “cup” tool use. Each state

is labelled by sn and the example by tool pose(Tool,State). Note

that the position of the robot’s gripper is not shown in this simple

illustration. 90

4.9 The most-specific (hS) and most-general (hG) boundaries on the

hypothesis space. The + and − symbols in the figure represent

positive and negative examples respectively. 92

4.10 Selecting a tool which best matches the current most-specific hy-

pothesis hS. The tool which is able to be matched to the largest

number of structural literals in hS is chosen (see main text). 97

ix

4.11 Illustration of the select pose algorithm (Algorithm 1) for the

cup problem. At the top of the figure is a definition of the current

most-specific hypothesis hS. Parts (a) through (e) show solutions

to this hypothesis, with each applying a successively larger subset

of the constraint literals. Literals which are found to be redundant

(already satisfied at the previous step) or cannot be satisfied are

excluded, as shown by strikethrough text. In step (c) a redundant

literal below(rightwall,tap) is ignored, whilst step (e) shows a

literal perpendicular(base,tap) which cannot be satisfied (given

the other constraints). The solver therefore backtracks to (d), which

turns out to be a negative example. 98

4.12 The initial hypothesis boundaries after observing the teacher’s ex-

ample. The most-specific boundary is given by the bottom clause

of the example, whilst the most-general boundary clause is simply

true. 103

5.1 Types of tools available in the pull-tool problem. Each task has one

of each type available. Depending on the location of the box in the

tube, either (a) or (b) is the best tool for pulling. 109

5.2 The pull-tool problem. A box is placed inside a “tube”, out of reach

of the robot. The robot must pick up an appropriate tool (steps 1

and 2), place it in a ‘pulling’ pose (steps 3 and 4), and then drag

the box from the tube (step 5). The agent can then put the tool

aside (step 6) and pick up the box (steps 7 and 8). 110

5.3 Illustration of the target hypothesis for the pull-tool problem. The

correct solution involves having the tool parallel to the tube, with

the box behind the hook and up against the side of the tool handle.

Furthermore the hook should be near the end of the handle and on

the appropriate side of the handle. 111

5.4 Action models provided as background knowledge for the pull-tool

problem. 113

x

5.5 Manipulation recognition models provided to the agent for the pull-

tool problem . 113

5.6 Mode declarations for state predicates used for describing the world

in the pull-tube problem . 114

5.7 Observed speeds of the robot, gripper, tool, box during the teacher’s

demonstration. 116

5.8 Robot and object motion during the teacher’s demonstration, ob-

tained from thresholding and clustering the observed speeds in Fig-

ure 5.7. The top three graphs show the individual motions of the

robot, tool and box. The bottom graph shows the results of cluster-

ing these motions. Each colour represents a different combination

of objects as indicated. 117

5.9 Explanations of each of the observed motion segments in the teacher’s

demonstration. Segment 4 represents a completely novel action

since it does not match any of the learner’s action models. Seg-

ments 3 and 9 represent partial matches, where the type of action

(carrying or moving) is recognised but the exact sub-goal is not. . . 118

5.10 The tool pose state for the teacher’s demonstration of the task (a

positive example). 123

5.11 The initial most-specific hypothesis clause hS, split into static and

dynamic components. The dynamic component consists of spatial

literals with a State parameter. These spatial literals are the con-

straints which can be passed to the constraint solver. The static

component consists of literals which do not change (they describe

the structure and shape of objects), and they therefore have no

State parameter. 125

5.12 Tool pose state examples generated during learning by experimen-

tation. 126

5.13 The first task encountered by the agent after the teacher’s demon-

stration. 127

5.14 The final most-specific hypothesis clause hS, split into static and

dynamic components. 139

xi

5.15 The push-tool problem. 142

5.16 Tool types available in the push-tool problem. 142

5.17 A typical most-specific hypothesis clause hS learnt for the push-tool

problem, split into static and dynamic components. 145

5.18 The ramp problem. The agent must learn to identify the properties

of a useful ramp object, and how it should be correctly positioned. . 146

5.19 Some of the ramp tools available for performing the task. The best

ramp tool in this case is the green one — the others shown are too

narrow, too steep, or do not reach high enough to access the platform.147

5.20 The most-specific hypothesis clause hS learnt on a typical exper-

imental run of the ramp problem, split into static and dynamic

components. 148

6.1 Pioneer 2 robot used in our experiments. 154

6.2 System architecture showing component modules and the data flow

between them. Green rectangles indicate prolog modules, orange

rectangles indicate C++ modules, yellow is an ECLiPSe module,

whilst the simulator is shown in purple. 158

6.3 Illustration of the onaxis predicate. 167

6.4 Illustration of the quantities P1, P2 and E referred to in Algorithm 6178

xii

List of Algorithms

1 Find a spatial pose satisfying the most-specific hypothesis. 99

2 Generate a most-specific boundary clause (from GOLEM). 104

3 Solve a set of goals using ECLiPSe. 168

4 Segmentation of the teacher’s example. 173

5 Label the segments in the teacher’s example. 175

6 Explain a segment as a sequence of one or more known actions. . . 176

7 Explain a segment with a recognition model. 177

8 Building new action models to explain novel segments. 179

9 Learn the tool pose predicate by trial-and-error. 181

10 Select a new tool. 182

11 Compute the lgg of positive examples. 184

12 Compute the mode-restricted lgg of two literals. 185

13 Compute the mode-restricted lgg of a pair of terms. 186

xiii

xiv

Chapter 1

Introduction

In this thesis we address the problem of tool use and learning in robots. Robots,

humans and animals have a limited range of effectors and can use tools to extend

the range of problems they can solve. A household robot for example, may need

to use a chair to prop open a door, use an old rag to soak up a puddle from a

leaky fridge, or simply use a tray to carry a collection of glasses from one room to

another.

Our goal is to develop algorithms for a robotic agent which can learn to use ob-

jects in its environment as tools, in order to solve problems which would otherwise

be more difficult or impossible to achieve. Our robot agent begins with rudimen-

tary knowledge of the objects in its world and learns through demonstration and

experimentation that some objects in its world have useful properties which can

be exploited for solving problems.

1.1 Tool use in animals

Contrary to popular belief, tool use is not a uniquely human trait. Tool use has

been observed in a wide range of both captive and wild animals: chimpanzees use

sticks to extract termites from termite mounds (van Lawick-Goodall, 1970); Egyp-

tian vultures select appropriately sized stones to crack open stolen eggs (Goodall

and van Lawick, 1966); burrowing owls use mammalian dung to ‘fish’ for dung

beetles (Levey et al., 2004); and some bottle-nosed dolphins use sponges on their

2 Introduction

noses to protect themselves from stings whilst foraging on the sea floor (Krützen

et al., 2005). Some creatures such as the New Caledonian crow are even adept at

tool-making and solving novel problems using tools (Hunt, 1996; Kenward et al.,

2005).

Animals that make use of tools do so in order to enable or improve their ability

to carry out important tasks. The New Caledonian crow, for example, uses twig

and leaf-based hook tools to extract grubs from crevices — a feat that would

be more difficult or impossible without these tools. By exploiting objects in the

environment they are able to overcome the limitations of their effectors and expand

the range of goals they can achieve.

Humans are, of course, more proficient at using tools for problem solving than

other animals. No other creature is able to exploit objects in its environment more

effectively, or shows as wide-ranging an ability to use tools, as humans. Tools are

so ubiquitous in our everyday lives that there is scarcely an activity we perform

which does not involve using one or more objects to make the task possible, or

to enable it to be carried out in a simpler or more efficient manner. On my desk

for example, sits a collection of pens, a pair of scissors, a computer, a glue-stick,

a bike helmet, a telephone and a considerable quantity of paper. In fact, almost

every object in my immediate vicinity is a tool of some sort.

1.2 A tool-use learning robot

Given the ubiquity of tools in our man-made environment we would like (in the

future) to have robots which can take advantage of them. It would be useful, for

example, if a household robot was able to learn to use new tools. Whilst one might

expect that a household robot would come pre-programmed from the factory with

many useful behaviours, there would remain many objects or situations which the

programmers had not anticipated — for example, using a pot plant to prop open

a door, or using a spoon to pry the lid off a tin of cocoa.

We would like a tool-using robot to be able to learn to use a new tool after

observing it being used correctly by another agent. A robot might observe someone

using a spoon to open the cocoa tin, and notice that they have managed to achieve a

1.2 A tool-use learning robot 3

useful goal which was not previously considered achievable. The robot might then

wish to learn this useful action by attempting to open a tin itself. This would

involve selecting a suitable object to use as the tool, and then trying repeatedly

to use it in the correct manner to remove the lid. If the robot selected the wrong

type of spoon (eg. plastic, too small, or too thick) for the given tin then it would

need to experiment and try to identify one which works.

There are four important things which the robot needs to learn in order to

consistently solve the tool-use task correctly:

1. What useful effect the tool action achieves

2. How to identify a good tool — what object properties are necessary?

3. The correct spatial position in which the tool should be placed

4. How the tool should be manipulated after being placed

In this thesis we focus on learning the first three of these and assume that the

fourth – manipulation – is simple enough that it can be achieved via a primitive

action (eg. pulling downwards on the spoon once it is position) or an action which

can be generated by a motion-planner (such as placing the pot plant against the

door). More complex manipulation is beyond the scope of this thesis.

The general case of the learning problem we address in this thesis can be stated

as follows. The learner agent observes a “teacher” agent using a tool to solve a

task and achieve a useful goal. We will refer to the teacher’s example as the

demonstration, and assume that only a single demonstration is available to the

learner. The agent is then presented with a series of new learning tasks, each of

which involves a variety of different available tools. By analysing the teacher’s

demonstration and then experimenting directly in the world the aim is to learn a

new tool action which will allow the agent to perform new versions of the task.

The agent’s progress on learning to use the tool can be evaluated by measur-

ing how successfully it can perform new versions of the same task. As the agent

learns to better identify tools that can be used successfully (by isolating the im-

portant properties), it will require fewer attempts to perform a given instance of

the particular task. Similarly, the agent’s success rate will increase when it learns

to generalise the correct spatial positioning of the tool across different situations.

4 Introduction

In Section 1.4 we present a concrete example of a tool learning task tackled in

this thesis, and in Section 1.5 describe our approach to learning to solve tool-use

problems.

1.3 What makes an object a tool?

It is useful to briefly define exactly what we mean by tools and tool use, since

there is no universally accepted definition. Celebrated anthropologist Jane Goodall

described tool use as (van Lawick-Goodall, 1970)

“the use of an external object as a functional extension of mouth or

beak, hand or claw, in the attainment of an immediate goal.”

While this definition is perfectly reasonable, it is a narrow one which rules out

objects like paperweights and ladders being considered as tools. With this in mind

most researchers now accept a more general, if somewhat less concise, definition

of tool use provided by Benjamin Beck (Beck, 1980):

“[Tool use is] the external employment of an unattached environmental

object to alter more efficiently the form, position, or condition of an-

other object, another organism, or the user itself when the user holds

or carries the tool during or just prior to use and is responsible for the

proper and effective orientation of the tool.”

Beck’s definition covers most interesting cases of tool use that one might wish to

consider. Under this definition a paperweight is a tool because it can be used

to weigh down pieces of paper and stop them blowing away. A ladder is a tool

because it can be used to alter the vertical position of the user in the world.

1.3.1 The definition of tool-use used in this thesis

In this research we are less concerned with the semantics of tools and tool use,

and more with what tools can help an agent achieve. We define a tool as follows:

1.4 An example tool-use learning task 5

An object is considered a tool if it is deliberately employed by an

agent to help it achieve a goal which would otherwise be more difficult

or impossible to accomplish.

In most cases this idea coincides with Beck’s definition, but it emphasises the fact

that an object is a tool first and foremost because it helps an agent achieve a goal.

A tool action is an action which involves the manipulation of an object (the

tool), with the effect of changing the properties of one or more other objects (the

targets) or the agent itself, in a useful way. By a ‘useful way’ we mean that the

action has an effect which helps enable the preconditions of one or more other

actions in the agent’s existing library of actions. The changed properties of the

target objects which result from the tool action are called the sub-goals of the tool

action.

A huge variety of tool-use actions fall within this definition. Examples include:

• nailing two pieces of wood together

• peeling a carrot with a peeler

• using a ladder to change a lightbulb

• using a torch to enhance perception

• using a brick to prop open a door

• writing with a pen

• using a cup to collect water

• catching a fish with a fishing line and bait

In this thesis we will restrict ourselves to tool actions which can be achieved with

simple prehensile manipulation (ie. fixed to the manipulator), and focus our efforts

on learning what the tool can help the agent achieve, what a suitable tool looks

like, and the correct relative spatial pose in which it must be applied to be effective.

1.4 An example tool-use learning task

In this section we give an example of the type of problem we would like our tool

using robot to be able to solve. This is followed in the next section by a description

6 Introduction

of our approach to solving tool-use learning problems, using the same example as

illustration.

1.4.1 The tube problem

In the tube problem the robot is set the goal of obtaining an object (in this case

a small box) which is placed in a horizontal tube lying on the ground. The tube

is open at one end and closed at the other, as shown in Figure 1.1. The agent is

unable to reach directly into the tube to pick up the box because the tube is too

narrow. In order to obtain the desired box it must use a hooked stick tool to first

pull the box out of the tube before it can be picked up.

Figure 1.1: Using a pull-tool to reach an object placed in a closed “tube”. This
task is used in the experimental evaluation in Chapter 5.

The tube problem is interesting because it involves the use of a common type

of tool used by humans and animals alike: a “reaching” tool, used to bring an out-

of-reach object closer to the agent so it can be more easily accessed. In the animal

kingdom, New Caledonian crows use hook tools to extract grubs from holes in

logs, whilst chimpanzees extract termites by inserting thin sticks into passageways

leading into termite mounds.

Variations on this task are also common in studies of animal tool use and

cognition. Some of the earliest experiments with animals and tool use, performed

1.4 An example tool-use learning task 7

by Kohler and his chimpanzees (Kohler, 1925), involved using reaching tools to

access bananas. Povinelli (2000) also placed a banana out of reach of a chimpanzee

and provided it with different shaped stick and hook tools which it could use to

retrieve its reward. Other researchers studying New Caledonian crows placed food

rewards in horizontal glass tubes and provided the crows with a selection of sticks

of varying length and thickness which could be used to either push (Chappell and

Kacelnik, 2004) or pull (Chappell and Kacelnik, 2002) the reward from the tube.

As illustrated in the figure, we provide the agent with a selection of differently

shaped objects which can potentially be used as a tools for solving the task. Some

of these objects are clearly inappropriate, since they cannot be inserted into the

tube, lack a suitable “hook” affordance, or are not long enough. However, the

agent does not know ahead of time which objects will make a good tool. In fact,

the only background information provided to the agent about specific objects is

a low-level model of their geometric construction (ie. the object dimensions and

relative orientation of its surfaces).

The agent is also provided with a set of useful behaviours which it can use to

affect significant changes in the world. In this example, the agent might be given

goto, pickup-object and drop-object behaviours. It should be emphasised

however, that we assume that the agent does not already possess any sort of

pull-with-tool behaviour — learning such a behaviour and using it to obtain

the box is, after all, the objective of the problem!

To complement the robot’s set of known behaviours, we provide a set of ab-

stract models which represent the agent’s knowledge of how executing each of

these behaviours affects the world. For the purposes of this research our action

models are written as STRIPS-like operators (Fikes and Nilsson, 1971). These

action models can be used by the robot’s planner to string together sequences of

behaviours (plans) which will allow the agent to achieve its goals. An agent al-

ready competent at solving the tube problem might construct the following plan

to achieve the goal:

goto(stick-tool), pickup(stick-tool), goto(tube),

pull-with-tool(stick-tool, box), drop(stick-tool), pickup(box).

8 Introduction

The difficulty for our agent is that not only does it lack the appropriate tool-

using behaviour (pull-with-tool) to solve the tube problem, but it also lacks

the abstract action model of this behaviour. This means that the agent is initially

unable to form even an abstract plan of how to achieve the goal of obtaining

the box. This gap in both the agent’s low-level behavioural knowledge and its

higher level procedural knowledge presents the agent with a daunting exploration

problem.

In this thesis we simplify the exploration problem in a reasonable manner, by

providing the agent with an observation trace of a “teacher” performing the same

task. Learning to use tools through demonstration is the most common form of

tool-learning in humans, and cultural transmission of tool-using behaviour has

been widely observed in animals (eg. (Krützen et al., 2005)). In the case of the

tube example, our teacher agent demonstrates by simply picking up an appropriate

stick-hook tool and using it to pull the box from the tube. The agent must learn

from this example so that it can focus its direct experimentation in the world and

make the exploration problem more manageable.

In summary, the problem faced by the agent is three-fold. Firstly, the agent

must learn (from the demonstration provided by the teacher) that a new pull-

-with-tool action is not only possible, but would produce the useful effect of

removing the box from the tube. Introducing a new abstract action in this manner

would allow the agent to construct a plan to achieve the goal of picking up the box.

This first step of the problem might be described as the conceptual step: learning

what subgoals a tool can be used to achieve, and constructing an abstract plan of

action.

Secondly, once the agent has learnt what the tool can do and constructed an

abstract plan of action, it must learn how to actually perform the new tool-use

behaviour which achieves the desired effect. In the tube problem, the agent must

learn to place the hook tool in the correct pose in order to pull the box from

the tube. This requires learning the correct spatial relations which describe the

relative poses of the tool, target object, and the environment. For example, key

spatial relations to learn in the tube problem are that the hook must be placed

behind and touching the box and the handle should be roughly parallel to the

1.5 An outline of our approach 9

tube.

Finally, we would like our agent to be able to solve similar versions of this task

in the future without having to repeat the whole learning process. In general,

the agent will not always have the same objects available to use as tools and will

never face exactly the same problem twice. If the agent can learn why a particular

object is useful for solving the task it can avoid having to return to trial and error

in finding a suitable tool for the new task.

In the tube problem the necessary properties of the tool include having a right-

angled hook at the end of the handle, and that the hook is on the correct side of

the handle (if the box is sitting in the left side of the tube, the agent needs a

left-sided hook stick). By learning to identify these properties the agent should be

able to select an appropriate tool from amongst a group of objects, and solve new

tasks quickly and efficiently.

Learning the correct spatial and structural relations for tool use – the gener-

alisation step – requires experimenting with a variety of tools and with variations

in the tool-use task. Previous work on tool-use learning (which we will discuss

in Chapter 2) has involved little or no generalisation across tools and tasks. In

the next section we present our approach to tool-use learning, which can learn the

necessary spatial and structural relationships between the tool components, target

object and the environment.

1.5 An outline of our approach

In this section we give a brief outline of our approach to the tool-use learning

problem, using the stick and tube problem described in Section 1.4 as an illustrative

example. Full details of the learning methods are given in Chapter 4.

We divide our approach to learning into two components:

1. Learning by explanation: The agent tries to explain how the teacher was

able to use the tool to solve the task. It uses this explanation to identify

useful sub-goals of the tool action and construct an initial abstract action

model.

10 Introduction

Figure 1.2: Illustration of learning in our agent architecture.

2. Learning by trial-and-error: Starting with the initial action model as

its tool use hypothesis, the agent tries to refine the hypothesis by trial and

error. The agent experiments with various tool objects and tries to learn the

correct structural and spatial relationships which are necessary for achieving

the tool action sub-goal identified in the learning-by-explanation step.

Figure 1.2 gives a simple illustration of how learning is incorporated into our

agent architecture (the complete architecture is presented in Chapter 6). Learning

is focused at the level of abstract actions which describe the structural and spatial

constraints involved in executing a lower-level behaviour. Learnt abstract actions

are translated into an executable behaviour via the use of a spatial constraint

solver and a motion planner. We briefly describe this process before presenting

our approach to learning from explanation and trial-and-error. Further details are

given in Chapter 3.

1.6 Action representation

The agent’s abstract action models are represented by four components:

• The objects involved in the action.

• A set of robot motion primitives.

• The preconditions of the action (expressed in first-order logic (FOL)).

1.6 Action representation 11

• The effects of the action (also in FOL).

As illustrated in Figure 1.3, low-level behaviours are generated from an abstract

action model via a constraint solver, motion (path) planner, and controller. This

process involves extracting the abstract spatial goals of the action from the action

model and passing them to a spatial constraint solver. The constraint solver

takes as input a series of spatial goals expressed in first-order logic, and outputs

a primitive state of the world which satisfies these goals. For example, if the

abstract goal of the action is on(book,table) the constraint solver would output

a precise position for the book on the table which satisfies this constraint. There

are usually many primitive states which can be used to satisfy an abstract goal,

and the constraint solver selects one of these randomly.

The world state which is output from the constraint solver is a specific primitive

goal state which can be input into a motion planner to solve. The motion planner

requires a set of motion primitives, which are supplied by the abstract action

model, a list of the objects which are manipulated by the planner (“moving objs”),

and a specification of their relative spatial pose during the manipulation. The

planner then outputs a path for the objects which leads to the desired goal state.

For example, for a robot pushing a box up against a wall the planner would output

a path for the robot and box leading to the specific goal location. A generic

controller is used to track this path.

The advantage of using a motion planner to generate behaviours (rather than

learning purely reactive behaviours using, say, reinforcement learning) is that it

allows the agent to quickly find solutions to novel subgoals. The downside is

a loss of full generality and the ability to solve difficult manipulation problems

involving fully closed-loop control. Since we are more interested in quickly finding

“good-enough” solutions to simpler manipulation problems this is not a serious

disadvantage. As stated in Section 1.3.1 we are more interested in learning how

and why tools are useful at the abstract level. In addition our system architecture

can be extended to incorporate more fine-grained closed-loop control learning, as

described in Chapter 7.

12 Introduction

Figure 1.3: Illustration of how behaviours are generated in our agent architecture.
The action model defines a set of composite object motion primitives which can
be input into a path planner. The abstract goals of the action are extracted from
the effects list and passed to a constraint solver, which produces a primitive goal
state. The path planner finds a path to move objects to this goal state, and the
generated behaviour is produced by a controller tracking the path.

1.6.1 Learning by explanation

The aim of the learning by explanation is to identify novel tool actions in the

teacher’s demonstration, and to construct an abstract action model which describes

it. This includes idenitfying the useful sub-goal that the tool achieves, and some

of the necessary preconditions for using the tool. It involves the following steps:

1. Watch a teacher agent using a tool to complete a task.

2. Identify abstract actions in the teacher’s demonstration. The agent

attempts to label the demonstration using the actions in its existing library

of abstract actions.

3. Introduce a novel tool action to represent unrecognised parts of

the demonstration. Any sections of the demonstration which cannot be

1.6 Action representation 13

matched to known actions are labelled as components of a novel action.

4. Construct a novel action model via explanation-based learning.

A STRIPS model for the novel action can be constructed by identifying

the subset of literals in the novel action’s start and end states which are

relevant to explaining how the teacher achieved the goal.

Identifying novel tool actions in the teacher’s demonstration

Our solution to the problem of recognising useful novel behaviours begins with

the agent trying to explain what the teacher is doing during its demonstration.

The agent constructs its explanation by trying to match its own set of abstract

action models on to the execution trace of the teacher’s demonstration. Gaps in

the explanation – where the agent is unable to match an existing behaviour to

what the teacher is doing – are designated as novel behaviours which the agent

can try to learn.

This idea is illustrated in Figure 1.4 which shows a simple timeline representa-

tion of the teacher’s demonstration for the tube problem. The parts of the timeline

drawn in green correspond to periods of the demonstration where the agent recog-

nises the teacher’s actions. The “gap” corresponds to a sequence of one or more

unknown actions which the agent must try and explain.

Figure 1.4: Illustration of an unrecognised action occurring during the teacher’s
demonstration. The green line represents the parts of the demonstration which
were recognised by the learner.

The first difficulty faced by the learner is in labelling the parts of the demon-

stration which it recognises. The demonstration trace is provided to the agent

as a discrete time series w1, w2, . . . , wn of snapshots of the low-level world state

taken every tenth of a second. This world state is comprised of the instantaneous

14 Introduction

positions and orientations of each object in the world at a given point in time.

It should be emphasised that we do not provide the learner with a demonstra-

tion trace which is nicely segmented at the abstract level. Rather, the trace is a

sampling of a continuous time series of object poses and the learner must arrive

at a useful segmentation of the trace by itself.

As we explain in Chapter 4, the learner segments the trace into discrete ac-

tions by applying an object motion heuristic. This heuristic states that action

boundaries occur at points at which objects start or stop moving. Thus when the

agent grips a stick-tool and starts moving it towards the tube an abstract action

boundary is recognised. When the tool contacts with the box and causes it to

start moving also, another segment boundary is recognised. In this way the agent

is to construct a very general movement-based description of the actions of the

teacher. In the case of the tool problem the segments would be:

moving(robot), moving(robot,stick), moving(robot,stick,box),

moving(robot,stick), moving(robot), moving(robot,box).

These segments correspond to the robot moving to pick up the stick, placing it

against the box, pulling the box from the tube, placing the stick down, and finally

moving to pick up and carry away the box. Motion-based segmentation allows the

agent to separate components of an unknown action sequence, whereas a purely

STRIPS-based explanation would treat unknown sequences as a single “black box”.

Once the learner has segmented the teacher’s trace it attempts to match seg-

ments to its existing set of abstract action models. Each of the agent’s abstract

action models incorporates a STRIPS model along with a list of the objects which

are moved during the action. A model is matched to a given segment by checking

that three conditions are met:

• The moving objects in the demonstration match the model.

• The preconditions of the model are true at the start of the action segment.

• The effects of the model have been achieved by the end of the action seg-

ment.

1.6 Action representation 15

The possibility of multiple matches to a single motion segment is discussed in more

detail in Chapter 4. Segments which cannot be matched to any existing action

model are labelled as components of a novel action. In the tube problem example

this produces the following labelling of the teacher’s demonstration:

goto(stick), pickup(stick), novel-action(stick,box),

drop(stick), goto(box), pickup(box).

where novel-action(stick,box) involves two unrecognised action components:

in the first the stick is moved by the teacher, and in the second component the

stick and box are moved together. The learner must now try and explain how this

tool action was used to achieve the goal of acquiring the box. As we illustrate

below, it does so by constructing a new abstract action model which is consistent

with the other actions in its explanation of the demonstration.

Constructing the novel action model by explanation-based learning

We use an explanation-based heuristic to construct a model of the novel tool ac-

tion observed in the teacher’s demonstration. The explanation heuristic states that

actions occurring before the novel action should enable the novel action precondi-

tions. Similarly, the effects of the novel action should help enable the preconditions

of actions occurring later in the demonstration. This heuristic is based upon the

assumption that the teacher is acting rationally and optimally, so that each action

in the sequence is executed in order to achieve a necessary sub-goal.

The program constructs a STRIPS model by examining the start and end

states of the novel action in the demonstration, and identify relevant literals by

examining the actions executed prior to and after the novel action. The effects of

the novel action are defined as any state changes which occur during the action

which support an action precondition later in the demonstration.

In the case of the tube problem, the effect ¬in(box,tube) occurs during the

novel action segment as illustrated in Figure 1.5. This effect is considered useful or

important because it enables the preconditions of the pickup(box) action which

occurs later in the demonstration. In general there may be a large number of irrel-

evant effects which occur during an action, and the explanation-based reasoning

16 Introduction

Figure 1.5: Illustration of a useful effect occurring within a novel tool action during
the teacher’s demonstration. We define a useful effect as one which enables the
precondition of an action occurring later in the demonstration trace. In this case
the effect ¬in(box,tube) enables the precondition of pickup(box). We can use
this explanation to identify the important effects of the novel action.

process allows us to identify the effects which were important to achieving the

goal.

The preconditions of the novel tool action are constructed via a similar argu-

ment. The learner examines the world state at the start of the novel action, and

identifies the subset of state literals which were produced by the effects of earlier

actions. This situation is shown in Figure 1.6 for the tube problem. The effect

holding(stick) occurs before the novel action, and is still true at the start of the

action. Since it is a known effect of the pickup(stick) action it is considered a

relevant literal to include in the novel action preconditions.

In the tube problem the novel STRIPS model constructed by explaining the

teacher’s demonstration is therefore as follows:

pull-from-tube(Tool,Object,Tube):

PRE: in(Object,Tube), holding(Tool)

ADD: -

DEL: in(Object,Tube)

There is only one subgoal of the tool action in this case, corresponding to an object

being removed from the tube. The ground preconditions and effects identified in

the demonstration have been converted to literals with parameters, by simply

replacing each instance of an object with a unique variable. It should be noted

that the action model above is an incomplete model of the new tool use action,

1.6 Action representation 17

Figure 1.6: The preconditions of the novel action model are constructed by exam-
ining the effects of actions occurring earlier in the agent’s explanation. Any effects
which are still true when the precondition state of the tool action is reached are
included in the action model preconditions. In this case holding(stick) occurs
as the result of an earlier action, so it becomes a literal in the precondition.

since it says nothing about the spatial and structural constraints which must be

satisfied by the tool. Nevertheless it is a good starting point for learning these

additional conditions, which we describe in the next section.

1.6.2 Learning by experimentation

The novel tool action model learnt from explanation is just a starting point for the

action learning process. As mentioned above, the initial model does not include all

of the necessary spatial and structural information which describes the tool and

the way in which it should be employed. The agent therefore attempts to refine

this initial action model through learning by experimentation, testing a variety of

tools and tool poses in order to solve a series of new learning tasks. In this section

we describe this trial and error learning process, the details of which are presented

in Chapter 4.

We define the state in which the tool is applied to the target object (which

we call the tool pose state) as a concept learning problem — where the concept

examples are generated and labelled through experimentation. A positive example

of the concept is generated when the agent places the correct type of tool in an

appropriate spatial position and manages to pull the box from the tube (achieving

the action sub-goal). Conversely, negative examples arise from failures to achieve

18 Introduction

the action sub-goal, which may occur due to the wrong tool being selected or the

tool being placed in the wrong pose. Figure 1.7 shows three examples generated in

the tube problem. It is important to note that the agent labels its own examples,

rather than having them labelled by the user. The labelling is done by simply

observing whether the tool action subgoal (identified in the learning by explanation

step) was achieved.

Figure 1.7: Positive and negative examples of correct tool use with a pull-tool.
The leftmost example shows a positive example, whilst the other two are negative.
Note that a correct example requires satisfying both structural constraints (which
describe how the tool is constructed) and spatial constraints (which describe how
the tool should be placed). If either is incorrect then the tool sub-goal will not be
achieved.

The process for learning the concept describing the tool pose state is as follows:

1. Test the current hypothesis: Select a tool which satisfies the hypothesis

and place it in a pose defined by the spatial constraints in hypothesis.

Generate a motion plan which solves the task from this state and execute

it, observing whether the action sub-goal is achieved.

2. Add a new positive or negative example: If the action achieved the

desired sub-goal, label the initial state as a positive example. If the action

failed to achieve the desired sub-goal, label it as a negative example.

3. Update the hypothesis: Run a relational concept learner to update the

1.6 Action representation 19

definition of correct tool pose state.

4. Generate a new learning task, or reset the current one: If the

current task was successfully solved, a new learning task is generated and

presented to the agent. If the agent failed then the current task is reset.

5. Repeat: The agent continues its experimentation on a sequence of learning

tasks, refining its hypothesis. The experiment is terminated when the agent

is able to solve a pre-defined number of consecutive tasks without failure.

For each learning task presented to the agent, a selection of tool objects are

available for solving the problem. The dimensions of the tools are constructed

randomly according to a type definition specified by the user. Figure 1.8 shows

the type of tools which are available for the tube task. Only the two hook tools

(on the left of the figure), with right-angled hooks at the end of the handle are

suitable for solving the task. Exactly which should be chosen in any particular

case (a right-sided hook or a left-sided hook) depends on which side of the tube the

box is located (right or left). Our relational learner is able to learn this important

distinction, which would defeat a propositional learner.

Figure 1.8: Examples of tools available for the pull-from-tube task. Only the two
hook sticks on the left of the figure are suitable tools, and the exact one which
should be chosen depends on the location of the box in the tube. A box on the
left side of the tube requires a left-sided hook and vice-versa.

The application of relational concept-learning to learn a novel action is not new

(see Chapter 2 for a discussion of previous work). However, the learning algorithm

used in our agent is a novel one, based on previous work in the Inductive Logic

Programming system GOLEM (Muggleton and Feng, 1992). We generalise over

20 Introduction

examples in a bottom-up fashion using a form of restricted least-general generali-

sation (lgg) (Plotkin, 1970).

Hypotheses describing the correct tool and tool pose are represented as clauses

in first-order logic. For example a hypothesis saying that the tool must have a

hook which is touching the box would be:

h ← attached(Tool, Hook),

touching(Hook, Box).

Our contribution is to use a version-space-like representation of the hypothesis,

where we maintain both a most-specific and most-general clause representing the

concept. Our representation is not a true version-space as defined by Mitchell

(1982), because we only keep a single clause to represent the most-general bound-

ary (this point is discussed further in Chapter 4).

The motivation for using this hypothesis representation is that it is usually

the case that the least general generalisation of the previously observed positive

examples is too specific to be applied to the current situation — for example it may

describe a tool with a specific combination of properties which does not exist in the

current task. By maintaining both a most-general and most-specific clause we are

able to search for a tool which avoids the previously encountered negative examples

(satisfies the most-general clause), and is very similar to previously encountered

positive examples (is “close” to satisfying the most-specific clause).

Our version-space-like hypothesis is illustrated in Figure 1.9. Since our learner

must generate experiments to find positive examples, the aim is to generalise con-

servatively by trying to test examples which are close to the most-specific boundary

(where positive examples are more likely to be found).

1.7 Experimental method

As detailed in Chapter 6 the platform we are using in this research is a Pioneer

2 robot (see Figure 1.10), and our experiments are carried out in the Gazebo

robot simulator (Koenig and Howard, 2004). Although our robot platform is quite

limited in its ability to manipulate objects, it nevertheless clearly demonstrates

1.7 Experimental method 21

Figure 1.9: The most-specific (hs) and most-general (hg) boundaries on the hy-
pothesis space. The + and − symbols in the figure represent positive and negative
examples respectively.

the idea that tools can enhance the range of problems that a robot agent is able to

solve. Indeed, agents with limited effectors often have a lot to gain by employing

tools to overcome these limitations.

Figure 1.10: Pioneer 2 robot used in our experiments.

Our experiments consist of tool-use tasks such as the tube problem described

earlier in section 1.4.1. The agent is presented with a demonstration of the task

carried out by a teacher, and then is allowed to experiment on a series of new

22 Introduction

tasks. We evaluate the agent’s performance by the number of examples required

before it can consistently solve any new task presented to it. Our experimental

evaluation and a worked example is presented in Chapter 5.

1.8 Research objectives and scope

The primary research objective of this work is to develop a robot learning architec-

ture capable of solving novel problems which require tool-use. The agent should

be able to discover and exploit the useful properties of objects in order to achieve

its goals.

The following design objectives are emphasised:

• The agent must be capable of learning from a single tool-use demonstration

by a teacher.

• The agent should learn in an online and incremental manner, and from as

few trial-and-error examples as possible.

• The agent should be able to autonomously identify the useful sub-goal(s)

which can be achieved by using the tool (rather than having it externally

defined by the user).

• The agent must learn to identify the properties of an object which make it

a good tool, so that it eventually is able to select the correct tool without

trial-and-error.

• The architecture and learning methods must be generally applicable to

different robot platforms, and to a wide range of tool-use tasks.

It is also worthwhile pointing out some of the constraints and limitations we

imposed on this research. Some important areas which this thesis does not ad-

dress are complex manipulation, non rigid-body tools and objects, and analogical

problem solving. We comment briefly on each of these points below.

• Complex manipulation:

Some tool-use behaviours require complex non-linear control of the tool or

target object. Learning these type of behaviours is an entire field of research

1.9 Contributions 23

in itself, and we do not address it here. Instead, we have deliberately

chosen tool-use tasks involving simple manipulation which can be achieved

with a generic controller. Our learning is aimed at the higher level of

identifying the structural and spatial relationships between objects which

are required for successful tool-use. Nevertheless, in Chapter 7 we discuss

how the learning of primitive behaviours could be incorporated in future

work.

• Non-rigid body tools and objects:

The learning tasks we tackle in this thesis are restricted to those which

can be easily implemented in a rigid-body simulation (our experimental

platform) — problems involving liquids or deformable bodies are not con-

sidered. Nevertheless, the general learning system described in this thesis is

intended to be applicable to a wide range of tool-using scenarios. In Chap-

ter 7 we discuss how our approach might be extended to cases involving

non-rigid bodies, and illustrate it with some examples.

• Analogical problem solving:

Some tool-use problems are related on an abstract conceptual level. For

example, using a ladder to reach a light bulb and using a stick to reach an

object on a shelf are conceptually similar problems. Once the agent has

learnt to solve one of these tasks, can it solve the second by analogy? We

do not attempt to tackle this problem in this thesis.

Although each of the above features of a tool-learning robot would indeed be useful,

inevitably a research project such as this must be limited in scope.

1.9 Contributions

The primary contributions of this research are:

• The use of a relational learner for solving robot tool-use learning problems.

Previous work in the area of robot tool-use learning has used a propositional

representation and learning algorithm. As a consequence these learners are

24 Introduction

unable to learn relational concepts which can distinguish between good and

bad tools, and correct and incorrect usage of a tool.

• The integration of tool-use learning and problem solving in a robot agent.

Our agent learns new tool-use actions in order to help it solve a planning

problem and achieve its goal. Previous work on robot tool-use has been

done in the context of learning isolated behaviours defined by the user.

• A novel action representation which integrates symbolic planning, con-

straint solving, and motion planning. The abstract actions in our agent

are translated into executable primitive behaviours through the use of a

constraint solver, which allows behaviours to be generated in a very flexible

way.

• A novel method for incremental learning of concepts represented by Horn

clauses. Our learner incorporates aspects of the GOLEM system (Mug-

gleton and Feng, 1992) but uses a version-space type representation. We

present a new method for generating examples in an incremental setting

where cautious generalisation is desirable. Our approach is based upon

sampling near the the most-specific hypothesis boundary in the version

space.

• A novel method for learning STRIPS action models via (a form of) explanation-

based learning. Our agent is able to infer the approximate form of a new

action model by observing a teacher and examining the context of the plan

in which it is executed. (Our approach also uses trial-and-error to refine

this approximate model).

1.10 Overview of the thesis

The remainder of this thesis is organised as follows:

Chapter 2 presents a discussion of previous research relevant to the problem

of tool use and learning in robotics. We discuss how this research differs from

earlier work, and further motivate the approach we have chosen.

Chapter 3 describes how states and actions are represented in our tool-use

1.10 Overview of the thesis 25

learner, including a novel approach to generating executable behaviours which

satisfy a given abstract action model.

Chapter 4 describes the learning algorithms we have developed for learning

new tool-use actions. The first half of the chapter presents our approach to learning

from the demonstration provided by the teacher agent. The second part of the

chapter describes how our agent learns relational tool concepts via trial-and-error.

Chapter 5 gives an evaluation of the learning methods presented in the pre-

ceeding chapters. We describe the experimental results obtained from using our

approach to solve tool-use tasks in a simulated robot world.

Chapter 6 presents some of the implementational details of our agent, and

shows how the execution, planning and learning components of the agent are in-

tegrated. The robot platform and simulator used are also detailed in this chapter.

Finally, Chapter 7 summarises the main lessons of this research and presents

suggestions for future work.

26 Introduction

Chapter 2

Background and related work

In this chapter we review previous work related to tool-use learning. We begin

by examining research which directly addresses the problem of tool-use learning in

robotics, and follow with a discussion of related work in the area of action learning.

2.1 Tool-use and object manipulation in robotics

2.1.1 Robot tool-use learning

Despite the wide range of research which has explored tool use in animals and

humans (see eg. (Baber, 2003)), to date there has been only a modest amount of

research on learning tool use in autonomous agents and robots. In this section we

review previous research in this area. Related work on learning robot manipulation

of objects is summarised in Section 2.1.2.

A useful way of categorising robot tool-use learning approaches is by the type

of model used to represent the tool. In general we can identify three different types

of model used in research to date:

• geometric: Geometric models involve an explicit (though perhaps approxi-

mate) representation of physical geometry of the tool.

• functional : Functional approaches describe tools by the types of action

outcomes they can be used to achieve. For example, a book and a cup can

both serve as a paper-weight tool even though they have quite unrelated

28 Background and related work

Figure 2.1: An Aibo robot using a stick tool to knock a ball off a platform in
Wood (2005). The agent uses a geometric model consisting of four line segments
representing the robot body, neck, head and the tool (as shown in the photo). The
tool is considered to be an extension of the agent’s body, and the same recurrent
network is used to control the posture whether the tool is present or not.

geometric descriptions.

• relational : Relational models explicitly describe the structure and relation-

ships between tool parts and/or the tool, target object and environment.

A single relational model is able to describe a wide range of instances of a

tool (eg. hammers) by explicitly encoding the important relationships which

make the object a tool (eg. in the case of a hammer: a flat, heavy hitting

surface attached to a handle at right angles).

Tool-learning approaches that use each of these tool representations are described

below.

Geometric approaches

The first example of a robot learning with tools appears in Bogoni (1995). In

this work the robot experiments with a series of differently shaped tools to learn

their suitability for piercing and chopping tasks. The experiments involved sim-

ple manipulations in which the tool was lowered into contact with objects made

2.1 Tool-use and object manipulation in robotics 29

from different materials (styrofoam, sponge, pine and balsa wood). Observations

from force sensors allowed the construction of a time-varying force profile of the

interaction, while vision and position sensors were used to determine the success

or otherwise of the chopping/piercing operation.

The visual data were also used to fit a simple geometric model (with two

parameters) to the edge/tip of the tool and to thereby characterise the shape of

the object. This information was then integrated into a multi-dimensional force-

shape map for each tool-object combination where different points in the space

represented variations on the object shape with their corresponding force and

depth of penetration produced. By interpolating between the points sampled by

experiment, a surface relating the shape, force, and depth of penetration of the

material was constructed. The best shapes for the tool were selected by analysing

repeated experiments and selecting shape parameters which led to the largest

success rate for the task.

Another pioneering effort in building a tool-using robot agent is described in

Wood (2005)1. In this work a Sony Aibo robot dog uses a stick-tool to dislodge a

ball which is located on a platform out of direct reach, as shown in Figure 2.1. The

agent uses a simple geometric model consisting of four articulated line segments

to represent its body, neck, head and (optionally) a stick-tool. An interesting

feature of this approach is that an MMC (Mean of Multiple Computations) network

(Cruse, 2003) is used to encode the geometric relationships between the segments

and to calculate the angles necessary to achieve a goal. This type of network,

which is commonly used for the control of multi-segmented manipulators, is able to

adapt to changes in the tool length segment without requiring recalculation of the

network. Thus the same network can be used for calculating robot configurations

whether the tool is present (ie. tool segment length of zero) or not. In this way

the tool is treated as a natural extension of the agent’s body.

Kemp and Edsinger (2006) have completed some interesting work on learning

tool manipulation from a human demonstration, focusing on detection and control

of the tip of an unknown tool. The tip of the tool is automatically extracted from

1Although the research in Wood (2005) does not involve robot learning, we mention it here
because it involves an approach to flexible adaptation in a tool-using robot.

30 Background and related work

image data by using a multi-scale spatio-temporal interest point operator which

selects fast-moving convex shapes in the image. A demonstration of the desired

tool-using behaviour is then provided by a human, and the robot attempts to

mimic the tracked trajectory by using a form of feed-forward control on the arm

and wrist joints. Using this method the humanoid robot is able to learn how to

clean a flexible hose with a brush without any prior models of the object or tool.

This approach is an example of a crude (but effective) geometric approximation

of a tool, where all of the relevant information is encoded in the location of the

tool-tip relative to the robot arm.

Approaches to learning from demonstration which do not directly involve tool

use are described in Section 2.2.4.

Functional approaches

A primarily functional approach to learning to use tools has been adopted by

Stoytchev (2005, 2007). The robot arm apparatus used in this research is shown

in Figure 2.2. The robot investigates the effects of performing user-defined prim-

itive behaviours (pushing, pulling, or sideways arm movements) whilst applying

different stick tools to an orange puck. The displacements of the puck which result

from different combinations of tools and behaviours are stored in a look-up table,

and this table can be used to solve simple manipulation tasks (such as moving the

puck into the brown goal zone on the table shown in the figure).

Two interesting features of Stoytchev’s approach should be noted. Firstly, by

associating probabilities with the success of particular tool/behaviour combina-

tions the agent was able to adapt when the tool was modified. That is, when one

of the branches of a T-shaped stick was broken (removed) the agent was able to

learn that the tool affordance it was using was no longer reliable. It was then able

to adapt its tool behaviour by choosing an alternative affordance so that it could

still move the puck into the goal location.

The second interesting feature of Stoytchev’s work is that the robot does not

possess a geometric model of the tool — it has no idea of the shape or structure

of each object, and simply labels each by its colour. The characteristics of a tool

are then encoded purely in the action outcomes which can be achieved by using

2.1 Tool-use and object manipulation in robotics 31

Figure 2.2: Experimental apparatus used in Stoytchev (2007). The robot arm is
given a goal of pushing the orange puck on to the brown square using the tool. An
interesting feature of Stoytchev’s functional approach is that no geometric model
of the tool is used to achieve this goal.

the tool. This is the essence of the functional approach to tool-use.

Sinapov and Stoytchev (2008) extended the approach of Stoytchev (2007) to

learn functional taxonomies of tools. A simulated robot arm manipulated a puck

using a variety of differently shaped stick tools and observed the different ways

in which the puck moved. A hierarchical clustering algorithm was then used to

find clusters of similar displacements which could be summarised by a prototype

displacement. The set of these puck displacement prototypes for each tool were

used to calculate a similarity metric which allowed comparison of one tool to

another. In this way the agent is able to classify different types of tools based

upon the functional abilities they possess. A large number of trials (1200) were

needed to generate the clusters of outcomes, and these experiments were conducted

in simulation.

32 Background and related work

Relational approaches

The disadvantage of the geometric and functional approaches described above is

that generalisation across different objects and situations is difficult. For example,

in a purely functional approach such as Sinapov and Stoytchev (2008) a robot must

experiment and learn with each object before it can determine what type of tool it

is. Kemp and Edsinger (2006) allows for generalisation across different tools, but

only by abstracting away almost the entire detail of the tool and reducing it to a

point representing the tool-tip. Bogoni (1995) learnt the object shape parameters

which gave the best performance on a tool-use task, but this propositional approach

is only effective when the important features can be represented by a compact set

of attribute-values.

Tools are structured objects where the relationship between the constituent

parts – and between the user, tool and target object – is critical to the effective

functioning of the tool. A hammer, for example, should have a flat head which

lies at a right-angle to the handle; the handle should be held near the base, and

the flat surface of the hammer should be brought into contact with the blunt end

of the nail, which in turn is held at right-angles to the piece of wood. Learning

this sort of information in propositional (attribute-value) form is difficult. The

learner would need to represent every possible relationship between each part of

every object by an attribute — leading to a combinatorial explosion of attributes

with no structure in the search space. Furthermore it is difficult to incorporate

background knowledge into a propositional learning approach, and many relational

concepts such as “the object under the hammer” cannot be properly expressed.

Due to the strongly relational nature of the tool-use domain we argue that some

sort of relational learning approach is desirable. To the best of our knowledge, the

work in thesis (first outlined in Brown and Sammut (2007)) is the first research

in robot tool-use learning which uses a relational approach. Related work on

relational approaches to learning models of abstract actions is covered in detail in

Section 2.2.2, whilst an approach to discovering the relational structure of simple

articulated objects through manipulation is discussed in 2.1.2 below. We also note

that the problem of learning relational models of objects has appeared in other

contexts, such as machine vision (Palhang and Sowmya, 1997).

2.1 Tool-use and object manipulation in robotics 33

As described in Chapter 3, our agent uses a relational representation of tool

object and actions. Specifically we describe tools and situations in a subset of the

language of first-order logic. Learning tool definitions and usage, such as in the

hammer and nail scenario described above, is performed using a relational concept

learner. This allows us to generalise across different objects and situations in a

much more flexible manner than would be possible with a propositional learner

(such as an attribute-value based decision tree). When our agent encounters a new

object it is able to determine whether it might be a useful tool by considering the

relationships which exist between its constituent parts, and the properties of these

parts. Likewise, the way in which the tool should be made to interact with novel

objects (and the user), is neatly captured by the relational representation.

Another feature of our symbolic relational approach is that it can be naturally

incorporated into planning and problem-solving. In previous tool-use approaches

(described above) the agent learns new behaviours but does not have to learn

how or when they should be used. In our research the agent learns to use a tool

in order to achieve a goal which it is otherwise unable to achieve. When a new

behaviour is learnt it expands the range of planning operators which is available for

problem solving. Related work on learning new planning operators and learning

from demonstration is covered in Sections 2.2.2 and 2.2.4 respectively.

2.1.2 Learning object manipulation

Mason et al. (1989) and Christiansen et al. (1990) describe an early attempt to

learn and use manipulation models with state transitions which are explicitly non-

determinisitic. The authors describe a learning procedure for a robot manipulation

task involving moving objects to goal locations by tilting the tray on which they

are placed.

Lynch (1993) and Yoshikawa and Kurisu (1991) attempt to learn the friction

parameters of pushed objects through direct experiment by pushing an object and

observing the resulting displacement. This information, along with a geometrical

model and a mechanics analysis, then allows planning of pushing manipulations,

identification of stable pushing directions, and recognition of objects based on their

friction characteristics.

34 Background and related work

Salganicoff et al. (1993) describes a system for a robot which learns to manipu-

late objects into new locations on a plane by pushing through a single fixed point

contact. The agent learns a manipulation model which maps tangential pushing

velocities to the resulting rotations of the object relative to the pusher. In order

to move an object to the target a nearest neighbour method is used to select the

most appropriate action to correct deviations from the desired path caused by the

inherent instability of the point-contact pushing system.

Salganicoff et al. (1996) uses a version of ID3 decision trees to learn to select

useful approach directions for object grasping from visual information. The robot

was supplied with superquadric shape approximations of objects and was able to

rapidly learn appropriate approach directions which allowed the gripper to pick

up novel objects.

Fuentes and Nelson (1998) presents a method for learning dextrous manipula-

tion of objects using multifingered robot hands. An evolution / genetic algorithm-

based strategy is used to learn a set of manipulation primitives, which correspond

to translating or rotating a given object in a set of orthogonal directions. More

general types of manipulation are then obtained by scaling and adding or sub-

tracting these primitives and relying on the mechanical compliance of the robot

hands to produce the desired effect.

Other work focussed on learning models of pushing actions includes (Zrimec,

1990) and (Narasimhan, 1995). Narasimhan builds a local controller by sampling

the action space to create a forward map of actions to differential displacements,

and then uses table-lookup to choose the optimal action corresponding to a desired

control correction. This is similar to the approach adopted in Salganicoff et al.

(1993).

Fitzpatrick et al. (2003) uses simple poking and prodding actions to learn the

resultant effects on novel objects of unknown shape and properties. The robot

learnt a mapping of the initial hand position to the direction of movement of the

target object when it was pushed, pulled or poked. These position-direction maps

were then used to deduce the required actions for simple goal-oriented behaviour

such as pushing the target closer to another object.

Katz et al. (2008) presents a relational approach to learning the kinematic

2.1 Tool-use and object manipulation in robotics 35

Figure 2.3: Katz et al. (2008) learnt simple relational kinematic models of artic-
ulated objects. The object on the left consists of two rotational (R) joints (in
red) and three sliding (S) joints (in green). The object on the right possesses an
extra rotational and slider joint. The agent is able to learn the kinematic struc-
ture SRSRS of the first object, and transfer this knowledge to learn the SRSRSRS
structure of the second object more quickly than an inexperienced learner.

structure of articulated objects through manipulation. This is related to our re-

search by virtue of its use of a relational approach, and the fact that many tools

can be described as articulated objects (scissors, for example). Katz represents

articulated objects by a set of links which are connected by rotational (R) or slider

(S) joints. An example of an articulated object used in his experiments is shown

in Figure 2.3. The leftmost object in the figure contains three slider joints and

two rotational joints and can be summarised by the joint sequence SRSRS.

Katz’s agent is given the task of learning the kinematic structure (the number,

type, and arrangement of joints) in unknown articulated objects which it is given.

Interestingly, the structure-learning problem is recast as relational reinforcement

learning problem, where a reward is given to the robot each time it discovers a

new link or joint in the object. Actions consist of choosing a link to push, and

then observing the effects to see if any new links or joints can be incorporated into

the agent’s model of the object. By learning a policy which discovers structure

quickly on one object the agent is able to use the same policy to quickly discover

structure on related objects.

36 Background and related work

2.2 Learning actions for tool-use

Whilst there has been a relatively modest amount of research on learning new

tool-based actions, there is a vast amount of related work on action learning in

general. In this section we review these general approaches to learning actions,

discuss their suitability in the tool-use domain, and explain where our approach

to learning tool actions fits in.

2.2.1 Action-learning architectures

One useful way of characterising different approaches to action learning is to con-

sider the level of abstraction at which learning takes place. Three-layer robot

architectures (Gat et al., 1998) distinguish three levels of abstraction: the reactive

layer, the mid-layer, and the deliberative layer.

Broadly speaking, the deliberative layer is the most abstract level and makes

decisions by searching a model of the agent’s environment — using a Strips

planner for example (Fikes and Nilsson, 1971). In contrast, the reactive layer

is the most primitive layer and involves no search. Its behaviours must respond

quickly to changes in the agent’s environment, and often involve direct state-

action mapping or a feedback control mechanism. The mid-layer may use one

or more of the reactive layer behaviours in sequence to achieve useful subgoals.

Although the mid-layer may keep track of internal state variables in order to

choose between reactive behaviours, it does no forward search. Both reactive and

mid-layer behaviours can be modelled by the deliberative layer.

Our agent’s three-level action architecture is shown in Figure 2.4. The deliber-

ation layer consists of two sub-layers: the abstract planner FastForward (Hoffmann

and Nebel, 2001) and a Rapidly-exploring Random Tree (RRT) motion planner

(LaValle and Kuffner, 1999). The planner forms abstract plans in symbolic logic,

which the motion planner then converts into ground paths through the state space.

The mid-layer behaviours are responsible for tracking these paths, and they do so

by repeatedly calling control-layer behaviours to achieve intermediate subgoals

along the path. The control-layer behaviours, such as GotoPose, are implemented

using a simple feedback control mechanism.

2.2 Learning actions for tool-use 37

Figure 2.4: Our approach to a tool learning agent, represented as a three layer
architecture. Note that learning occurs only at the deliberative level.

Learning in our action architecture occurs entirely at the abstract deliber-

ation level, where abstract action models and qualitative models of tools are

learnt. These models are learnt through a combination of learning by demon-

stration and learning through trial and error. The demonstration component uses

an explanation-based learning (Ebl) type algorithm (Mitchell et al., 1986), whilst

the trial and error component uses inductive logic programming (Ilp) algorithm to

learn (Lavrac and Dzeroski, 1994). The object models allow the agent to identify

objects which can be used as tools, whilst the action models describe the way in

which the agent, tool and subject must interact in order to achieve the subgoals of

the tool action. Operationalised instances of these models are used in the motion

planning sub-layer and the results are fed down through the architecture to the

mid and controller layers.

2.2.2 Learning abstract models of actions

As we have noted (see 2.2.1) our approach to tool-use learning focuses on relational

learning at the abstract or deliberative level. In particular, our agent learns new

tool-use actions in the form of abstract action models, which can be transformed

38 Background and related work

into low-level behaviours using a motion planner. Whilst there has been no pre-

vious work directly tackling the problem of learning relational models of tool-use

actions, research on the more general problem of abstract action model learning is

particularly relevant.

Approaches to learning abstract action models can be divided along a number

of dimensions:

• the action representation and learning problem

• the environmental assumptions

• how examples are collected

• the learning method

In the remainder of this section we examine previous work on learning abstract ac-

tion models, and Strips models in particular. The discussion is divided along the

above dimensions, allowing us to highlight the differences and similarities between

our approach and earlier methods.

Action representation and learning problem

One of the most common approaches to modelling abstract actions is the Strips

representation (Fikes and Nilsson, 1971). Strips models, in one form or another,

are the basis of most modern approaches to automated planning and as such

Strips has been the favoured representation for learning abstract action models.

Most of the learners cited in this section employ a Strips-like representation of

actions (see Gil (1994) for example).

Under the Strips representation each action is represented by a Strips oper-

ator which consists of three main components:

• a list of precondition literals

• a list of add literals

• a list of delete literals

The precondition literals represent the conditions which must hold in order for the

action to be executed. The add and delete literals together model the important

2.2 Learning actions for tool-use 39

effects of the action. That is, when the action is executed the add list literals are

expected to be added to the world state, while the delete list literals should no

longer hold and are removed from the world state description.

Two types of learning task are commonly posed to a Strips model learner,

differing on the amount of background knowledge supplied to the agent:

1. Starting from scratch, learn new Strips models of one or more actions (eg.

Wang (1995); Benson (1996); Pasula et al. (2007)).

2. Given a partial or incorrect Strips model, learn the complete and correct

model of the action (eg. Gil (1993)).

Approaches which learn from scratch, can be divided into those which attempt

to learn action models with a single primary (intended) effect (Benson, 1996) or

action models which take account of multiple possible effects (Pasula et al., 2007).

A less commonly posed learning task is to give the agent an initial action model

and to ask it to learn a behaviour which fits the action model. This is an inversion

of the usual problem of learning an action model of an existing behaviour. Ryan’s

Rachel system (Ryan, 2004) tackles this task by using a reinforcement learner to

learn a behaviour which satisfies the precondition and goals of a Strips operator

supplied by the user. A more conventional approach is then used to use learn

side-effects of the learnt action.

Methods which learn abstract models of existing behaviours can be thought of

as bottom-up learners, since the low-level behaviours must exist before the action

model can be constructed. In contrast, approaches such as Ryan’s are top-down

in that the action model constrains the low-level behaviour to be learnt. Yik and

Sammut (2007) is another example of a top-down learner — Strips models are

used to apply qualitative constraints to a parameter space, and then a hill-climbing

method is used to optimise within these constraints. In this particular case there

is no further learning at the Strips level.

Whilst most action learners have focused on learning models of individual oper-

ators, other research has examined the problem of learning sequences of operators

which correspond to useful tasks. Hume’s Cap system (Hume, 1995) is one such

learner which was used to learn procedures such as building an arch, juggling

40 Background and related work

balls, and climbing tasks involved in mountaineering. Cap represents procedures

as concepts written in first order logic, where the construction and features of the

concept describe how the procedure should be carried out. Buildling an arch, for

example, involves first constructing a left column and a right column, and then

placing a cross-beam on top of these columns. Other procedure learning systems

are discussed in Section 2.2.4.

Benson’s Trail system (Benson, 1996) learns both individual action models

in a Strips-like representation, and arranges them in semi-universal plan trees

to form useful reactive behaviours. The individual action models, which are re-

ferred to as teleo-operators, are a generalisation of Strips to continuous domains.

Other interesting variations on the basic Strips representation include the work

of Lorenzo and Otero (2000), where action models are learnt in the more general

language of the situation calculus (McCarthy and Hayes, 1969).

The learning system presented in this thesis falls into the category of learning

Strips action models from scratch. However, unlike other methods which learn

new abstract models in a bottom-up manner, our approach can be thought of as a

hybrid of top-down and bottom-up methods. That is, our system first learns the

useful subgoal(s) of a new Strips action, before actually trying to implement a

behaviour which achieves it. The initial action model is then revised by executing

the action and observing the effects.

Environmental assumptions

The type of the environment in which the learner is designed to operate effectively

is another key dimension of difference between the various approaches. The main

questions which distinguish different learning environments are:

• are states continuous or discrete?

• is there noise in the world state description?

• is the world state fully observable?

• are actions stochastic?

Most systems (eg. Gil (1993); Shen (1994); Wang (1995); Lorenzo and Otero

(2000); Pasula et al. (2007)) have no mechanism for learning from ‘primitive’ nu-

2.2 Learning actions for tool-use 41

merical features — that is, numerical state predicates which can take on a contin-

uous range of values, such as the precise spatial coordinates of a robot. Instead,

these systems rely on the user to provide a set of discrete valued predicates (eg.

near(A,B)) which discretise the world in a useful manner. Other systems, such as

Benson’s Trail, can learn from real-valued state literals in a limited manner. For

example, in Benson (1996) Trail learns abstract action models from continous

state predicates in a flight simulator scenario. Trail is also one of the few action

model learners which takes explicit account of the duration of actions. Most other

systems treat actions as atomic units, in the same way they are used in planning.

The ability to learn from noisy state descriptions is particularly important in

the context of learning action models in robotics. Early systems such as Live

(Shen, 1994), Expo (Gil, 1993, 1994) and Observer (Wang, 1995) were unable

to handle noise. These same systems also made the assumption that actions are

deterministic. Later systems used more sophisticated learning algorithms (see

below) which could learn effectively in noisy environments with stochastic actions.

Benson’s Trail was the first of these, but action stochasticity was handled in a

limited manner.

Work by Oates and Cohen (1996) and Pasula et al. (2007) explicitly mod-

elled stochasticity by allowing for Strips action models with probabilistic effects.

Pasula’s system was able to learn a compact set of stochastic action models to

describe the dynamics of a block stacking task in a three-dimensional physics sim-

ulator (Pasula et al., 2004). In order to take advantage of the stochastic outcome

information encoded in the learnt models a probablistic planner is used in place

of a more conventional Strips planner.

Very few systems have tackled the problem of learning in partially observable

environments. In almost every case the assumption has been made that the rel-

evant aspects of the world state are available to the learning algorithm. Amir

(2005) is the only work we have found in the literature which is able to learn ac-

tion models in partially observable domains. However this approach is limited to

the case where actions are deterministic.

Our learning system is able to learn in the presence of noise, but we do not ex-

plicitly model the stochasticity of actions. Instead we simply accept that some of

42 Background and related work

the agent’s actions may be unreliable and occasionally fail, and allow our planner

to rebuild the plan when necessary. One consequence of this assumption is that

our system will not try to avoid states which could accidentally lead to an unre-

coverable failure. In our experimental domains this has yet to become an issue.

Our system also relies on the common assumptions that the world state is fully

observable, and the state description is discrete.

Collecting examples

The manner in which learning examples are collected is a critical factor to con-

sider when building an action learner. In the action learning problem there are

essentially two ways in which the agent can acquire learning examples2: by demon-

stration or by trial-and-error exploration. In the demonstration case, a teacher

gives the learner useful examples showing how the action can be executed. In

Benson’s Trail system the teacher gives the learner a new demonstration each

time the learner is unable to generate a plan by itself. Other systems, such as

Wang’s Observer, Hume’s Cap, and the approach described in this thesis rely

on a teacher to give the agent an initial demonstration, and thereafter the agent is

left to learn by experimentation. Learning by demonstration is discussed in more

detail in Section 2.2.4 below.

In the trial-and-error learning case the agent is responsible for its own explo-

ration. Gil’s Expo – which begins with partial action models supplied by the user

– relies entirely on generating its own examples. It tries to do this in an efficient

manner by seeking to conduct experiments which will result in the maximum in-

formation gain possible. Cap is another system which places a heavy emphasis on

agent-driven exploration.

A related question is how the learning process interacts with the collection

of examples. In general there are two approaches: incremental and batch. In the

incremental approach, the action model(s) being learnt are revised each time a new

example is collected. This approach is interactive in nature, and allows the learner

to change its behaviour or plan each time it acquires a new piece of information.

2In fact we can identify a third method, learning by receiving advice. However advice-taking
systems usually use this advice as a learning constraint rather than an action model in itself.

2.2 Learning actions for tool-use 43

Examples of incremental (or ‘online’) action model learners include Live, Expo,

Trail, Cap and Observer.

The constrasting approach (batch) involves collecting all of the examples ‘of-

fline’ — that is, before any learning is done. As a consequence there is no opportu-

nity for exploration or collecting examples on the basis of the current hypothesis.

Batch learners are usually aimed at problems where a large number of examples

are needed in order to form a good approximation to the action model. The ex-

ploration policy which directs the manner in which experiments are conducted is

fixed, and is defined by the user before example collection begins. Pasula et al.

(2007) uses the batch method with on the order of a thousand examples in or-

der to learn stochastic action models. In this case the large number of examples

are required in order to properly distinguish between different probablistic action

outcomes. Other batch learners include Lorenzo and Otero (2000); Amir (2005).

The disadvantage of the batch method in the robotics domain is that collecting

examples is an expensive proposition (in terms of time, and wear and tear on the

robot). It is desirable therefore for the robot to learn from as few examples as

possible, in an incremental manner — which is the approach we take in our work.

In fact, our learner is not a true incremental learner since it completely rebuilds the

hypothesis each time a new example is acquired (a true incremental learner would

modify the existing hypothesis rather than rebuilding it completely). However

since it takes much less time to build a new hypothesis from scratch than to

collect a new example this has not been a significant limitation in our research.

Learning method

The properties of the environment described above have led to four main varieties

of learning methods in the literature, shown in the tree in Figure 2.5.

Almost all previous work on action model learning has been inductive in nature.

In this approach, observations of the world state before and after the execution

of an action are used as examples in a concept-learning problem. To learn the

precondition of an action (with one or more known effects), for example, states from

which the action succeeds are defined as positive examples, while states from which

the action fails are labelled as negative examples. A variety of machine-learning

44 Background and related work

Figure 2.5: Categorisation of action model learning approaches. Our learning
system uses both inductive and explantation-based algorithms. The inductive
component is a statistical, relational learner.

algorithms can then be used to learn a definition of the precondition concept.

The type of algorithm (deterministic vs statistical and propositional vs relational)

determines the environments in which the learner can operate successfully and the

concepts it is able to learn.

The early approaches to learning STRIPS models of actions were inductive

and deterministic, using simple difference methods3 to learn the preconditions

of actions. Shen’s Live system (Shen, 1994) learns the precondition concept by

finding the difference between the current hypothesis and one or more misclassified

examples. These differences suggest ways in which the concept can be amended.

Gil’s Expo (Gil, 1994) uses a related method which compares negative examples

to the most similar positive examples to find ways in which to modify the current

hypothesis.

Wang’s Observer system (Wang, 1995) uses a variation of version-space based

concept learning (Mitchell, 1978), where the algorithm iteratively amends the

most-specific and most-general versions of the concept based upon the observed

examples. More recent work by Amir (2005) uses a more complex and powerful

approach to version-space filtering aimed at learning action models in partially-

3We borrow the term ‘difference methods’ from (Benson, 1996).

2.2 Learning actions for tool-use 45

observable environments.

The primary limitation of these difference-based approaches was an assumption

that the examples are noise-free and actions are deterministic. These learning al-

gorithms have no mechanism for learning effectively in the presence of mis-labelled

examples, as often occurs in a robotics context. Naturally a number of systems

tackle this very problem using statistical concept learning methods developed in

the machine learning community.

Oates and Cohen (1996) and Schmill et al. (2000) use statistical concept learn-

ing and clustering algorithms to learn the preconditions and effects of actions

respectively. In Schmill et al. (2000), for example, a decision tree algorithm is

used to learn the preconditions of actions. These algorithms were able to learn

from primitive sensor data, such as sonar readings, where noise is a significant

problem. The main restriction of this approach is that it is only useful for learning

propositional Strips models — that is, models where the preconditions and effects

are simply a list of logical propositions which are either true or false. The more

general form of Strips model expressed in first order (relational) logic cannot be

learnt.

In order to learn first-order models of actions in noisy environments, a number

of systems have used algorithms borrowed from Inductive Logic Programming

(Ilp) (Lavrac and Dzeroski, 1994). Ilp is a subfield of machine learning which

is aimed at learning concepts expressed in a subset of the language of first-order

logic. The general form of the Ilp problem involves learning a hypothesis H from

a set of examples E, given background knowledge B, and under the assumption

that H , E, and B are all written in first-order logic. Ilp methods can be used to

learn action models by treating the world states as examples in a concept learning

problem, in a similar manner to other inductive approaches.

Benson (1996) was the first to apply a noise tolerant Ilp algorithm to learning

action models. His Trail system was able to learn the preconditions of actions in

a variety of simulated domains in which noise would have defeated the difference

methods used by earlier deterministic learners such as Gil (1994) — and unlike the

statistical approaches in Oates and Cohen (1996) and Schmill et al. (2000) Trail

could learn Strips-like models which were relational rather than propositional.

46 Background and related work

A number of other action learners have since employed Ilp to learn models

of actions. Ryan (2004) and Lorenzo and Otero (2000) both used variations of

Progol (Muggleton, 1995) to learn action models in simulated worlds. In Ryan’s

work the Ilp algorithm was used to learn the side-effects of Strips, whilst Lorenzo

used it for learning action models in the situation calculus. Pasula et al. (2007) de-

veloped an algorithm which learnt stochastic relational rules in three-dimensional

physics simulation. One of the distinugishing features of their approach was that

the learning algorithm used a different search heuristic to the greedy hill-climbing

methods used in previous methods.

Whilst most previous approachs to action model learning have used the in-

ductive learning paradigm, an alternative approach is possible via explanation-

based learning (Ebl) (Mitchell et al., 1986). Ebl has been used extensively in

the Strips planning community for speed-up learning. In speed-up learning the

aim is to learn rules for improving search speed or quality. This can be achieved

by learning ‘macros’ for common sequences of actions, learning when to prune

search branches, or learning better path selection heuristics. Of these only learn-

ing macros can be considered to be action model learning, and since these models

only summarise sequences of known action models the learning is limited in scope.

Recent work by Levine and DeJong (2006) involves a more interesting version

of action model learning based on Ebl. In their approach, the agent is given sim-

ple analytical and qualitative constraints which express the relationships between

domain variables. The explanation-based module of the learner uses the observed

examples of system behaviour to convert this general background knowledge to

a more compact relationship graph model. These relationship graphs represent

the simplest causal explanation of the world dynamics. The graphs are then cali-

brated numerically and used to generate operators which can be used in planning.

Levine’s method is an example of operationalisation of a complex domain — learn-

ing a more compact and useful model of the world. It is however limited to learning

in deterministic domains.

As noted by Kambhampati and Yoon (2008) it is popular misconception that

Ebl is not able to learn knowledge that is not already implied by the agent’s

background knowledge — and thus only speed-up learning or operationalisation of

2.2 Learning actions for tool-use 47

a more general domain theory is possible. However, in the case where the agent’s

background knowledge is incomplete it is indeed possible to use explanations to

guide learning of knowledge which is not already implied. This is the basis of the

approach used in our work, where we use incomplete explanations of the teacher’s

demonstration to imply the relevant features which should be present in novel

action models. These features could be learnt via a purely inductive process, but

using an Ebl approach allows the agent to learn effectively from a single example

— in contrast, an inductive method would require many examples in order to

identify these features based upon statistical observation.

Where our approach fits in to action model learning

The work in this thesis describes a system which uses a combination of Ilp and

Ebl algorithms to learn relational Strips of actions in an incremental manner.

The closest existing action model learner to our approach is Wang’s Observer

system (Wang, 1995), which also learns incrementally and uses a version-space

approach to representing the action model hypothesis. Wang’s approach is nev-

ertheless quite different to ours. Firstly, Observer uses a conventional version

space representation which cannot handle any noise in the examples. In contrast,

our approach is based upon a more robust Ilp algorithm which can learn in the

presence of noise. Secondly, Observer operates in a purely discrete world and

requires that the trainer provide an example trace which specifies the exact actions

which were executed in each discrete state. Our system, meanwhile, takes as input

a primitive state trace sampled from a continuous world and the trainer’s actions

are not provided to the learner. Thirdly, because our system incorporates Ebl it

is able to learn from a single example, whereas in Observer more examples are

required — in Wang (1995), for example, the learner is given 70 examples from

the trainer.

2.2.3 Motion planning

Our system uses a motion planner to generate ‘behaviours’ for picking up and

manipulating tools. The primary attraction of motion planning (compared with

48 Background and related work

behaviour learning) is that for a certain class of problems4 it allows the agent to

find solution trajectories to novel sub-goals quickly and effectively. For example, in

a robotic arm reaching task the agent can generate a trajectory for grasping a novel

object without requiring experimentation to generalise from previous experience.

There have recently been a number of papers exploring efficient combining task-

level planning and motion planning (Cambon et al., 2009; Guitton and Farges,

2008; Stulp and Beetz, 2008; Stilman et al., 2007). These approaches seek to com-

bine the advantages of knowledge-level planning for solving multi-step problems,

with the flexibility of modelling at the geometric level offered by motion planning.

The need for integrated task and motion planning systems arises particularly in

the area of robot manipulation of objects, where the state space is too large to

tackle with a pure motion planner and too complex to model exactly with a Strips

level planner.

One interesting approach is the hybrid planner aSyMov (Cambon et al., 2009,

2004) which combines a fast heuristic forward planner at the task-level with a

roadmap-based manipulation planner at the geometric level. In this system sim-

ple Strips operators describe a relaxed version of the overall problem. That is,

they carry no explicit geometric information and represent simple actions (pick up,

put down, transfer object) which would be executable in the absence of any com-

plicating geometric constraints. Geometric constraints, such as obstacles blocking

the path, are resolved at the level of the manipulation planner. The symbolic

planner is used primarily in the action selection mechanism, where the length of a

solution plan gives a heuristic estimate of the cost of selecting that action.

The motion planner in aSyMov uses a set of parallel roadmaps, one for each

robot, movable object, or robot carrying an object. Links between roadmaps

correspond to locations at which objects are picked up or deposited. Special place

propositions in the Strips operators denote spatial regions or locations where

roadmap nodes can be built — for example, P CANGRASP BOX might represent

poses corresponding to locations from which the robot can pick up a box. The user

4In the context of tool use the motion planning approach is limited to prehensile tool manip-
ulation — that is, tool manipulation where the tool object remains in a fixed pose relative to
the agent’s gripper. Non-prehensile behaviours such as pole-balancing can not be solved using a
motion planner, and are usually tackled by nonlinear control or reinforcement learning methods.

2.2 Learning actions for tool-use 49

Figure 2.6: Sequence showing a solution for planning in the presence of movable
objects, reproduced from Stilman et al. (2007). The goal was for the robot arm to
obtain the green block.

defines a method for generating nodes for each place proposition, often involving

simple inverse kinematics to generate the pose.

In contrast, in our approach the interesting regions of space (corresponding to

the place propositions) are not all defined by the user in advance and must instead

be learnt. In particular, the correct spatial affordances between the agent, tool,

and objects are not known. As a consequence we cannot define simple methods

for generating configurations which satisfy these relationships and must rely on a

constraint solver to find valid poses for these roadmap subgoals. A further differ-

ence is that our “place propositions” are learnt as explicit relational expressions,

rather than simple propositions which are implicitly defined by the user.

The recent work of Stilman et al. (2007) is also noteworthy in the context of

this thesis. In this work the authors address the problem of planning to pickup

and move an object which is surrounded by a number of surrounding obstacles.

The obstacle objects must be moved aside in order to access the target object with

the robot arm, and conventional obstacle-avoiding motion planners are unable to

solve these sort of tasks. An example of a robot arm solving this problem is shown

in Figure 2.6.

The approach used involves finding a path for moving the target object whilst

50 Background and related work

initially ignoring collisions with movable obstacles. This produces a set of objects

which must first be moved out of the way in order that the target object can be

moved without causing any collisions. A simple backward-chaining planner is used

to consider plans which differ in the order in which the obstacles can be moved.

Indirect obstacles (obstacles blocking obstacles) are also added to the set of objects

to be moved. For each ordering alternative an efficient low-level motion planner is

used to search for a solution which gives access to the target object.

The planner used in Stilman et al.’s work is task-specific and considerably less

general than a Strips planner. Nevertheless, it illustrates the utility of employing

a higher-level planner to guide low-level manipulation planning. Interestingly, we

can consider the planner in Stilman et al. (2007) to be a specialised version of our

planner, where the available actions consist of removing “obstructions” from the

desired path of our agent. This would require defining (or learning) a geometric

predicate describing the conditions under which an object can be considered a

potential obstruction.

Guitton and Farges (2008) define three general approaches to implementing

the interaction between a task planner and a motion planner:

• hierarchical : this is the naive approach, where a complete symbolic plan is

computed, before being verified by a motion planner

• hierarchical with backtrack : similar to hierarchical, but when the motion

planner fails the task planner backtracks to find a new solution (rather

than starting again from scratch)

• interleaved : the task planner and motion planner exchange information

after each step, so that information from one can be used to guide the

other

Guitton and Farges demonstrate that the interleaved approach leads to significant

speed gains over the naive approach. They implement a version of an interleaved

system which exchanges messages with a common vocabulary between the task

planner and motion planner. The messages consist of either constraints or advice

which helps to guide the search. Our system implements a naive hierarchical ap-

proach to combining the task and motion planner. However, as described below,

2.2 Learning actions for tool-use 51

our emphasis is on learning new Strips operators and manipulation primitives.

It would be a relatively straightforward matter to extend our architecture to im-

plement a more efficient planner integration as in Guitton and Farges (2008) or

Cambon et al. (2009) in future work.

The approaches to integrating task-level planning and motion planning de-

scribed above are focused on implementing an efficient interaction between the

two levels. Our work addresses a different problem: learning useful new task-level

operators and manipulation-level primitives. As far as we are aware ours is the only

work in the literature which focuses on learning new Strips actions and motion

primitives in an integrated system. Existing systems either use a fixed set of ma-

nipulation primitives and Strips actions (as above), or learn new Strips actions

of fixed behaviours (as in Section 2.2.2). Unlike most other Strips model learners

(eg. (Benson, 1996)) our system is also able to directly access the geometric model

to test hypotheses during learning.

Our system can be thought of as a hybrid Strips and manipulation planning

system which is able to learn new ways of interacting with the world. Each of

our Strips models represents a subset of all possible motion plans, defined by

symbolic constraints on the start and end states, as well as the manner in which

objects are manipulated. Learning a new Strips operator is equivalent to learning

a (hopefully) useful new way of moving objects around in the world. Although it

is currently focused on non-prehensile object manipulation tasks we describe how

the architecture can be extended to learn other types of behaviours in Chapter 7.

2.2.4 Learning from demonstration

Our agent relies on a tool-use demonstration in order to seed the learning process.

Learning from demonstration is a broad field which has received a great deal of

attention from the robotics community. Since we can only give it a relatively

short discussion here, the reader is referred to Argall et al. (2009) for a more

comprehensive survey of approaches to robot learning from demonstration.

Approaches to learning from demonstration can be divided along many dimen-

sions — how the demonstration is recorded (directly vs indirectly), whether the

teacher agent is identical to the learner, and what exactly is being learnt. Here we

52 Background and related work

examine approaches from the point of view of what is learnt. The most common

task involves simply trying to replicate a primitive control behaviour in the form

of a state-action mapping. Other learning opportunities include learning subgoals,

constraints, reward functions, and procedures or activities. Previous work on robot

learning from demonstration in each of these areas is discussed below.

Note that approaches to learning abstract actions from demonstration, which

are most closely related to our work, were discussed in Section 2.2.2.

Behavioural cloning

Behavioural cloning (Michie, 1993) is a popular method for learning to mimic low-

level control policies demonstrated by a (usually) human operator. In behavioural

cloning the agent is given examples of desirable behaviour and must generalise

these specific examples to new situations.

Two distinct approaches to behavioural cloning are possible: direct and in-

direct. In the direct approach to behavioural cloning no model of the system is

built; instead, the agent attempts to learn a state-action policy by treating it as a

concept learning problem. Sammut et al. (1992) describes an example of the direct

approach where the agent learns to fly a plane in a flight simulator after observing

the control traces of a human pilot. Each state-action pair from the control trace

is considered to be a positive example of the desired behaviour, and the concept

learner generates a classifier which tries to predict the correct action to take in any

given state. In theory almost any machine learning algorithm capable of learning

concepts can be used to learn a control policy in this manner — a decision tree

learner is one popular approach, and is used in Sammut et al. (1992).

Indirect methods learn a partial model xk+1 = f(xk, uk) of the system from

the demonstrator’s control trace, and then use that model to achieve the desired

behaviour. Suc and Bratko (1997), for example, learns an approximate model of

the system using locally weighted regression, identifies subgoals in the operators

trace, and then constructs a series of linear quadratic controllers which achieve

these subgoals. The method is used to learn to control a simulated crane. Potts

(2007) describes a related approach where a linear model tree provides a piecewise-

linear model of the environment and local controllers are used to follow a trajectory

2.2 Learning actions for tool-use 53

to the desired goal.

Atkeson and Schaal (1997) uses both parametric and non-parametric modelling

approaches to learn to control a pendulum. The parametric model is derived from

the physics of an idealised pendulum, and parameters are learnt by regression of

the observed demonstration data. The nonparametric model uses locally weighted

regression to construct a series of local models from the training data.

From the point of view of our research, the main restriction in the conventional

behavioural cloning approach is that an expert must provide a complete state-

action control trace. In the case of flying a plane or driving a crane a suitable

expert operator can easily be found and a control trace recorded. In the tool-use

scenario however it is unreasonable to expect that an expert operator exists who

can control the robot to achieve the desired goal. Rather, we want the agent to be

able to learn by observing and imitating another agent (a human, for example).

Under these conditions the agent observes the demonstration but does not know

the exact actions which were executed by the teacher.

Learning subgoals or constraints

One of the objectives of our agent learning from demonstration is to learn the

subgoals which can be achieved through using a tool. Subgoal based approaches

have been used in behavioural cloning in order to overcome some of the limitations

of the state-action mapping approach (Bratko et al., 1998). In particular, lack

of robustness with respect to changes in initial conditions or variations in the

environment. Subgoals try to capture intention of the expert demonstrator so

that the agent is better able to respond to conditions which vary from that of the

demonstration.

Isaac and Sammut (2003) apply subgoal learning to behavioural cloning of

flying manuevers in a flight simulator with turbulence. Model-tree learners are

used to learn both goal rules and control rules; the goal rules model the desired

settings for their controllers and the control rule describes control settings which

correct errors between the current state and the goal state. Segmentation of the

demonstration into different behaviours is done manually, so the learner does not

have to address the problem of knowing when the subgoal has changed.

54 Background and related work

In Morales and Sammut (2004) a demonstration trace is used to find a subset

of predefined controller actions which might be useful for flying a plane. In this

case possible subgoals were not identified per se, but rather a small set of relevant

actions per state. A reinforcement learner was then used to learn a policy over

this small set of useful actions and states.

Suc and Bratko (1997) define subgoals as the points in the state space at

which the operator’s policy changes. In the approach used in this research, these

points were determined by finding minima in the weighted linear quadratic cost.

A LQ controller was then computed to control the system for each stage between

subgoals. The approach was used to control a container crane in simulation, a

system with nonlinear dynamics.

Finally, Pollard and Hodgins (2002) take an alternative approach to generaliz-

ing demonstrated manipulation tasks by extracting constraints from the example.

A human demonstration of manipulating (tumbling) a large box was used to de-

fine the number of manipulation contacts and constrain the forces exerted by those

contacts. A specialised manipulation planner was used to find solutions to the task

within these constraints.

Learning reward and cost functions

Another approach to learning from demonstration involves learning states or fea-

tures that should be reached or avoided when attempting to mimic the task: that

is, learning cost or reward functions. This area is often referred to as “inverse”

reinforcement learning (Ng and Russell, 2000), since it involves finding the reward

function given a demonstrated behaviour rather than the more conventional case

of finding a suitable behaviour given a reward function.

Atkeson and Schaal (1997) presents a system which learns both a system model

and a reward function after observing a demonstration. The problem involved a

robot arm learning a pendulum swing-up task, where a pole is swung up and

then balanced upright. The reward function and dynamics model was created

from 30 seconds of human demonstration and punished deviations away from the

demonstrated trajectory. The model and reward function were then used to learn

a policy to achieve the task.

2.2 Learning actions for tool-use 55

In Abbeel and Ng (2004) the agent learns a reward function under the as-

sumption that it can be expressed as a linear combination of known features. The

technique was applied to learning driving styles in a driving simulator. Abbeel

et al. (2007) learns both transition model and reward function for performing aer-

obatic maneuvers on a small autonomous helicopter. A human pilot provides the

demonstration so that the dynamics model and reward function can be built.

Ratliff et al. (2006) takes demonstration paths provided by an expert and

attempts to learn a mapping of features to costs. An MDP or A* search algorithm

can then be used to find paths in other instances of the same task. This approach

is interesting because, like our approach, the agent is only given the sequence

of states which the expert traverses — it does not know the actions which were

executed. In Ratliff et al. (2006) the technique is used to learn to plan effective

paths across terrain in satellite images.

Learning plans, procedures or activities

Learning abstract action models from demonstration was discussed in Section 2.2.2.

In addition to this work there has been some robot learning from demonstration

focused on learning at the higher level of plans, procedures and activities. The

emphasis is on learning an abstract description of the teacher’s actions which can

be reused or generalised to other tasks. Two important questions are how the

sequence of actions executed by the teacher is segmented into known sub-tasks or

behaviours, and how the individual action segments are recognised.

In early work by Kuniyoshi et al. (1994) a robot torso learns reusable plans

for assembly tasks – such as constructing a simple ‘table’ – by watching a human

demonstration. The system uses qualitative events and features to segment the

demonstration into a sequence of operations. Some changes in the initial state are

possible (such as positions of objects) but the process requires that the final state

and the parts used during the assembly are the same as the demonstration.

Veeraraghavan and Veloso (2008) present a method for teaching sequential

tasks with repetition through demonstration. The “demonstration” in this case

consists of instructions from the teacher of which actions to execute; relevant ob-

jects are indicated with a laser pointer. The agent therefore does not have to

56 Background and related work

do any segmentation of the demonstration or recognition of behaviours. Action

preconditions and effects are calculated using simple difference methods (the al-

gorithm does not appear to be designed to handle noise at the abstract level).

The interesting feature of their approach is that it can learn to carry out plans

(procedures) with loops. The approach is demonstrated by having a robot learn

to repetitively put objects in a box.

Hume’s Cap system (Hume, 1995) used the demonstration of a teacher to learn

procedures such as building an arch, juggling balls, and climbing tasks involved in

mountaineering. In this work the agent has access to the actions executed by the

teacher, so the segmentation problem does not exist. The approach has yet to be

applied in a robotics scenario.

Nicolescu and Mataric (2001) learn generalised procedures in the form of be-

haviour networks from multiple demonstrations of a task. The agent watches the

demonstration and records the time periods when the postconditions of any of

its behaviours are true during the demonstration. It then analyses the temporal

ordering of these periods to determine if one behaviour produces permanent or

enabling preconditions for another behaviour, or if an ordering constraint between

the two behaviours exists. These relationships are represented in a behaviour net-

work which can be used by the agent to carry out the desired procedures. The

technique is illustrated by teaching a Pioneer 2DX robot to visit object targets in a

particular order, move objects from one location to another, and to slalom around

obstacles. Whilst Nicolescu and Mataric (2001) involves learning from a single

demonstration, the ideas are extended in Nicolescu and Mataric (2003) to gener-

alise the behaviour networks after multiple demonstrations. Verbal cues are also

used during the demonstration to help the robot to attend to relevant information

and help create correct generalisations of the task.

Although it does not involve action learning from demonstration, we also note

here the work of Sridhar et al. (2008). They present an approach to unsupervised

clustering of object-based activities which is related to part of our approach to

learning from demonstration: specifically, the technique used for segmenting the

activity into epsiodes is similar to our approach. In their work the segmenta-

tion is based on changes to the topological relationship between bounding boxes

2.2 Learning actions for tool-use 57

Figure 2.7: A sequence of episodes making up “pickup object” sub-activity. A new
episode occurs at the point where a spatial connectedness predicate changes (from
Sridhar et al. (2008)).

of objects: a new episode occurs in places where bounding boxes become either

disconnected, surrounding, or touching. Figure 2.7 shows five episodes which re-

sult from a hand reaching in to pick up an object on a plate. Our approach uses

a coarser segmentation based on overlapping, moving bounding boxes and only

segments at points where objects stop or start moving.

2.2.5 Learning primitive behaviours by trial and error

The trial-and-error behaviour learning problem has been addressed in a very gen-

eral way in the fields of dynamic programming and reinforcement learning (Sutton

and Barto, 1998). In the dynamic programming approach the agent has access to a

complete model of the environment, and is given an implicit goal for the behaviour

in the form of a reward function. The agent must learn a behaviour (a ‘policy’

which maps states to actions) which maximises the expected cumulative reward it

receives whilst executing the behaviour.

Reinforcement learning is similar to dynamic programming, but tackles the

case where the agent is not given an a priori model of the environment. Two

flavours of reinforcement learning can be distinguished: direct and indirect. The

58 Background and related work

direct (or model-free) approach does not build a model of the environment and

instead attempts to directly learn the best action to take in any given state —

the so-called optimal value function. In contrast, indirect reinforcement learning

involves learning a state transition model and using this model to compute the

optimal state-action policy.

From the point of view of tool learning, the primary advantage of these ap-

proaches is that they would allow the agent to learn to perform a wider range of

behaviours than can be represented by our Strips-plus-motion-planner approach.

The corresponding disadvantage is that they are generally either slow to learn, or

require careful tailoring of the state or policy representation for each behaviour to

be learnt. Our use of a motion planner with symbolically defined motion primi-

tives allows us to generate solutions to novel problems quickly, and requires only

a single example to seed the learning process. Furthermore, the relational nature

of the Strips action models means that the learnt actions can adapt to changes

in objects and situations.

Chapter 3

State and action representation

In this chapter we describe our approach to representing states and actions for

tool-use problems. We describe how abstract action descriptions, expressed in

first-order logic, are translated into executable primitive behaviours.

3.1 Overview of the architecture

Our agent uses a two-layer representation of states and actions as illustrated in

Figure 3.1. At the primitive level, the agent receives state information from the

environment and executes primitive actions in response to this information. At the

abstract level, states are described in first-order logic and actions are represented

with STRIPS-like operators. A planner is used to construct useful plans to achieve

the agent’s goals and an action model learner amends existing action models or

learns entirely new ones.

The primary point of difference in this architecture, as we shall see in more

detail below, is the way in which abstract action operators are operationalised into

useful low-level behaviours via a constraint solver and motion planner. Each action

model defines a set of sub-goal states for the motion planner, and the constraint

solver is used to find ground solutions which satisfy these sub-goals in the current

state. This allows our abstract actions to be treated as generators of low-level

behaviours, rather than simply being models of existing behaviours.

Our approach to generating low-level behaviour – using abstract STRIPS-like

60 State and action representation

Figure 3.1: The agent uses a simple two-layer representation of states and ac-
tions. It receives primitive state information from the environment and replaces
this primitive state description with an abstract state description based upon pred-
icates defined in its background knowledge. High-level actions are represented by
STRIPS-like models, and a planner is used to select the appropriate action to ex-
ecute according to the current world state and the agent’s goal. Abstract actions
are translated into executable primitive behaviours through a more complicated
process involving a constraint satisfaction solver and a motion planning algorithm.
This process is described in detail in Section 3.3.2.

operators in conjunction with a constraint solver – is related (but quite different)

to previous work by Yik and Sammut (2007). In Yik’s work STRIPS models are

used to constrain the search space for a low-level walking behaviour, although the

STRIPS models are provided by the user rather than being learnt. In our work the

action models are learnt, and operationalised via a constraint solver and motion

planner.

3.2 State representation

3.2.1 Primitive state

At the low-level the primitive state consists of the positions and orientations of

all objects in the world at each time step. In addition to this dynamic spatial

information, the agent is given “static” information about the unchanging geom-

3.2 State representation 61

etry and structure of each object in the world. These data consists of the shape,

dimensions, and attachment points for each object and its components.

3.2.2 Abstract (relational) state

On top of the primitive state the agent builds an abstract state description which

is able to explicitly represent the complex properties and relationships which ex-

ist between objects and agents in the world. The abstract state description is

expressed in first-order logic, and is generated from a set of predicate definitions

provided to the agent as background knowledge. These abstract predicates, such

as on(X,Y) are expressed in terms of primitive state variables (object poses) or

other abstract predicates. The exact poses of individual objects are not repre-

sented explicitly in the abstract state, so a single abstract state description may

be used to describe a (possibly large) number of primitive states — for example,

an abstract state defined by on(book,table) describes many different primitive

states in which the book is in different positions on the table.

An example abstract state predicate

As a simple example of an abstract state predicate we consider the spatial predicate

onaxis(Object,Robot) which is true if Object lies on the primary axis of Robot

as shown in Figure 3.2.

Figure 3.2: Illustration of the onaxis predicate.

62 State and action representation

The hashed area in the diagram shows locations at which an object will be on the

robot axis. This predicate might be defined in terms of the primitive poses of the

two bodies as:

onaxis(Object, Robot) :-

pose(Robot, RobotPose),

pose(Object, ObjectPose),

relpose(RobotPose, ObjectPose, [X,Y,Th]),

abs(Y) < 0.05.

In plain English this predicate states that if the pose of the object relative to

the robot is [X,Y,Th] then the Y-displacement must be less than 0.05m. Here

relpose(Pose1,Pose2,[X,Y,Theta]) is a geometric primitive which calculates

the relative pose [X,Y,Theta] between two poses, using the first pose as the origin

of the coordinate system. Meanwhile abs(Number) simply gives the absolute value

of an expression.

3.3 Action representation

As illustrated earlier in Figure 3.1 our architecture uses two layers of actions:

abstract and primitive. At the upper level the agent has a set of abstract actions

A1, A2, . . . An which allows it to form plans to complete a range of useful tasks.

These abstract actions could include simple things like picking up and putting

down objects, or more complex actions such as using a cup to collect water from

a tap. The aim of learning is to expand the set of useful abstract actions which

are available to the agent.

Each abstract action can be used to generate a low-level behaviour by a process

which we will outline in detail in Section 3.3.2. Abstract action goals (which

describe many primitive states) are operationalised into a specific primitive world

state through the use of a constraint solver. A motion planner and controller are

then used to create the ‘behaviour’ which reaches the goal state.

3.3 Action representation 63

3.3.1 Abstract action models

Each abstract action is represented by a model which consists of three pieces of

information:

• MOVING: a list of manipulated objects

• PRIMITIVES: a list of movement primitives

• STRIPS: a STRIPS model (Fikes and Nilsson, 1971)

For the purposes of illustration consider the case of a robot arm using a cup to

collect water from a tap. The act of placing the cup into a suitable pose under the

tap can be represented as the abstract action put under(Cup,Tap). An abstract

action model for this action might be:

ACTION put under(Cup,Tap)

MOVING robot-arm, Cup

PRIMITIVES fwd, back, left, right, up, down, rotatecw, rotateccw

STRIPS

PRE in gripper(Cup),

gripping(Cup),

clear underneath(Tap),

orientation(Cup,vertical-up)

ADD below(Cup, Tap),

near(Cup, Tap),

aligned vertically(Cup, Tap),

DEL clear underneath(Tap)

The list of manipulated objects, MOVING, in this case is simply the robot arm and

the cup it is holding. The movement primitives, PRIMITIVES, are used by the

low-level motion planner to generate solution paths. In this example they consist

of 8 primitives which move the robot arm’s end effector (and therefore the cup) in

any of 8 different directions in real space.

The STRIPS model describes the conditions which must exist before the action

can be executed, as well as the changes which occur in the world when the action

is executed. STRIPS models are composed of three lists of abstract literals:

64 State and action representation

1. The precondition (PRE): A list of conditions which must be true in order for

the action to be executable.

2. The add list (ADD): Literals which are added to the world state when the

action is executed.

3. The delete list (DEL): Literals which are removed from the world state when

the action is executed

In the above example of a robot arm using a cup, the STRIPS model precondi-

tion states that the cup must be in the arm’s gripper, it must be oriented vertically,

and the region underneath the tap must be clear of other objects. The add and

delete lists (known as the effects of the action) state that the action results in the

cup being located under the tap, as well as near the tap, and vertically aligned

with the tap. A “side effect” of the action is the delete list element stating that

the region below the tap is no longer clear.

As we shall discuss further below, STRIPS models play an important role in

our action representation. They are used as planning operators in the agent’s

STRIPS planner, and they also provide the logical constraints from which low-

level behaviours can be generated. An extension to our architecture to allow the

use of richer action models is discussed in Chapter 7.

3.3.2 Generating a behaviour from an abstract action

The mechanism for generating a behaviour from an abstract action model is illus-

trated in Figure 3.3. There are five main steps involved:

1. Extract the spatial sub-goals from the action’s STRIPS effects.

Each predicate in agent’s background knowledge is specified as spatial or

non-spatial. Spatial predicates are expressed in terms of primitive poses or

other spatial predicates.

2. Generate a primitive goal state satisfying these sub-goals: A spatial

constraint solver is used to find a primitive world state which satisfies the

abstract spatial subgoals of the action.

3. Create a ‘virtual’ composite object to be manipuated by the mo-

tion planner: Following our restriction to prehensile object manipulation

3.3 Action representation 65

in this thesis (see Chapter 1), moveable objects listed in the MOVING com-

ponent of the action model are treated as a single geometric object to be

manipulated by the motion planner (joints in the robot manipulator are, of

course, permitted). For example, a box and the agent pushing it are treated

as a single rigid object for the purposes of motion planning. The relative

spatial positions of the component objects are fixed to mirror their relative

poses in the current world state. The allowed movement primitives are given

by the PRIMITIVES list.

4. Find a path to the primitive goal state: A motion planner uses the

composite object motion primitives to generate a path from the current world

state to the ground goal state (generated in step 2).

5. Track the generated path to the goal: Track the path using a generic

feedback controller, following it until the desired primitive goal state is

reached. Failures are detected by a simple timeout mechanism and handled

at the abstract level by replanning.

In the case of the example of a robot arm using a cup, the agent extracts the spatial

subgoals from the action model and generates a concrete goal state in which the

cup is positioned correctly under the tap. It then constructs a composite object

for the motion planner by attaching the cup to the robot arm’s end effector. The

allowed movements of the arm-plus-cup combination are the same as the default

set of movement primitives for the arm alone. The composite object and movement

primitives are passed to a motion planner which finds a path from the current world

state, to the goal state in which the cup is being held under the tap. A generic

controller is then used to track this path and move the cup to this location.

Further description of the ground goal state generation step are given below,

while in-depth details on the constraint solver, path planner, and controller used

in our agent are presented in Chapter 6.

Generating a ground goal state

Abstract goals are converted into a ground goal state using a constraint solver

which we have written in the constraint logic programming language ECLiPSe

66 State and action representation

Figure 3.3: Illustration of how behaviours are generated in our agent architecture.
The action model’s moving object list, movement primitives, and preconditions
define a set of composite object motion primitives which can be input into a path
planner. The abstract goals of the action are extracted from the STRIPS effects
and passed to a constraint solver, which produces a ground goal state. The path
planner finds a path to move objects to the goal state, and the generated behaviour
is produced by a controller tracking this path to achieve the desired (ground) goal
state and abstract action sub-goals.

(Apt and Wallace, 2007). The details of how this constraint solver works are

presented in Chapter 6 so here we simply give a brief overview of how it works in

practice.

Firstly it should be noted that the constraint solver only operates on spatial

predicates. Thus, given the literal on(book,table) as a goal the constraint solver

is able to generate a ground world state in which the book is on the table. However

non-spatial literals such as painted(table) are ignored: any non-spatial effects

are treated as side-effects of the movement and interaction of objects in the world

(such as a wet paint brush moving across the surface of the table).

3.3 Action representation 67

The constraint solver takes the following inputs:

• a set of abstract spatial constraints

• a composite “moveable” object comprised of one or more bodies (often in a

fixed relative spatial orientation)

• a “background” state of objects in fixed poses

In the arm and cup example, the input abstract spatial constraints would be (from

the STRIPS model): {below(cup,tap), near(cup,tap), aligned vertically(

cup,tap)}. The composite moveable object would be the robot arm, with the cup

attached to the end effector (in a position mirroring the current world state). Fi-

nally, the background state would consist of the current poses of all other objects

in the vicinity – excluding the arm and the cup – and these objects are treated as

fixed in space.

The constraint solver treats the poses of the bodies in the composite moveable

object (eg. the arm and cup) as variables, and searches for solution poses for

these objects such that the abstract spatial constraints are satisfied. The solution

search space therefore consists of the space of allowed (non-colliding) poses of the

composite moveable object. The algorithm which does the low-level constraint

satisfaction search is built-in to the ECLiPSe engine, and optimised to search

efficiently through the space without needing to enumerate all of the possible

poses.

In most cases a variety of ground pose solutions for the composite object are

possible and a particular solution is chosen at random. For example, when solving

a constraint such as on(book,table) the solution pose for the book could lie

anywhere on the table’s surface. Additional spatial constraints would be required

if a specific location on the table was desired.

3.3.3 Manipulation recognition models

In addition to a ‘library’ of abstract actions, the agent also stores a set of manip-

ulation recognition models. A manipulation recognition model is a special type

of abstract action model whose STRIPS model contains no effects. It is not used

68 State and action representation

for planning or generating actions, but for recognising particular types of actions

executed by other agents.

As an example, consider the following manipulation recognition model for mov-

ing an object to a new location:

ACTION move object(Object)

MOVING robot-arm, Object

STRIPS

PRE in gripper(Object),

gripping(Object)

ADD -

DEL -

This manipulation recognition model would allow an agent to recognise any action

which involved moving an object to a new location when the object is being held

by the robot’s gripper. As we shall see in Chapter 4, the absence of effects in

the manipulation model will allow it to be matched to segments of the teacher’s

demonstration where the type of object manipulation is known, but the intended

goal of the manipulation is not. This situation occurs frequently in tool-use prob-

lems, where a single type of action can be used to achieve many different abstract

goals.

As a further example, suppose the learner is watching a teacher push a box

to a position under a light bulb, in order to climb up on it and change the bulb.

If the learner is unfamiliar with using boxes to increase one’s reach it will not

recognise the significance of the state under(box,lightbulb) which defines the

goal of the pushing action. However a “pushing” recognition model would still be

able to recognise the type of action which is occurring (which means the learner

can focus on learning the action sub-goal).

3.3.4 Discussion

Before moving on to the presentation of the agent’s learning algorithms in Chapter

4, it is useful to briefly comment on the role of STRIPS models in our representa-

3.3 Action representation 69

tion and learning.

Our STRIPS models have two primary uses: firstly as traditional planning

operators, and secondly as generators of low-level behaviours. We say that our

STRIPS operators “generate” low-level behaviours because when the sub-goals of

the action (encoded in the STRIPS effects) are changed, the observed low-level

behaviour of the agent changes. Thus by learning desirable action sub-goals and

preconditions (which are themselves sub-goals) we are learning different ways of

acting. An alternative way of looking at it is to say that we are trying to identify

useful instances of a single generic motion-planner-plus-controller behaviour (which

can accept multiple objects as inputs).

70 State and action representation

Chapter 4

Learning

In this chapter we describe the algorithms used by the agent to learn new tool-

based actions. Our approach is divided into two parts:

• learning by explanation

• learning by trial and error

In the first part, our agent tries to identify a new and useful tool-use action by

watching the activities of a teacher. An explanation-based learning method is used

to construct an approximate action model representing the novel tool action.

In the second part, the agent attempts to generalise this new tool action

through trial and error experimentation. This involves selecting potential tool

objects and testing out ways of using them to achieve the goal. By incrementally

refining and generalising its hypothesis, the agent is able to learn both the spatial

relationships and the object properties required for successful tool use.

4.1 Assumptions: Structure of a tool use action

Most tool actions consist of two or more component steps. Consider the following

common tool actions for example:

• placing a ladder against a wall and then climbing it

• putting a bucket under a tap, then turning a tap to fill it with water

• placing a nail and then hitting it with a hammer

72 Learning

Figure 4.1: Illustration of the “tool pose state”. The tool action has the structure
L1, L2, . . . , Ln, E where Li denotes a positioning step, and E an effects step.

• placing the blade of a peeler onto a carrot, then dragging it across the

carrot’s surface

• putting paper in a stapler, placing a hand on the stapler, and pushing

downwards

A common feature of these actions, and many others, is that the action can be

divided into two main parts:

• The positioning step(s): The agent moves the tool and/or target objects

into a correct relative pose.

• The effect step: The agent applies the tool (executes a primitive action

or behaviour) to achieve a useful effect.

If we denote a positioning step by Li and the effect step by E then a typical tool

action with n positioning steps has the structure: L1, L2, . . . , Ln, E.

Definition: The tool pose state

Actions which fit this pattern have an important property which greatly simplifies

the learning process: all of the interesting spatial information about using the tool

is encapsulated in the world state which immediately precedes the effect step. This

world state, which we shall call the tool pose state, is illustrated in Figure 4.1.

The tool pose state represents a snapshot of the robot, tool, and relevant objects

in their correct relative positions ready for use. Examples of the tool pose state

are:

• a bucket sitting underneath a tap, with the robot’s hand on the tap

4.1 Assumptions: Structure of a tool use action 73

• a carrot peeler being held with its blade against the carrot, at right angles

to the length of the carrot

• a screw attached to a drill, and being held up against a piece of wood

In each case the tool pose state features the tool, objects, and agent in a relative

spatial pose which is characteristic of the tool action being executed. Our aim is

for the agent to learn a description of this state so that it can reproduce the tool

action.

Learnable tool actions

In this thesis we assume that the tool actions which the agent must learn corre-

spond to the above “positioning/effect” pattern. This domain restriction allows

an important simplification in the learning process. Specifically, the learner only

has to learn to describe a single tool pose state, rather than learning a sequence

of intermediate sub-goal states.

Learning a sequence of intermediate pose states is a significantly more difficult

problem, since the agent only receives feedback about the success or failure of

the whole sequence (rather than the individual components). When an action

fails it is then difficult to work out which sub-goal state was incorrectly defined.

In the general case, where the agent must pass through many intermediate sub-

states before getting a succeeded/failed signal, the problem turns into (relational)

reinforcement learning. In this context, working out which intermediate states

were important is the so-called credit assignment problem.

A simple example of an action with multiple intermediate pose states is painting

a wall: the agent must first correctly place the paintbrush in the tin of paint

(tool pose state 1), before placing the brush on the wall (tool pose state 2). The

success of the painting action depends on passing through both intermediate tool

pose states. If the final painting action fails, then it is difficult to know which

intermediate state was incorrect.

One way around this problem is to receive many more examples of the cor-

rect behaviour from the teacher. This allows the learner to isolate the important

features of the intermediate states it must pass through. Learning (relational)

74 Learning

action sequences from multiple teacher examples has been studied previously (see

eg. (Benson, 1996; Hume, 1995)) and we do not pursue it further here — our goal

in this thesis is to demonstrate fast learning from a single example of tool use.

4.2 Learning from explanation

In this section we describe how the agent is able to identify novel tool actions in

a teacher’s demonstration of a tool use task. We present an explanation-based

method for constructing a new abstract tool action model. This model is later

used as the starting point for trial and error learning in Section 4.3.

The problem faced by the learner is illustrated in Figure 4.2. It sees a teacher

performing an activity which leads to a useful goal being achieved. The learner

recognises some of the actions it sees (shown in green), but somewhere in the

middle of the demonstration is a novel action it does not recognise. The aim is to

explain what the novel action does, and to build an initial abstract model of this

action.

Figure 4.2: Illustration of an unrecognised action occurring during the teacher’s
demonstration. The green line represents the parts of the demonstration which
were recognised by the learner.

Our approach consists of the following steps, illustrated in Figure 4.3

1. Watch a teacher using a tool to complete a task.

2. Identify abstract actions in the teacher’s demonstration. This con-

sists of two steps:

(a) Segment the demonstration. The agent divides the teacher’s

demonstration into segments, each corresponding to a different un-

labelled abstract action.

4.2 Learning from explanation 75

Figure 4.3: Summary of learning a new action model by explanation. The steps
involved are: 1. Watch the teacher’s demonstration; 2. (a) Segment the demon-
stration; (b) Match the segments to existing action models; 3. Create a new action
to represent the unknown segments; 4. Build a corresponding STRIPS model by
explanation.

(b) Match the segments to abstract actions. The agent attempts

to label the segments of the demonstration using the actions in its

existing library of abstract actions.

3. Introduce a novel tool action to represent unrecognised segments.

Any segments which cannot be matched to known actions are labelled as

components of a novel action.

4. Construct a novel action model via a form of explanation-based

76 Learning

learning. A STRIPS model for the novel action can be constructed by

identifying the subset of literals in the novel action’s start and end states

which are relevant to explaining how the teacher achieved the goal.

5. Pass the new action model to the trial-and-error learning module

for further refinement. The process for learning by experimentation is

described in Section 4.3. It involves testing various tool objects on related

problems in order to learn a better model of the new action.

Each of these steps are discussed in more detail in the remainder of this section.

4.2.1 Segmentation of the teacher’s demonstration

The learner is given a demonstration of the novel tool use task by a teacher. This

demonstration is supplied to the learner in the form of a sequence of primitive

world states w1, w2, w3, . . . , wn, where each primitive world state wi specifies the

poses of all objects in the world at time step i. The primitive world state sequence

is created by sampling the world every 0.1 seconds during the demonstration.

In order to identify the abstract actions executed by the teacher agent the

learner uses a two-step process. Firstly the demonstration is segmented using

heuristics described below. These segments are then matched to abstract action

models in the agent’s background knowledge. The model matching process is

described in Section 4.2.2.

A simple example

We use two simple heuristics to identify boundaries for segmentation of a teacher’s

example. Firstly, the object motion heuristic which states that a distinct action

begins or ends each time an object (or the agent) starts or stops moving. Secondly

the object contact heuristic states that actions may also start or stop when

two objects come into contact or break contact.

As an illustration of segmentation, consider a teacher using a broom to retrieve

a box which is out of reach under a couch. We might naturally describe the activity

as follows: the agent picks up the broom, it puts the broom under the couch and

4.2 Learning from explanation 77

hooks the box, then pulls the box out from under the couch; finally it puts the

broom down and picks up the box.

This natural segmentation obeys the object motion heuristic: in each segment,

a different combination of objects is moving. This idea is illustrated in Table 4.1

below:

Segment Teacher’s action Objects in motion
1 Reach to pick up broom agent
2 Move broom under couch agent, broom
3 Pull box from under couch with broom agent, broom, box
4 Put broom down agent, broom
5 Reach to pick up box agent
6 Lift box agent, box

Table 4.1: Movement-based segmentation of the broom problem.

This segmentation can then be used for matching abstract actions to the demon-

stration trace. An abstract action matches a segment if it has the same set of

moving objects, and if the preconditions and effects of the STRIPS model are

satisfied by the start and end points of the segment. This matching process is

discussed in Section 4.2.2.

Why segmentation?

Before presenting the details of the segmentation algorithm we should comment

briefly on the reason for separating the segmentation and action model matching

steps. Why don’t we simply try and match STRIPS models to different parts of the

demonstration trace and skip the motion/contact segmentation step altogether?

The answer is threefold. Firstly, the novel tool action frequently involves mul-

tiple unrecognised steps. For example in the broom example described above,

neither segments 2 or 3 (hooking the box with the broom, and then pulling the

box) would be recognised by the learner. A purely STRIPS-based approach would

lump these two steps together as a single “unrecognised” action, and provide no

clues as to how it should be divided into sensible components (if at all).

Secondly, matching at only the STRIPS level can introduce a great deal of

78 Learning

ambiguity as to when particular actions begin and end. This is because an action’s

precondition can be applicable long before it is actually executed (see Figure 4.4).

Figure 4.4: Recognition of actions using STRIPS models alone can be problematic,
since the action preconditions give only limited information about when the action
actually commenced.

Thirdly, our approach ensures that the start and end points of all components

of the tool use action can be identified clearly. Since we use matching at both the

primitive movement/contact level, and at the abstract STRIPS level, our novel

action recognition system also makes it more likely the agent will match known

actions to observations correctly.

Motion-based segmentation

The primary action segmentation heuristic used in our work is:

The object motion heuristic: Action segments begin or end when

objects start or stop moving.

Many human and robot activities, including tool use, can be naturally segmented

into distinct actions using this heuristic. The heuristic is appealing from a robotics

viewpoint because it relies only on being able to detect when objects start or stop

moving. Using motion to broadly segment activities has been used a number of

times in others’ work, such as (Sridhar et al., 2008) (as discussed in Chapter 2).

We apply motion-based segmentation through a two-step process. Firstly, the

velocity of each object is thresholded to produce motion boundaries for each object

individually. These individual object boundaries are then combined into a single

segmentation of the teacher’s trace.

4.2 Learning from explanation 79

The idea is illustrated in Figure 4.5, which shows how the segmentation pro-

cess would work for the broom problem described earlier in this chapter. The

observed velocities of the robot arm (end effector), the broom, and the box are

first thresholded individually. Combining these boundaries produces six segments

corresponding to those listed in Table 4.1 presented earlier. Segment three, for

example, involves the robot manipulating the broom and the box.

Figure 4.5: Segmentation of the broom problem using the object motion heuristic.
The numbered segments correspond to those in Table 4.1.

We use a “hysteresis” threshold for thresholding the individual object velocities

— that is, we use different thresholds for starting and stopping movement such

that vstart > vstop. This ensures that objects do not appear to “flicker” between the

moving and stationary states. The exact values of the vstart and vstop parameters

must be set by the user, but the system is not terribly sensitive to the exact values

chosen.

A further complication may arise from cases where the teacher robot pauses

during execution of the example. For example, the teacher may move to a par-

ticular location, stop, turn, and then continue moving in a new direction. Since

80 Learning

nothing is happening during the “paused” segments we simply ignore boundaries

created during paused sections of the demonstration trace. Similarly, very short

segments created by objects starting or stopping motion very briefly are filtered

out.

Lastly, it is often the case that two objects will start or stop moving at roughly

– but not exactly – the same time. This situation is illustrated in Figure 4.6.

To avoid producing two very closely spaced boundaries in the combined trace we

merge segments which fall within a short time tmerge of each other.

Figure 4.6: Merging segment boundaries: Boundaries are merged if they fall within
∆t < tmerge of each other.

Contact-based segmentation

A second useful heuristic for segmenting activities is one we refer to as the contact

heuristic:

The contact heuristic: Action segments begin or end when objects

come into contact or break contact.

This heuristic generally produces segment boundaries in similar locations to the

object motion heuristic — the reason being that objects usually start or stop

4.2 Learning from explanation 81

moving as a result of contact with another body.

However the heuristic is useful in segmenting activities which involve “apply-

ing” a moving object to a stationary object: buttering a piece of bread with a

knife or wiping a blackboard with a cloth, for example. In these situations the

tool object moves across the surface of another object and it is useful to be able

to isolate the component of the action corresponding to this motion. The object

motion heuristic would not recognise these as separate segments as only the tool

object moves.

The heuristic is applied in a similar manner to the object motion heuristic,

except that it is applied within existing motion segments. That is, we only at-

tempt to find contact segments within existing motion segments. For each motion

segment we step through the demonstration trace and note any points at which

objects make or break contact — “contact” is defined by upper and lower distance

thresholds between objects. Contact boundaries that are close to the beginning

or end of the existing segment are ignored, since they are already accounted for.

In many cases this process does not produce any new segments, but in problems

such as those described above one or more new segments are introduced.

The reason for not using only the contact heuristic (and ignoring motion seg-

mentation) is that there can be some difficultly in determining the point at which

objects actually come into contact. This is particularly true in a robotic’s context,

where determining whether an object is moving in a camera image is a simpler task

than determining whether two objects are in contact. We therefore treat motion

segmentation as the primary heuristic.

4.2.2 Matching segments to abstract actions

Having divided the teacher’s example into distinct segments, the agent attempts

to match them to actions in its action library. A segment is matched with an

abstract action Ai from the agent’s library if the following conditions are satisfied:

1. The objects manipulated in the segment can be matched to the MOVING list

in the abstract action model of Ai

2. The preconditions of Ai are true at the beginning of the segment

82 Learning

3. The effects of Ai are true at the end of the segment

In the (unusual) case where more than one abstract action can be matched to a

particular segment, the segment is labelled with the action with the more specific

set of preconditions.

If the segment cannot be matched to a known abstract action, the learner

checks to see whether it matches with a manipulation recognition model (defined

in Chapter 3). Recall from Section 3.3.3 that manipulation recognition models

consist of only a set of preconditions and a set of moving objects. As the name

suggests, these models allow the agent to identify the manner in which an object

is being moved even if the abstract goal of the action is unknown. For example,

different manipulation models might detect an object being held in a gripper, an

object being pushed in front of the robot, or an object being carried on top of

another object.

In the broom problem described earlier, the learner’s manipulation model can

recognise that the teacher is holding the broom and moving it to a new position,

even if it does not recognise the intended goal state for the tool pose.

Finally, if the segment cannot be matched to either an abstract action or a

manipulation recognition model, then it is simply labelled as unknown. These

types of actions involve objects and/or tools being manipulated in novel ways,

since the recogniser models summarise the methods of manipulation which the

agent already knows about. Novel manipulations usually occur in the “effect step”

of the action, such as in peeling a carrot or using a screwdriver to turn a screw.

In the broom problem the agent does not recognise the type of manipulation in

the “pulling” segment where the broom drags the box from under the couch, and

thus this segment is labelled as unknown.

The segments which are not matched to a known abstract action Ai are (follow-

ing the assumptions in Section 4.1) grouped together as components of a compound

tool action. This typically comprises a sequence of positioning steps which have

been labelled with manipulation recognition models, and an effects step which has

an unknown manipulation type (ie. is unmatched).

4.2 Learning from explanation 83

4.2.3 Explanation-based learning of the STRIPS model

The learner now has a segmentation of the teacher’s demonstration, with each

segment either labelled by a known action or labelled as part of a novel action.

The next step is to construct an abstract model of the novel action which defines

how it is executed and what it achieves. Below we present an explanation-based

approach to constructing this action model, which relies on examining the context

in which the action is executed to determine relevant preconditions and effects.

Our approach is a form of explanation-based learning (EBL) but it differs from

the original concept which focused mostly on speed-up learning (Mitchell et al.,

1986).

The explanation-based heuristic we use is based upon the assumption that

the teacher is acting rationally, and states that each action in the demonstration

sequence is executed in order to achieve a necessary sub-goal. Therefore actions

occurring before the novel action should enable the novel action preconditions.

Similarly, the effects of the novel action should help enable the preconditions of

actions occurring later in the demonstration.

To formalise this idea, let us firstly define unsupported preconditions as pre-

conditions which are not enabled by the (known) effects of any preceeding actions

(and which were not already true at the start of the demonstration). We also

define unexplained effects as effects which occur in an action segment but are not

explained by the corresponding action model (if it exists), and which enable the

preconditions of one or more actions occurring later in the explanation.

If we assume the teacher is acting in a rational manner then any explanation

of the plan it has executed must obey the following properties:

• no action in the explanation should have unsupported preconditions

• there should be no unexplained effects which are not accounted for in the

explanation

These requirements can be used to infer some of the missing preconditions and

effects of the novel action segments. The algorithm used to build an explanation-

based model of the novel action segments is as follows:

84 Learning

1. Identify unsupported preconditions in action segments occurring after the

novel action.

2. Identify unexplained effects occurring in the novel action segment, which

can be used to explain how the unsupported preconditions were enabled.

3. Construct new action models which account for the unexplained effects and

enable the unsupported preconditions in the explanation:

• The “effects”-step STRIPS model is defined as:

– Effects: Defined as the intersection of the observed state changes which

occur during the segment and the unsupported preconditions of actions

occurring after the novel action.

– Preconditions: Defined as the net effects of previous actions, plus a lit-

eral tool pose(Tool,Obj) representing the tool pose state which must be

achieved in order to enable the action. The definition of the tool pose lit-

eral must be learnt through trial-and-error experimentation (Section 4.3).

• A “positioning”-step STRIPS model is defined as:

– Effects: Defined as any unexplained effects occurring during the segment

plus an additional tool pose(Tool,Obj) literal. The tool pose(Tool,Obj)

represents the tool pose state which must be achieved in order to enable

the effects-step of the tool action defined above.

– Preconditions: The preconditions are copied from the recognition model

which was matched to the segment.

4. Replace ground objects in the action model by variables. We only

replace constants with variables if they refer to physical objects; other types of

logical constants are preserved.

5. Assign the novel action a unique name and define the action parame-

ters. The parameters are defined to be the list of objects moved by the action

(excluding the robot), along with any other variables found in the preconditions

or effects list.

As an example of the output of this algorithm, consider once again the broom

problem described in Section 4.2.1. The learner watches a demonstration and

4.2 Learning from explanation 85

segments it into the six segments shown in Table 4.2. In this table Segment 2 is

recognised as a positioning action (it matched a manipulation recognition model)

whilst segment 3 was unrecognised. These two segments are components of a novel

tool action.

Seg Action Unexplained effect Unsupported precon
1 Pickup broom - -
2 ?Positioning? - -
3 ?Unknown? ¬under(box,couch) -
4 Put broom down - -
5 Pickup box - ¬under(box,couch)
6 Lift box - -

Table 4.2: Unexplained effects and unsupported preconditions in the broom prob-
lem.

The algorithm checks to see if there are any unsupported preconditions in the

explanation occurring in segments after the novel action and finds that ¬under(box,

couch) is an unsupported precondition of pickup(box) — that is, there are no

existing actions in the explanation which can account for how this precondition

was enabled.

The algorithm then checks to see whether the novel tool action segments are

able to explain how this precondition was supported. It finds that the effect

¬under(box,couch) occurs during segment 4. The action model for this segment

must therefore have ¬under(box,couch) as an effect. Note that in general there

will be many irrelevant effects which occur when an action is executed. We use

the context in which the action is executed (the explanation) to help identify the

small number of effects which are relevant. This situation is illustrated in Figure

4.7.

In order to construct the corresponding preconditions of the tool action, we

make an assumption that any literal which is an effect of an earlier action in the

explanation, and is still true at the time of execution of the action, is likely to be

an action precondition. In addition to these “explained” preconditions, we also

add a tool pose literal to the precondition — which represents the definition of

the tool pose state which will be learnt by trial-and-error in Section 4.3. This

86 Learning

Figure 4.7: Illustration of an unsupported precondition and corresponding unex-
plained effect in the broom problem. Unsupported preconditions in the teacher’s
explanation are used to identify the important effects of a novel action, as in
general many of them are irrelevant.

derived predicate describes the spatial positioning of the tool, and the necessary

properties of the tool. Following this algorithm, and after converting constants to

variables the constructed action model for using the broom to get the box is as

follows:

drag-with-broom(Broom,Object,Couch):

PRE: under(Object,Couch),

holding(Broom)

tool pose(Broom,Object)

ADD: -

DEL: under(Object,Couch)

The positioning-step component of the tool action is constructed in a similar

way, except that the tool pose literal is added as an effect of the action, so that

this action becomes necessary in order to enable the effect-step of the action. The

action model constructed in this case is:

position-broom(Broom,Object):

PRE: holding(Broom)

ADD: tool pose(Broom,Object)

DEL: -

4.3 Learning by trial and error 87

The explanation-based learning approach we have described here relies on the

assumption that the learner’s existing action models are sufficiently complete to

describe the teacher’s demonstration (excluding the novel action). The method

will fail if, for example, the agent does not know that ¬under(box,couch) is a

precondition for picking up the box. However in this situation the agent would

have no reason to learn the new tool action, because according to its own action

models it should be able to pick the object up directly. Of course, if the agent

were to attempt to do so it could then learn that its existing action models are

incorrect, and that ¬under(box,couch) should be part of the precondition.

In this thesis we focus on learning tool actions which produce useful effects

— that is, effects which enable one or more preconditions in the agent’s existing

action models. Actions which produce effects that do not help enable any other

action are irrelevant as far as a planner is concerned.

4.3 Learning by trial and error

After explaining the teacher’s demonstration the agent has an initial action model

to represent the novel tool action. The learner must now refine this model through

trial-and-error experimentation. It does this by learning a definition of the tool -

pose predicate which appears in the precondition of the action. As we have noted,

this predicate is used to represent the required preconditions of the tool pose

state which were not learnt by explanation of the teacher’s demonstration. The

definition of tool pose should include any additional preconditions which describe

the required spatial positioning, structure, or shape of the tool.

Our agent learns a definition of the tool pose state by treating it as a form of

concept learning problem in which examples must be generated through experi-

mentation. Each time the action is executed, the agent notes the tool pose state

from which the action was executed and whether the desired sub-goals of the ac-

tion were achieved. If the action completed successfully then the state is a positive

example of the correct tool pose state concept; conversely, if the action fails to

achieve its subgoals then the recorded state is a negative example. This concept

learning approach is commonly used in action model learning (see eg. (Benson,

88 Learning

1996; Pasula et al., 2004)).

We define the tool pose state tool pose(Tool,Obj) (which appears in the tool

action precondition) as the learning concept and then repeatedly:

1. Test the current hypothesis: Select a tool which satisfies the hypothesis

and place it in a pose defined by the spatial constraints in the hypothesis.

Generate a motion plan which solves the task from this state and execute

it, observing whether the action sub-goal is achieved.

2. Add a new positive or negative example: If the action achieved the

desired sub-goal, label the initial state as a positive example. If the action

failed to achieve the desired sub-goal, label it as a negative example.

3. Update the hypothesis: Run a relational concept learner to update the

definition of correct tool pose state.

4. Generate a new learning task, or reset the current one: If the

current task was successfully solved, a new learning task is generated and

presented to the agent. If the agent failed then the current task is reset.

5. Repeat: The agent continues its experimentation on a sequence of learning

tasks, refining its hypothesis. The experiment is terminated when the agent

is able to solve a pre-defined number of consecutive tasks without failure.

The usual approach to using a relational concept learner to learn action model

definitions involves batch learning (eg. (Pasula et al., 2004)), where actions are

executed many times, and the concept learner run only after all the examples have

been collected. We use an incremental approach, which allows the hypothesis to

be refined after each example. The benefits include:

• fewer examples, since the exploration is more targeted

• the agent can act to “exploit” its learning early on (from the very first

example in many cases)

In the remainder of this section we present the details of how tasks are gen-

erated, the hypothesis is represented, examples are generated, and of course the

generalisation algorithm itself.

4.3 Learning by trial and error 89

4.3.1 Generation of learning tasks

The learner is presented with a succession of learning tasks. Each task features

a different set of available tool objects (random variation), and a variation on

the arrangement and dimensions of the other objects in the world. For example,

each instance of a “hammering” task would involve a different set of available

hammering tools along with differently sized or shaped nails.

The details of how we represent the task definition which generates each random

instance are described in Chapter 6. For now, we simply note that the agent is

presented with a new, randomly-generated task instance each time it solves the

previous task. If the agent fails to solve the task by using a particular tool, the

world state is reset so that it may attempt the same task again (using a different

tool, or a different tool pose state). This “reset” step is not strictly necessary from

the point of view of our learning algorithm, but is performed in order to speed up

the experimentation process. Some previous action model learners (Hume, 1995)

have focused on action learning tasks where a world reset is not possible.

4.3.2 Representation of examples

The learning examples in our problem are positive and negative instances of the

tool pose state (see Section 4.1 for the definition of this state). This state is a

precondition of the “effect step” of the tool action. It determines both the correct

positioning of the tool and the necessary properties of the tool (dimensions, shape,

geometric construction and so on).

Figure 4.8 shows four examples of the tool pose state for the task of using a

cup to collect water. Positive examples require that the tool (cup) be placed in

the correct spatial pose, and also that it has the correct structure. The second

example in the figure shows a correct “cup” structure but in the wrong orientation.

The fourth example shows a permissible spatial pose but the structure of the tool

is wrong (it is too thin).

Examples of the tool pose state are represented as instances of the tool pose

predicate. For example, the third cup-use example is represented by the predicate

tool pose(cup2,s3). The parameter s3 appearing in this predicate is the state

90 Learning

State label Example Type
s1 tool pose(cup3, s1) pos
s2 tool pose(cup3, s2) neg
s3 tool pose(cup2, s3) pos
s4 tool pose(cup7, s4) neg

Figure 4.8: Positive and negative examples of correct “cup” tool use. Each state is
labelled by sn and the example by tool pose(Tool,State). Note that the position
of the robot’s gripper is not shown in this simple illustration.

label — the nth example state is assigned the label sn. The learner records whether

an example is a positive or negative example of correct tool use by simply writing

(for state s3 in the Figure):

example(tool pose(cup2,s3), pos).

Whilst tool pose(Tool,State) provides a label for an example, the full spec-

ification of the example must include all of the abstract literals (also referred to as

facts) which describe the state. Any abstract literal which is true in the tool pose

state is included in the list of facts associated with an example. For instance, the

state s2 would include the following facts (amongst others):

orientation(cup3,upsidedown,s2).

on axis(cup3,tap,s2).

under(cup3,tap,s2).

These facts describe the spatial positioning of the tool relative to other objects in

4.3 Learning by trial and error 91

the world. Note that a state parameter is included as the last parameter of each

fact.

Finally, in addition to the dynamic spatial facts associated with an example

there are also a set of “static” structural facts, which describe the structure of each

object. Since the structure of an object does not change (at least in our work)

an additional state parameter is unnecessary. As an illustration, some simple

structural facts describing state s4 might be:

narrower(cup7,tap).

taller(cup7,tap).

part of(cup7,cup7 leftwall).

part of(cup7,cup7 rightwall).

parallel(cup7 leftwall,cup7 rightwall).

These static background facts are stored alongside the dynamic spatial facts for

each example.

4.3.3 Representation of the hypothesis

As we have seen, examples of correct tool use are represented by ground instances of

the predicate tool pose(Tool,State). The agent’s hypothesis describing correct

tool use can then be represented by a clause with tool pose(Tool,State) as its

head. For instance, a hypothesis which states that all cups must be concave up

in shape and held under a tap would be written:

tool pose(Cup,State) :- in gripper(Cup,State),

is tap(Tap),

under(Cup,Tap,State),

shape(Cup,concave up).

In this thesis, rather than keeping track of a single hypothesis clause and re-

fining it incrementally, we instead maintain a set of of allowed hypotheses. We

do this by keeping a single most-specific clause representing one bound on the

hypothesis, and a single most-general clause representing the other. This can be

viewed as a form of version space (Mitchell, 1978), though a true version space

92 Learning

keeps track of more than one hypothesis on the boundary. As we shall see, our

most-general boundary clause is simply a reduction (a subset) of our most-specific

boundary clause.

Our ‘version space’ of allowed hypotheses is illustrated in Figure 4.9. The

outermost boundary on the space represents the shortest, most-general hypothesis

clause consistent with the observed examples. The innermost boundary on the

space represents the longest, most-specific hypothesis clause consistent with the

examples. We denote the most-specific and most-general hypothesis boundaries

by hS and hG respectively.

Figure 4.9: The most-specific (hS) and most-general (hG) boundaries on the hy-
pothesis space. The + and − symbols in the figure represent positive and negative
examples respectively.

This representation differs from that used in most ILP concept learners (eg.

Progol (Muggleton, 1995)) which maintain a single most-general hypothesis clause

and search in a general-to-specific manner. The difficulty with a general-to-specific

approach in the tool-use domain is that the concepts to be learnt are usually

described by fairly long clauses. Learning a lengthy clause in a general-to-specific

manner is very inefficient — it requires very many examples due to the large

branching factor and the fact that all possible shorter clauses must be enumerated

before longer ones.

Similarly, an approach based on maintaining only a most-specific hypothesis

would also suffer from disadvantages — the biggest difficulty being that it becomes

4.3 Learning by trial and error 93

difficult to find examples which satisfy the current hypothesis. Usually only a

subset of the literals in the most-specific hypothesis can be satisfied in the current

state, and it is difficult to know which are most relevant. Our approach maintains

the most-general boundary to help with this process.

We should note that we are not the first to use a form of version-space repre-

sentation for learning action models. Wang’s OBSERVER system (Wang, 1995)

used a true version space (and so was not robust to noise) and Amir (2005) uses

a more complex form of version-space filtering in partially observable domains.

Our motivation for keeping a most-specific and a most-general boundary on

the hypothesis space is related to the efficiency of exploration in the tool-use

domain. This point is elaborated in Section 4.3.4 where we demonstrate how both

boundaries are used to find a suitable example to test.

Mode declarations

Following the approach of Progol (Muggleton, 1995), we constrain the search space

for hypotheses by providing the learner with a list of mode declarations as back-

ground knowledge. Mode declarations are statements which restrict the ways in

which a new literal can be combined in a hypothesis clause. Each mode declara-

tion names a predicate which can appear in the body of the hypothesis clause, and

restricts the way in which its parameters must be linked to existing parameters in

the clause. For example the mode declarations:

:- modeb(near(+obj,-obj,+state)).

:- modeb(shorter(+obj,+obj)).

state that predicates near(A,B,C) and shorter(A,B) can appear in the body of

the hypothesis clause.

Each parameter in the mode declaration consists of two parts: an input (+) or

output specifier (−), followed by a type. The type simply requires the parameter

to be of the named variety (eg. an obj or a state). An input specifier (+) means

that the parameter must be identical to one which occurs earlier in the clause; an

output specifier (−) allows it to be a new parameter which does not occur earlier

in the clause.

94 Learning

Using these mode declarations, the following two clauses would be valid hy-

potheses:

tool pose(A,State) :- near(A,B,State).

tool pose(A,State) :- near(A,B,State), shorter(A,B).

whereas this clause would not:

tool pose(A,State) :- shorter(A,B).

This clause is invalid according to the mode declarations because the second pa-

rameter of shorter(A,B) is defined as an input parameter but does not occur

earlier in the clause.

4.3.4 Testing a hypothesis

There are essentially three ways of choosing a hypothesis from within the version

space to test. The choices are:

• the most-specific boundary; or

• the most-general bounary; or

• a hypothesis in-between these boundaries

Our approach takes the third option of searching for a suitable hypothesis in-

between the boundaries.

The problem with the most-general boundary is that early on in the learning

process it might only contain a few literals, and therefore contain only very sparse

information about the required spatial and structural characteristics of the tool

and action. Using this as the working hypothesis will usually result in a very

high proportion of negative examples, which is not desirable in the early steps

of learning. Learning a tool use hypothesis which consists of, say, eight literals

requires a great deal of experimentation since the general-to-specific learner must

eliminate all hypotheses of length 1, then length 2, and so on.

Using the most-specific boundary is more promising, since it is more likely to

produce positive examples and will also be able to learn longer clauses more quickly.

However, inevitably the most-specific hypothesis contains a very large number of

4.3 Learning by trial and error 95

literals early on in the learning process. When selecting a new example to test, the

agent can usually only choose to satisfy a small subset of these literals, and the

difficulty comes in choosing which literals to test. A most-general boundary helps

to identify some of these literals and prevents the agent from overgeneralising.

The approach we take then, is to construct a working hypothesis by starting

at the most-general boundary and working our way inwards. The exact details

of how this done are detailed below, but it essentially involves starting with the

most-general hypothesis as a “base” clause, and then adding literals from the most-

specific clause to it. This allows us to select a hypothesis which is as specific as

possible, but still remains within the most-general boundary.

In constructing a working hypothesis which most closely matches the most-

specific boundary hS we divide our approach in two. The tool pose hypothesis

incorporates both structural literals (describing the physical composition, struc-

ture, and shape of the tool) and spatial literals (describing how the tool should be

placed relative to other objects). We therefore first select a tool structure which

best matches hS, and then (assuming a tool with the chosen structure) try to select

a tool pose which matches as closely as possible to that specified in hS.

Tool selection

The basic idea of the tool selection algorithm is to find the object which is able

to satisfy the most structural constraints in the most-specific hypothesis. Each

object is scored for suitability according to the number of literals in hS it is able

to satisfy, and the one with the highest score is chosen. In addition to satisfying

as many structural literals in hS as possible, we require that the object satisfy all

of the structural constraints in the most-general hypothesis hG. If an object does

not satisfy all of the structural literals in hG it is assigned a score of zero.

The main steps of the algorithm are as follows. Using the most-specific and

most-general clauses of the hypothesis h ≡ tool pose(Tool,State):

1. For each potential tool object Obj, count the number of satisfiable tool

structural literals in hS

2. Assign a score of zero to any object which does not satisfy all of the struc-

96 Learning

tural literals in hG.

3. Select the tool object with the highest score (greatest number of satisfied

literals).

As an example of the tool selection algorithm, we once again consider the

problem of choosing a suitable cup for collecting water from a tap. Figure 4.10

shows three candidate objects which the agent can choose from. Let us assume

that the agent has the following very simple versions of the most-specific and

most-general hypothesis (in practice the most-specific hypothesis would be much

longer):

tool poseG(Cup,State) :- is tap(Tap),

under(Cup,Tap,State),

has handle(Cup,Handle).

tool poseS(Cup,State) :- is tap(Tap),

under(Cup,Tap,State),

orientation(Cup,vertical),

shape(Cup,concave),

wider(Cup,Tap),

taller(Cup,Tap),

has handle(Cup,Handle),

shape(Handle,rounded).

The algorithm requires that all literals in tool poseG(Cup,State) be satisfied

— ignoring literals which relate to the spatial positioning of the tool, such as

under(Cup,Tap,State). Thus object cup3 can be immediately eliminated because

it does not have a handle. Of the remaining objects, cup1 scores more highly

than cup2 because it satisfies more static literals in hS. Note that the chosen

object does not need to satisfy all the literals of hS (in this case it fails to satisfy

shape(Handle,rounded)).

Pose selection

In a similar way to the tool selection algorithm, the pose selection algorithm at-

tempts to maximise the number of satisfied literals in the most-specific hypothesis

4.3 Learning by trial and error 97

Figure 4.10: Selecting a tool which best matches the current most-specific hypoth-
esis hS. The tool which is able to be matched to the largest number of structural
literals in hS is chosen (see main text).

hS. In this case however we are interested in satisfying the greatest number of

spatial literals. This will allow the agent to place its selected tool in a pose which

is as similar as possible to the previous positive examples it has observed.

The process we use for selecting a suitable subset of spatial literals follows

a similar principle to the tool selection algorithm. We firstly demand that all

spatial constraints in the most-general clause hG must be satisfied — this ensures

that the most important constraints are applied first. We then successively apply

spatial constraint literals from the most-specific hypothesis hS, checking at each

step whether the cumulative constraints can be satisfied. This checking process is

carried out by the agent’s spatial constraint solver.

A more detailed description of the method is given in Algorithm 1. The algo-

rithm is best illustrated with an example. Consider the agent testing a hypothesis

in the cup problem. Assume that it has already selected the martini glass shown

in Figure 4.11 as a suitable cup object to test. It then wishes to choose a spatial

pose in which to place the tool. It does this by selecting a pose which satisfies as

many spatial literals in hS as possible.

Let us assume that the martini glass has parts base, leftwall, and rightwall

as shown in the Figure. Further, let us suppose that with the martini glass substi-

tuted as the Tool parameter, the spatial literals in the agent’s most-specific and

most-general hypothesis are as follows:

9
8

L
e
a
r
n
in

g

(a) (b) (c) (d)

����������	
���
�

(e)

����������	
���

�	�����	������
���

�	�������������
���

������	�����������
���
�

����������	
���

�	�����	������
���
�
�	�������������
���

����������	
���

�	�����	������
���
�

����������	
���

�	�����	������
���

�	�������������
���

������	�����������
���
�
�	������	
���
�

����������	
���

�	�����	������
���

�	�������������
���

������	�����������
���

�	������	
���
�

�����

tap

base

rightwall

leftwall

onaxis

F
igu

re
4.11:

Illu
stration

of
th

e
se

l
e
c
t

p
o
se

algorith
m

(A
lgorith

m
1)

for
th

e
cu

p
p
rob

lem
.

A
t

th
e

top
of

th
e

fi
gu

re
is

a
d
efi

n
ition

of
th

e
cu

rren
t

m
ost-sp

ecifi
c

h
y
-

p
oth

esis
h

S
.

P
arts

(a)
th

rou
gh

(e)
sh

ow
solu

tion
s

to
th

is
h
y
p
oth

esis,
w

ith
each

ap
p
ly

in
g

a
su

ccessively
larger

su
b
set

of
th

e
con

strain
t

literals.
L
iterals

w
h
ich

are
fou

n
d

to
b
e

red
u
n
d
an

t
(alread

y
satisfi

ed
at

th
e

p
rev

iou
s

step
)

or
can

n
ot

b
e

satisfi
ed

are
ex

clu
d
ed

,
as

sh
ow

n
b
y

striketh
rou

gh
tex

t.
In

step
(c)

a
re-

d
u
n
d
an

t
literal

b
e
l
o
w
(
r
i
g
h
t
w
a
l
l
,
t
a
p
)

is
ign

ored
,

w
h
ilst

step
(e)

sh
ow

s
a

lit-
eral

p
e
r
p
e
n
d
i
c
u
l
a
r
(
b
a
s
e
,
t
a
p
)

w
h
ich

can
n
ot

b
e

satisfi
ed

(given
th

e
oth

er
con

-
strain

ts).
T

h
e

solver
th

erefore
b
ack

track
s

to
(d

),
w

h
ich

tu
rn

s
ou

t
to

b
e

a
n
egative

ex
am

p
le.

4.3 Learning by trial and error 99

hS :- below(rightwall,tap),

parallel(rightwall,tap),

below(leftwall,tap),

onaxis(base,tap)

perp(base,tap).

hG :- onaxis(base,tap)

These spatial constraints say that the base of the martini glass should lie on the

vertical axis of the tap, that both walls of the glass should lie below the tap, that

the right wall should be parallel to the tap, and the base should be perpendicular.

The mug shown at the top right of the Figure satisfies all these constraints, but

as we shall it is not possible to satisfy the same set of constraints with the martini

glass.

The complete set of constraints to be tested is constructed by starting with

those in hG, and then adding the remaining literals from hS in random order.

Algorithm 1 Find a spatial pose satisfying the most-specific hypothesis.

select pose

Let A1, A2, . . . , An denote the spatial literals in the most-general clause hG. Let

B1, B2, . . . , Bn denote a shuffled list of spatial literals from hS, excluding any which

are already represented in the Ai. Finally, let C represent the current set of spatial

constraints to be applied.

1: Add the most-general constraints to C (ie. let C← A1, A2, . . . , An)

2: Solve C and let P represent the tool pose solution

3: for each successive literal Bi in B1, . . . , Bn do

4: If Bi is already true in P , discard Bi (a redundant constraint)

5: Else append Bi to the end of C, and find an updated pose solution P to the

constraints in C

6: If no solution P exists, remove Bi from the end of C (incompatible constraint)

7: end for

8: Output the set of applied constraints C and the solution pose P which satisfies

these constraints

100 Learning

Suppose this produces the following set of ordered constraints to test:

C :- onaxis(base,tap)

below(leftwall,tap),

below(rightwall,tap),

parallel(rightwall,tap),

perp(base,tap).

The agent starts at the top of this list of constraints, and adds the literals to the

constraint solver one-by-one. At each step, the solver tries to find a solution pose

for the tool which satisfies the constraints. If a valid pose is found the constraint

literal is retained; otherwise the literal is discarded. Furthermore, if the new

literal being added is already satisfied by the most recent solution pose then it is

considered to be redundant and discarded.

The attempted solution at each of the five constraint-solving steps (correspond-

ing to the five literals which are added) are illustrated in parts (a) to (e) in Figure

4.11. We comment on each step as follows:

(a) Shows a solution pose which satisfies just the first literal onaxis(base,tap).

(b) The second constraint below(leftwall,tap) forces the glass below the

tap.

(c) The third constraint below(leftwall,tap) is redundant because it is al-

ready satisfied using the pose found at the previous step. This constraint

is therefore discarded.

(d) The fourth constraint parallel(rightwall,tap) can be satisfied by ro-

tating the glass as shown in the Figure.

(e) The final constraint perp(base,tap) cannot be satisfied because it is in-

compatible with the earlier constraints (in particular, parallel(rightwall,

tap). This constraint is therefore discarded, and the final solution pose

backtracks to the valid solution found in the previous step (which turns out

to be a negative example).

The end result is that the solution pose shown in step (d) is returned as the pose

to be tested. The agent will now carry out the tool action using this instantiation

4.3 Learning by trial and error 101

of the hypothesis and discover that it is not a very sensible tool pose for collecting

water. The state shown in (d) will then get added as a negative example of the

tool-use task and the agent’s hypothesis will be revised.

As we shall see in Section 4.3.5 this negative example will not affect the most-

specific clause, which is generated purely through positive examples. However

it will cause the most-general boundary to be generalised: that is, additional or

different literals will be added to hG. Since the spatial constraints in hG are always

given priority at the top of the list in the spatial constraint clause C, this will mean

the agent will avoid repeating its current mistake.

The importance of the shuffling/randomisation step in the pose selection al-

gorithm is worth emphasising. It ensures that the learner explores the space of

spatial constraints around the most-specific hypothesis boundary. The order in

which spatial constraints are applied is important (they are not commutative) and

so by shuffling the most-specific literals we make it more likely that the learner

will encounter positive examples, or at least a variety of negative examples.

4.3.5 Learning a new hypothesis: ILP algorithm

Given a set of labelled positive and negative examples of the target concept our

ILP algorithm outputs two clauses representing most-specific and most-general

boundaries on the hypothesis space.

The learning algorithm consists of two main steps:

1. Learning the most-specific boundary clause.

2. Learning the most-general boundary clause.

The most-specific boundary clause is built using only positive examples, via a

process which seeks to find the minimal generalisation which covers a group of

examples. We use a constrained form of least general generalisation (lgg) (Plotkin,

1970) as described in detail below. The most-general boundary clause is then

built by direct generalisation of the most-specific boundary clause. Negative-based

reduction is used to shorten the length of the most-specific clause without covering

additional negative examples.

102 Learning

The resulting algorithm borrows heavily from the algorithm GOLEM (Mug-

gleton and Feng, 1992). The primary difference is that GOLEM’s bias is to learn

the shortest, most-general hypothesis possible. In contrast, we maintain both a

most-specific and most-general boundary on the hypothesis space.

The algorithm is re-run after each example is received, and the current hy-

pothesis is rebuilt. Although the hypothesis is not incrementally varied, the time

needed to re-learn the hypothesis after each example is on the order of a few

seconds — much less than the time required to gather another example.

Initial hypothesis

If we denote the initial teacher’s example as e1 then the most-specific and most-

general boundaries on the initial hypothesis space can be written:

hS : −saturation(e1).

hG : −true.

where saturation(e1) is the initial example saturated with the background knowl-

edge (ie. the bottom clause). When performing this saturation we use the mode

declarations described in Section 4.3.3 to generate the clause, and replace all real

world objects with variables. The initial hypothesis boundaries are illustrated in

Figure 4.12.

Most-specific boundary

The algorithm for learning the most-specific boundary is shown in Algorithm 2. At

the high level this algorithm is identical to the search algorithm used in GOLEM

(Muggleton and Feng, 1992). However, at the low-level we calculate lggs in a

different way, as described below.

Our approach to computing the lgg of two examples is different to the usual

definition (see Lavrac and Dzeroski (1994) for a description of the general approach

to the lgg). We use the mode declarations to restrict the lgg, by demanding that

the example clauses obey the mode requirements.

4.3 Learning by trial and error 103

Figure 4.12: The initial hypothesis boundaries after observing the teacher’s ex-
ample. The most-specific boundary is given by the bottom clause of the example,
whilst the most-general boundary clause is simply true.

As an example of the difference between our approach and the standard lgg

defined in Plotkin (1970), consider the lgg of the following two clauses:

p(a,b) ← q(a), q(b).

p(c,d) ← q(c), q(d).

The conventional lgg of these two clauses would be:

p(A,B) ← q(A), q(B), q(C), q(D).

where the variables A, B, C, and D represent the inverse substitutions a/c, b/d,

a/d, b/c respectively. In our work we only allow new variables to be introduced

either in the head of the clause, or in output parameters in the body of the clause.

Thus if q(+letter) and p(+letter,+letter) are mode declarations for the above

clauses then the lgg would simply be:

p(A,B) ← q(A), q(B).

By restricting the lgg in this manner we are excluding some valid generalisations

of the two clauses in order to constrain the hypothesis space. In effect we are

demanding that the hypothesis clause has the same structural composition as the

104 Learning

Algorithm 2 Generate a most-specific boundary clause (from GOLEM).

most specific hyp

Inputs:

• Pos, a set of positive examples

• Neg, a set of negative examples

1: Pairs ← N random pairs of examples from Pos

2: for all pairs ei, ej in Pairs do

3: Compute coverage of rlgg(ei, ej)

4: end for

5: S ← pair e, e′ with the best coverage

6: Pos ← Pos − covered(rlgg(S))

7: repeat

8: Es ← N random positive examples from Pos

9: for all ei in Es do

10: S ′ ← S ∪ {ei}

11: Score ← coverage of rlgg(S ′)

12: end for

13: ebest ← example which gives best coverage Score

14: S ← S ∪ {ebest}

15: Pos ← Pos − covered(rlgg(S))

16: until Coverage of rlgg(S) stops improving (or all examples covered)

17: return rlgg(S), the most-specific boundary clause

example clauses, but only contains the common elements of both. The formal

definition of our restricted lgg is given below.

It should be noted that our approach to calculating the lgg, although similar, is

different to that used in GOLEM (Muggleton and Feng, 1992). In GOLEM mode

declarations are used as a functional reduction step to delete literals from the lgg

after it has been calculated. In our approach we use the mode declarations to

apply restrictions to the lgg as it is being calculated. This results in an lgg which

is in some cases more restricted, so that our hypothesis space is more constrained

that the one searched by GOLEM.

4.3 Learning by trial and error 105

Mode constrained lggs

We define our mode-restricted lgg as follows. Let a and b be constants appearing

as the nth parameters of two body literals, and the mode of the parameter be

indicated by + or −. If the list of existing inverse substitutions generated by

terms occurring earlier in the clause is ExistingSubs then the mode-restricted lgg

of these parameters is defined as:

1. lgg(−a,−a) = a

2. lgg(+a, +a) = a

3. lgg(−a,−b) =

{

X if X :a/b is a member of ExistingSubs

Y otherwise, and Y :a/b is added to ExistingSubs

4. lgg(+a, +b) =

{

X if X :a/b is a member of ExistingSubs

undefined otherwise.

Parameters in the head of the clause are treated as output parameters for the

purposes of calculating the lgg (ie. new variables are permitted in generalisations).

The lgg of two literals is then defined in the usual way (Plotkin, 1970) as:

1. lgg(p(a1, a2, . . . , an), p(b1, b2, . . . , bn)) = p(V1, V2, . . . , Vn)

where Vn = lgg(an, bn) and only if Vn is defined

2. lgg(p(a1, a2, . . . , an), p(b1, b2, . . . , bm) is undefined if n 6= m

3. lgg(p(a1, a2, . . . , an), q(b1, b2, . . . , bn) is undefined

We also define the lgg of two clauses C1 and C2 in the conventional manner: If

C1 = {A1, A2, . . . , An} and C2 = {B1, B2, . . . , Bn} then

lgg(C1, C2) = {Lij |Lij = lgg(Ai, Bj) is defined}

Most-general boundary

The most-general hypothesis boundary is derived directly from the most-specific

boundary clause via negative-based reduction. Negative-based reduction was intro-

duced in GOLEM as a method for generalising the lgg. Generalisation is achieved

by removing literals from the lgg clause whilst attempting to preserve the clause’s

106 Learning

coverage (ie. maintaining coverage of positive examples whilst avoiding covering

negative examples).

Whereas calculating lggs involves learning only from positive examples, negative-

based reduction focuses on using negative examples (as the name implies). It can

be viewed as a method which expands the most-specific boundary outwards, stop-

ping when it hits negative examples.

The negative-based reduction algorithm, from GOLEM, is as follows. Given a

clause A← B1, B2, . . . , Bn it involves the following steps:

1. Let Bi be the first literal in B1, B2, . . . , Bn such that A← B1, . . . , Bi covers

no negative examples

2. If i < n discard all remaining literals Bi+1, . . . , Bn

3. Rotate the end literal to the front of the clause, and repeat the reduction

process on the clause A← Bi, B1, B2, . . . , Bi−1

4. Repeat the rotation and reduction steps until the clause length remains

unchanged during a full cycle (where each literal has been rotated to the

front of the clause)

In our version of the negative-based reduction algorithm some care needs to be

taken in evaluating coverage after each rotation step. In order for the resulting

hypothesis to satisfy the mode-declarations it is necessary to “float” the front

literal forward through the clause to the point at which its parameters are fully

defined by those literals preceeding it.

Chapter 5

Experimental evaluation

The ultimate test of a tool-learning agent is whether – after some observation and

practice – it is able to perform new versions of the task successfully. Given a new

task and a selection of potential tool objects, an agent which has learnt a correct

hypothesis should be able to select an appropriate tool and use it successfully to

perform the task. In this chapter we present an evaluation of our tool-learning

agent on three tool-use tasks.

5.1 Evaluation method and learning tasks

The work in this thesis falls into the category of exploratory research (Dietterich,

1990) in robot learning — existing approaches to tool and action learning are

unable to solve the tool-learning problem presented here. Perhaps not surprisingly,

there is as yet no set of standard learning problems for tool using agents. In

the absence of a standard set of learning tasks we have chosen some interesting

problems ourselves, being:

• A pull-tool task.

• A push-tool task.

• A ramp-tool task.

The results of these experiments are described in Sections 5.2 through 5.4.

In place of comparing our algorithm to a common baseline, we give a detailed

trace and analysis of the learning algorithm on a typical experimental run of the

108 Experimental evaluation

first learning task, and comment on the learnt hypotheses and average number

of steps to learn. We follow this with a presentation and discussion of learning

results on two other learning tasks, and conclude in Section 5.5 with a more general

discussion of our approach, including its advantages and limitations.

5.2 Pull-tool problem: A detailed experimental

trace and analysis

In this section we present a step-by-step trace of learning on the pull-tool problem,

followed by a discussion of the learnt hypothesis.

5.2.1 The learning task

The objective of the pull-tool problem is to obtain a box which is placed out of

reach in a closed-ended “tube” (see Figure 5.2). In order to solve this problem the

robot must select an appropriate stick tool with a hook and use it to drag the box

from the tube so that it can be picked up.

Initially the agent has no knowledge of “pulling” actions or that sticks with

hooks can be used to bring out-of-reach objects within reach. To seed the learning

process the agent is given a single task demonstration by a teacher agent. The

agent can use this demonstration to explain how a tool can be used to obtain the

box. It also provides an initial example of a suitable tool object, and of the relative

spatial pose in which the tool must be placed.

The following actions are performed by the teacher during the demonstration:

1. Put the tool in the gripper.

2. Close the gripper.

3. Carry the tool and place it in a “pulling” pose.

4. Pull the box from the tube with the tool.

5. Place the tool aside.

6. Open the gripper.

7. Put the box in the gripper.

5.2 Pull-tool problem: A detailed experimental trace and
analysis 109

8. Close the gripper to grab the box.

9. Carry the box away.

Steps 3 and 4 correspond to components of the novel tool-use action which the

agent must learn.

Following the teacher’s demonstration a series of randomly generated versions

of the pull-tool problem are presented to the learner. Each task features a different

set of available tool objects, box and tube. The type of tool objects available in this

task are illustrated in Figure 5.1; one of each type is available for each generated

task. The learner is allowed to experiment at solving each task with the various

tools which are available. Each time the agent succeeds at solving the task a new

version of the problem is generated. The learning process is stopped once the agent

has learnt a hypothesis equivalent to the target hypothesis (described below).

Figure 5.1: Types of tools available in the pull-tool problem. Each task has one of
each type available. Depending on the location of the box in the tube, either (a)
or (b) is the best tool for pulling.

Target hypothesis

A correct solution to this problem involves learning to select the correct type of

tool object, placing it in the correct pulling pose, and then dragging the box from

the tube. The learner will attempt to capture the required spatial and structural

characteristics of the tool by learning a hypothesis describing the tool pose state

(see Section 4.1 for a definition of the tool pose state).

110 Experimental evaluation

1. 5.

2. 6.

3. 7.

4. 8.

Figure 5.2: The pull-tool problem. A box is placed inside a “tube”, out of reach
of the robot. The robot must pick up an appropriate tool (steps 1 and 2), place it
in a ‘pulling’ pose (steps 3 and 4), and then drag the box from the tube (step 5).
The agent can then put the tool aside (step 6) and pick up the box (steps 7 and
8).

5.2 Pull-tool problem: A detailed experimental trace and
analysis 111

A positive example of the tool pose state for this problem is shown in Figure

5.3. Important spatial relationships which must be discovered include:

• the tool’s hook must be placed behind the object, so it is touching

• the tool’s handle should be (roughly) parallel to the walls of the tube

• the tool’s handle should be touching the object on one side

Meanwhile, the required structural properties of a useful pulling tool include:

• it is the longest component of the object

• it has a single attachment (hook) which:

– is attached to the front end of the tool

– is attached at right angles

– is attached on the same side of the tool as the box is in the tube (ie.

if the box is on the left of the tube, a left-sided hook stick will be

required)

Figure 5.3: Illustration of the target hypothesis for the pull-tool problem. The
correct solution involves having the tool parallel to the tube, with the box behind
the hook and up against the side of the tool handle. Furthermore the hook should
be near the end of the handle and on the appropriate side of the handle.

112 Experimental evaluation

5.2.2 Background knowledge

Actions

The learner agent is provided with the following actions for picking up and moving

objects (the corresponding action models are shown in Figure 5.4):

• put in gripper(Object):

Put an object in the gripper area

• close gripper(Object):

Grip an object which is in the gripper area

• move obstacle(Object1,Object2):

Move an obstacle (Object1) out of the way of another object (Object2)

• open gripper:

Open the gripper

• remove from gripper(Object):

Remove an object from the gripper area

In addition to these abstract actions, the agent also has two manipulation

recognition models (Figure 5.5):

• recognise goto

• recognise carry obj(Obj)

As discussed in Chapter 3, manipulation recognition models are used for identi-

fying general actions whose sub-goals are unknown. The recognise goto model

allows recognition of agents moving to a new location, whilst the recognise carry

obj(Obj) model is activated when another agent is observed moving with an ob-

ject in its gripper.

State predicates

The abstract state of the world in the pull-tool problem is described by the state

predicates shown in Figure 5.6. As in Chapter 4 we differentiate between dynamic

spatial predicates, which have a state parameter argument and change value de-

5.2 Pull-tool problem: A detailed experimental trace and
analysis 113

grip(Obj)

PRE ¬gripping,
in gripper(Obj)

ADD gripping

DEL -

PRIMTV closeGrip

MOVING -

ungrip(Obj)

PRE gripping,

in gripper(Obj)

ADD -

DEL gripping

PRIMTV openGrip

MOVING -

remove from gripper(Obj)

PRE in gripper(Obj),

¬gripping
ADD empty gripper

DEL in gripper(Obj)

PRIMTV back

MOVING robot

put in gripper(Obj)

PRE forall(Tube:tube, ¬in(Obj,Tube)),
empty gripper,

¬gripping,
forall(Obstacle:obj,

¬obstructing(Obstacle,Obj)
ADD in gripper(Obj)

DEL empty gripper

PRIMTV fwd,back,rotleft,rotright

MOVING robot

move obstacle(ObjA,ObjB)

PRE moveable obj(ObjA)

obstructing(ObjA,ObjB)

in gripper(ObjA),

gripping

ADD -

DEL obstructing(ObjA,ObjB)

PRIMTV fwd,back,rotleft,rotright

MOVING robot, ObjA

Figure 5.4: Action models provided as background knowledge for the pull-tool
problem.

recognise goto

PRE empty gripper

MOVING robot

recognise carry obj(Obj)

PRE in gripper(Obj),

gripping

MOVING robot, Obj

Figure 5.5: Manipulation recognition models provided to the agent for the pull-tool
problem

114 Experimental evaluation

pending on the spatial situation, and static structural predicates which have no

state parameter (because the structure and shape of objects does not change).

Dynamic predicates:

• in gripper(+obj,+state)

• touching(+obj,-obj,-side,+state)

• at right angles(+obj,+obj,+state)

• at oblique angle(+obj,+obj,+state)

• parallel(+obj,+obj,+state)

• onaxis(+obj,+obj,+state)

• onperpaxis(+obj,+obj,+state)

• in tube(+obj,-tube,+state)

• in tube end(+obj,-tube,-end,+state)

• in tube side(+obj,-tube,-side,+state)

• obstructing(+obj,+obj,+state)

Static predicates:

• attached side(+obj,-obj,-side)

• attached end(+obj,-obj,-disttype)

• attached angle(+obj,-obj,-angletype)

• num attachments(+obj,-number)

• longest component(+obj)

• attached type(+obj,-obj,-attachtype)

• narrower(+obj,+obj)

• shorter(+obj,+obj)

• shape(+obj,-shape)

• closed tube(-tube, -obj, -obj, -obj)

Figure 5.6: Mode declarations for state predicates used for describing the world in
the pull-tube problem

5.2.3 Explanation-based learning of a new action model

The agent observes a demonstration of a teacher agent completing the task, as

shown in Figure 5.2. The demonstration is supplied to the agent as a time sequence

of primitive states w1, w2, w3, . . . where each state wn specifies the poses of all

objects in the world. A primitive state snapshot wn is taken every 0.1 seconds

during the teacher’s demonstration.

Motion-based segmentation

The learner agent begins by segmenting the demonstration trace using the motion-

based segmentation process described in detail in Chapter 4.

The observed instantaneous speeds of the robot, tool and box objects during

a typical demonstration are shown in Figure 5.7 (other objects remain stationary

5.2 Pull-tool problem: A detailed experimental trace and
analysis 115

during the demonstration and are not shown). For each of these objects, a hys-

teresis threshold is used to deterimine the times at which the object appears to be

moving or stationary. The results of applying these movement thresholds to each

object are shown in Figure 5.8.

These thresholded movements of each individual object are then merged to pro-

duce a single segmentation of the demonstration trace, resulting in the coloured

graph at the bottom of Figure 5.8. Each coloured segment corresponds to a differ-

ent combination of moving objects — for example, the red segments correspond

to the teacher robot moving by itself, whilst the green segments correspond to the

robot moving simultaneously with the tool object.

The segments identified in Figure 5.8 are listed in Table 5.1. At this point the

agent has not yet identified specific actions executed by the teacher. In order to

do so it must now try to match action models to each segment.

Segment Moving objects Teacher’s action (unknown)
1 robot Put tool in gripper
2 gripper Close gripper
3 robot, tool Put tool in pulling pose
4 robot, tool, box Pull box with tool
5 robot, tool Put tool aside
6 gripper Open gripper
7 robot Put box in gripper
8 gripper Close gripper
9 robot, box Carry away box

Table 5.1: Segmentation of the pull-tool problem.

Constructing an explanation of the teacher’s demonstration

The agent can construct an explanation of the teacher’s activities by matching

abstract action models to the motion segments it has identified. An abstract

model matches a segment if the action preconditions are true at the beginning of

the segment and the effects have been achieved by the end of the segment. The

moving objects in the segment must also match the moving objects named in the

116 Experimental evaluation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000 1200 1400 1600

’S
pe

ed
’ (

lin
ea

r
+

 a
ng

ul
ar

)

Frame number

Robot motion

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000 1200 1400 1600

’S
pe

ed
’ (

lin
ea

r
+

 a
ng

ul
ar

)

Frame number

Gripper (relative) motion

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000 1200 1400 1600

’S
pe

ed
’ (

lin
ea

r
+

 a
ng

ul
ar

)

Frame number

Tool motion

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000 1200 1400 1600

’S
pe

ed
’ (

lin
ea

r
+

 a
ng

ul
ar

)

Frame number

Reward motion

Figure 5.7: Observed speeds of the robot, gripper, tool, box during the teacher’s
demonstration.

5.2 Pull-tool problem: A detailed experimental trace and
analysis 117

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600

M
ov

in
g

(0
=

st
at

io
na

ry
, 1

=
m

ov
in

g)
Thresholded robot motion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600

M
ov

in
g

(0
=

st
at

io
na

ry
, 1

=
m

ov
in

g)

Thresholded gripper (relative) motion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600

M
ov

in
g

(0
=

st
at

io
na

ry
, 1

=
m

ov
in

g)

Thresholded tool motion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600

M
ov

in
g

(0
=

st
at

io
na

ry
, 1

=
m

ov
in

g)

Thresholded reward motion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600

M
ov

in
g

(0
=

st
at

io
na

ry
, 1

=
m

ov
in

g)

Clustered object motion

robot
gripper

robot + tool
robot + tool + reward

robot + reward

Figure 5.8: Robot and object motion during the teacher’s demonstration, obtained
from thresholding and clustering the observed speeds in Figure 5.7. The top three
graphs show the individual motions of the robot, tool and box. The bottom graph
shows the results of clustering these motions. Each colour represents a different
combination of objects as indicated.

118 Experimental evaluation

Seg Moving objects Explanation Match type

1 robot put in gripper(hookstick) exact
2 gripper grip(hookstick) exact
3 robot, hookstick recognise carry obj(hookstick) partial
4 robot, hookstick, ?? none

box
5 robot, hookstick move obstacle(hookstick,box) exact
6 gripper ungrip(hookstick) exact
7 robot remove from gripper(hookstick),

put in gripper(box) exact
8 gripper grip(box) exact
9 robot, box recognise carry obj(box) partial

Figure 5.9: Explanations of each of the observed motion segments in the teacher’s
demonstration. Segment 4 represents a completely novel action since it does not
match any of the learner’s action models. Segments 3 and 9 represent partial
matches, where the type of action (carrying or moving) is recognised but the exact
sub-goal is not.

corresponding action model.

The result of applying this matching process to the motion segments in Figure

5.8 is shown in Figure 5.9. For each segment three possible types of matches are

possible:

• exact: a single abstract action model (segments 1, 2, 5, 6, 8)

• exact: a sequence of abstract action models (segment 7)

• partial: a manipulation recognition model (segments 3 and 9)

• none: no match exists (segment 4)

Recall that manipulation recognition models, denoted by recognise * (eg. recog-

nise push or recognise carry), allow the agent to describe actions where the

type of action is recognised (eg. pushing an object) but the specific goals of the

action are not. For example, in segment 3 the learner recognised that the teacher

is carrying the tool to a new location but it has no action model which describes

the effects which occurred. Manipulation recognition models can be matched to

these segments because they only require preconditions to be satisfied (the effects

are empty). We describe segments which can be matched by manipulation recog-

5.2 Pull-tool problem: A detailed experimental trace and
analysis 119

nition models such as these as partially-matched. In tool actions these segments

correspond to the tool “positioning” steps described in Chapter 4.

The most interesting segment in this trace is segment 4, which could not be

matched to any known action model. Unmatched segments such as these represent

unrecognised actions which involve the teacher interacting with objects in novel

ways. In this case the teacher is pulling a box object with a tool, a type of action

that does not exist in the learner’s action descriptions.

New tool actions

The action model matching process allows the learner agent to identify novel action

segments; the next step is to try and understand the purpose of these action

segments. As described in Chapter 4, the learner can construct action models

for these novel segments through a process similar to explanation-based learning

(Mitchell et al., 1986). The construction of action models is based upon the idea

that the sequence of observed actions must form a rational plan which achieves a

goal.

Following this rationality assumption, the preconditions and effects of the miss-

ing (or incomplete) action models in the plan can be partially inferred by trying to

build an explanation which contains no unsupported preconditions or unexplained

effects. Unsupported preconditions are preconditions which are not enabled by the

(known) effects of any preceeding actions (and which were not already true at the

start of the demonstration). Unexplained effects are effects occurring in an action

segment which are not explained by the the corresponding action model (if any),

and which enable the preconditions of one or more actions occurring later in the

demonstration.

Our explanation-based learning approach to action model construction involves

three steps:

1. Identify any unsupported action preconditions

2. Identify any corresponding unexplained effects

3. Construct new action models which account for the unexplained effects and

enable the unsupported preconditions in the explanation

120 Experimental evaluation

In this case, two unsupported preconditions can be identified in the example

demonstration trace:

• obstructing(hookstick,box):

a precondition of move obstacle(hookstick,box)

• ¬in tube(box,tube):

a precondition of put in gripper(box)

Each unsupported precondition can be matched with an unexplained effect occur-

ing earlier in the demonstration. In this case, the literal obstructing(hookstick,

box) occurs during segment 3 whilst the literal in(box,tube) is deleted during

segment 4. Neither effect is accounted for by any of the action models in the

original explanation.

The learner can form a consistent explanation by introducing new actions which

account for these unexplained effects. Recall that the method used involves con-

structing new action models using the following principles:

• A new action model is constructed for any segment containing an unexplained

effect which supports a later action precondition.

• The preconditions of the new action include the subset of literals which

are true at the beginning of the segment and which are also the effects of

preceeding actions in the demonstration.

• If the action segment has been matched to a manipulation recognition model,

then the recognition model preconditions are included in the novel action

preconditions.

• If two new actions occur in sequence, and the earlier action is a recognised po-

sitioning action (ie. has been matched to a manipulation recognition model)

then add a tool pose effect to the positioning action, and add the same lit-

eral as a precondition of the second action. The tool pose literal represents

the components of the tool pose state (Section 4.1) which were not learnt by

explanation — such as literals describing the spatial positioning and struc-

ture of the tool. The definition of this derived predicate will be learnt by

trial-and-error experimentation in Section 5.2.4.

5.2 Pull-tool problem: A detailed experimental trace and
analysis 121

The new action model created to explain segment 4, satisfying these principles,

is as follows:

pull from tube(hookstick, box, tube)

PRE: in tube(box, tube),

in gripper(hookstick),

gripping,

tool pose(hookstick, box)

ADD: -

DEL: in tube(box,tube)

The following comments explain how the model was constructed (this construction

step is automated in our system):

1. The parameters of the action are defined as the objects which are manipu-

lated in the segment (hookstick and box), plus any other object mentioned

in the action effects (tube).

2. The effects of this action are the unexplained effects in the segment — ie.

¬in tube(box,tube), which supports the put in gripper(box) action oc-

curring in a later segment.

3. The in gripper(hookstick) and gripping precondition literals arise be-

cause they are present in the effects of earlier actions, and are still true at

the start of the segment.

4. The tool pose(hookstick,box) literal has been added to the precondi-

tion, because the action is preceeded by a novel positioning step (it was

matched with the recognise carry obj(hookstick) recognition model).

As we shall see below, the same literal will be added as an effect of the posi-

tioning step action model, so that the pull from tube(hookstick, box,

tube) action can only be enabled by this positioning step.

Since the positioning segment (segment 3) was matched by a manipulation

recognition model (recognise carry obj(hookstick)), we use this as the basis

for building the positioning action. The preconditions of the action and allowed

motion primitives are taken from the corresponding recognition model. As de-

scribed above, the primary effect of the action is defined to be to achieve the

122 Experimental evaluation

tool pose predicate which enables the tool use action in segment 4. If we assign

the action the name position tool then the action model generated is:

position tool(hookstick, box)

PRE: in gripper(hookstick),

gripping

ADD: tool pose(hookstick, box),

obstructing(hookstick, box)

DEL: -

Note that a second effect of this action is to achieve the obstructing(hookstick,box)

precondition of move obstacle(hookstick,box) (segment 5). This effect can be

regarded as a side-effect of putting the tool in position — an effect which needs to

be undone by the move obstacle action before the box is picked up.

The pull from tube and position tool actions defined above allow a com-

plete and consistent explanation of the teacher’s actions to be constructed. In

order to apply them to new situations involving different objects, the object pa-

rameters are generalised to variables, so that the final action models are shown

below. These action models were generated automatically by our agent, following

the construction rules described above.

position tool(Tool, Box)

PRE: in gripper(Tool),

gripping

ADD: tool pose(Tool, Box),

obstructing(Tool, Box)

DEL: -

pull from tube(Tool,Box,Tube)

PRE: tool pose(Tool, Box),

in gripper(Tool),

gripping,

in tube(Box, Tube)

ADD: -

DEL: in tube(Box, Tube)

5.2 Pull-tool problem: A detailed experimental trace and
analysis 123

Figure 5.10: The tool pose state for the teacher’s demonstration of the task (a
positive example).

5.2.4 Learning from experimentation

Having constructed the initial action model to represent the novel tool action to

be learnt, the agent must experiment and refine this model through trial and error.

The agent can do this by learning a definition of the tool pose predicate which

appears in the precondition of the action. This derived predicate represents the

components of the tool pose state (see Section 4.1) which were not able to be

learnt through explanation of the teacher’s example. This includes any spatial or

structural preconditions which describe the correct positioning, shape or structure

of the tool.

The teacher’s example and initial hypothesis

As described in Chapter 4, the learner is able to extract an initial positive example

of the tool pose state from the teacher’s demonstration trace. This initial example

is illustrated in Figure 5.10. If we label this state as s1 then the initial most-

general (hG) and most-specific (hS) boundaries on the agent’s hypothesis can be

written:

tool poseG(Tool,Box,State) :- true.

tool poseS(Tool,Box,State) :- saturation(s1).

where saturation(s1) is short-hand for the lengthy list of literals in the bottom

clause describing the state s1.

124 Experimental evaluation

The full bottom clause is reproduced in Figure 5.11 for illustrative purposes —

note that it is a very specific and very lengthy clause. In the figure we have split

the literals into static and dynamic components. The dynamic literals represent a

description of the spatial relationships which exist between objects in the initial

example state. The static literals represent a structural description of the tool

and other objects — that is, how the objects are composed, their dimensions and

shape.

Clearly the initial most-general boundary clause is too general (it is simply

true), and the most-specific boundary too specific. The learner’s task then is to

refine these hypothesis boundaries to provide a more accurate and useful descrip-

tion of correct tool use.

Experimentation by the learner agent

The learner is given a series of new learning tasks, each featuring a new tube, box,

and a different selection of tools. At each step the learner selects a suitable tool

and attempts to use it to obtain the box from the tube. If the attempt is successful

a positive example of the tool pose state is recorded, and a new task is generated.

If the attempt fails, the learner records a negative example and the learning task

is reset (whereupon the agent either chooses a new tool, or tries to use the same

one in a different manner).

In the remainder of this section we present a trace of the examples collected

by the learner during this experiment. Fifteen examples, including the teacher’s

example, were needed to learn a successful hypothesis (the experiment terminates

when the agent succeeds at solving five successive versions of the task). The first

12 example states are illustrated in Figure 5.12 and are labelled s1 to s12, where

s1 is the first positive example provided by the teacher.

Tool selection

The first task encountered by the learner is illustrated in Figure 5.13 with available

tool objects leftstick2, rightstick2, anglestick2, tstick2, middlestick2,

and simplestick2. The “2” suffix on each object indicates it is from the second

5.2 Pull-tool problem: A detailed experimental trace and
analysis 125

tool poseS(Tool, Box, State):-

% static literals:

attached(Tool, Hook),

num attachments(Tool, 1),

num attachments(Box, 0),

longest component(Tool),

narrower(Tool, Box),

shorter(Box, Tool),

shape(Tool, sticklike),

shape(Box, boxlike),

closed tube(Tube, TubeLeft, TubeRight, TubeBack),

attached side(Tool, Hook, right),

attached side(TubeLeft, TubeBack, right),

attached side(TubeRight, TubeBack, left),

attached end(Tool, Hook, front),

attached end(TubeLeft, TubeBack, front),

attached end(TubeRight, TubeBack, front),

attached angle(Tool, Hook, right angle),

attached angle(TubeLeft, TubeBack, right angle),

attached angle(TubeRight, TubeBack, right angle),

attached type(Tool, Hook, end to end),

attached type(TubeLeft, TubeBack, end to end),

attached type(TubeRight, TubeBack, end to end),

num attachments(Hook, 0),

num attachments(TubeLeft, 1),

num attachments(TubeRight, 1),

num attachments(TubeBack, 0),

narrower(Hook, Tool),

narrower(Hook, Box),

narrower(Tool, TubeLeft),

narrower(TubeLeft, Box),

narrower(Hook, TubeLeft),

narrower(Tool, TubeRight),

narrower(TubeRight, Box),

narrower(Hook, TubeRight),

narrower(Tool, TubeBack),

narrower(TubeBack, Box),

narrower(Hook, TubeBack),

narrower(TubeBack, TubeLeft),

narrower(TubeBack, TubeRight),

shorter(Hook, Tool),

shorter(Tool, TubeLeft),

shorter(Tool, TubeRight),

shorter(TubeBack, Tool),

shorter(Box, Hook),

shorter(Box, TubeLeft),

shorter(Hook, TubeLeft),

shorter(TubeBack, TubeLeft),

shorter(Box, TubeRight),

shorter(Hook, TubeRight),

shorter(TubeBack, TubeRight),

shorter(TubeBack, TubeLeft),

shorter(Box, TubeBack),

shorter(Hook, TubeBack),

shape(TubeLeft, sticklike),

shape(TubeRight, sticklike),

shape(TubeBack, sticklike),

% dynamic literals:

in gripper(Tool, State),

touching(Tool, Box, right, State),

at oblique angle(Tool, Box, State),

in tube(Box, Tube, State),

in tube end(Box, Tube, front, State),

in tube side(Box, Tube, right, State),

touching(Hook, Box, back, State),

at right angles(Hook, TubeLeft, State),

at right angles(Hook, TubeRight, State),

at right angles(Tool, TubeBack, State),

at oblique angle(Box, Hook, State),

at oblique angle(Box, TubeLeft, State),

at oblique angle(Box, TubeRight, State),

at oblique angle(Box, TubeBack, State),

parallel(Tool, TubeLeft, State),

parallel(Tool, TubeRight, State),

parallel(Hook, TubeBack, State),

in tube(Hook, Tube, State),

in tube end(Hook, Tube, front, State),

in tube side(Hook, Tube, right, State).

Figure 5.11: The initial most-specific hypothesis clause hS, split into static and
dynamic components. The dynamic component consists of spatial literals with a
State parameter. These spatial literals are the constraints which can be passed
to the constraint solver. The static component consists of literals which do not
change (they describe the structure and shape of objects), and they therefore have
no State parameter.

126 Experimental evaluation

Figure 5.12: Tool pose state examples generated during learning by experimenta-
tion.

5.2 Pull-tool problem: A detailed experimental trace and
analysis 127

Figure 5.13: The first task encountered by the agent after the teacher’s demon-
stration.

version of the task (the teacher’s task being the first), and ensures that each object

in the series of tasks is named uniquely.

The agent selects the best potential tool by a process of similarity-matching

described in Chapter 4. A tool is scored according to the number of structural

(static) literals it can satisfy in the most-specific clause, and assigned a score of

zero if it fails to satisfy the literals in the most-general clause. The literals in the

most-general clause represent “essential” properties of the tool.

Since the most-general hypothesis initially contains no structural constraints

no tools can be immediately excluded. Counting structural literals in the most-

specific hypothesis gives the following ordering from best to worst match:

• leftstick2

• rightstick2

• middlestick2

• anglestick2

• tstick2

128 Experimental evaluation

• simplestick2

Both leftstick2 and rightstick2 have scored highly because they contain the

most structural similarities to the original example — namely a right-angled

“hook” attached to the end of stick. The reason that the left-sided stick scores

higher is because it satisfies some additional literals that the right-sided stick does

not (eg. narrower(Tool,TubeLeft)). These additional literals are irrelevant to

the task, but the agent is unable to distinguish between relevant and irrelevant

literals. The agent therefore selects leftstick2 to test.

Pose selection

The next step is for the agent to generate a spatial pose which satisfies the current

hypothesis. As detailed in Chapter 4 this is achieved by starting with the spatial

constraints in the most-general clause, and incrementally adding as many spatial

constraints from the most-specific clause as possible. At each step the agent uses

its spatial constraint solver to check whether a valid solution pose exists.

As in the tool selection step, the most-general hypothesis clause imposes no

constraints. The most-specific clause, on the other hand contains a list of potential

spatial constraints (see Figure 5.11). The agent substitutes the relevant ground

objects (eg. leftstick2) into these literals, and then shuffles them randomly to

give the following list of ground spatial constraints to be applied to the tool:

parallel(leftstick2, tube leftwall2, State),

at oblique angle(leftstick2, box2, State),

in tube(leftstick hook2, tube2, State),

touching(leftstick2, box2, right, State),

in tube end(leftstick hook2, tube2, front, State),

at right angles(leftstick hook2, tube rightwall2, State),

at right angles(leftstick2, tube backwall2, State),

at oblique angle(box2, leftstick hook2, State),

parallel(leftstick2, tube rightwall2, State),

at right angles(leftstick hook2, tube leftwall2, State),

touching(leftstick hook2, box2, back, State),

5.2 Pull-tool problem: A detailed experimental trace and
analysis 129

parallel(leftstick hook2, tube backwall2, State),

in tube side(leftstick hook2, tube2, right, State)

This list of literals is passed to the constraint solver which attempts to apply

the shuffled constraints one-by-one — any constraint which cannot be satisfied is

ignored. (The one exception to this rule are constraints containing ground spatial

constants such as front, back, left and right. In this case the solver tries to

relax the constraint by allowing the ground constant to be variable.)

The order in which spatial constraints are applied is important, because they

often conflict. Thus constraints appearing (randomly) near the top of the shuffled

list are more likely to be preserved, whilst constraints near the bottom are often

ignored. In the current example, the solver finds a solution pose which preserves

the following spatial constraints (the constraints which could not be satisfied are

shown with strikethrough text):

parallel(leftstick2, tube leftwall2, State),

at oblique angle(leftstick2, box2, State),

in tube(leftstick hook2, tube2, State),

touching(leftstick2, box2, right, State),

in tube end(leftstick hook2, tube2, front, State),

at right angles(leftstick hook2, tube rightwall2, State),

at right angles(leftstick2, tube backwall2, State),

at oblique angle(box2, leftstick hook2, State),

parallel(leftstick2, tube rightwall2, State),

at right angles(leftstick hook2, tube leftwall2, State),

touching(leftstick hook2, box2, back, State),

parallel(leftstick hook2, tube backwall2, State),

in tube side(leftstick hook2, tube2, right, State)

The ground pose satisfying these constraints is shown as state s2 in Figure 5.12.

Of particular note is the fact that the agent was unable to satisfy the condi-

tion touching(leftstick hook2, box2, back, State), which specifies that the

back side of the hook must be touching the box. This is obviously because the

hook is on the wrong side of the handle!

130 Experimental evaluation

Having generated this ground pose for the tool, the agent attempts to execute

the action. This involves placing the tool in the desired pose, and then attempting

to move the tool and box out of the tube. This fails of course and the agent records

the tool pose state s2 as a negative example (see Figure 5.12).

Refining the hypothesis

Now that the agent has collected a second example it is able to refine its hypothesis.

Recall from Chapter 4 that negative examples constrain the most-general boundary

of the hypothesis space. Therefore when a negative example is received the learner

re-runs its algorithm for learning the most-general clause. This is done by negative-

based reduction of the existing most-specific clause.

In this case the resulting most-general boundary clause hG is:

tool poseG(Tool, Box, State) :-

attached side(Tool, Hook, right).

This constraint says that the tool must have an attached body (Hook) on the

right-hand side. This specialisation of the most-general clause means that the

hypothesis no longer covers the negative example s2.

Note that the most-specific boundary remains unchanged, since it is generated

purely from the lgg of positive examples. Until more positive examples are found

the most-specific clause will remain as it is.

Generating a new example (s3)

Since the agent has yet to solve the given task successfully the problem remains

the same, but the tools and objects are reset to their starting positions1. Once

again the agent must select a tool and a spatial pose to test which is consistent

with its (revised) hypothesis. This follows the same process discussed above for

example s2 except now the most-general hypothesis boundary comes into play.

Since the most-general clause now contains the restriction attached side(

Tool, Hook, right) this effectively eliminates leftstick2 from consideration.

The structural literals in the most-general clause must be satisfied when selecting

1This is primarily a time-saving device.

5.2 Pull-tool problem: A detailed experimental trace and
analysis 131

a tool — any tool which fails to satisfy a most-general literal is assigned an overall

similarity score of zero. The agent therefore selects rightstick2 as the best tool.

The ground tool pose is now generated with the newly selected tool. The

most-general clause again contains no “compulsory” spatial constraints, whilst

the most-specific clause has the same set of spatial constraints used above in the

previous example (except with a different tool parameter). These constraint literals

are shuffled randomly before the constraint solver attempts to apply them one

at a time. This results in the following constraints being applied (once again,

unsatisfiable literals are shown with strikethrough text):

at right angles(rightstick2, tube backwall2, State),

at oblique angle(rightstick2, box2, State),

in tube end(rightstick hook2, tube2, front, State),

touching(rightstick hook2, box2, back, State),

at right angles(rightstick hook2, tube leftwall2, State),

parallel(rightstick hook2, tube backwall2, State),

in tube(rightstick hook2, tube2, State),

parallel(rightstick2, tube leftwall2, State),

touching(rightstick2, box2, right, State),

in tube side(rightstick hook2, tube2, right, State)

at right angles(rightstick hook2, tube rightwall2, State),

at oblique angle(box2, rightstick hook2, State),

parallel(rightstick2, tube rightwall2, State)

The corresponding ground pose for the tool is shown as state s3 in Figure 5.12. The

reason the tool has been placed in a rather odd position is due to the ordering of the

shuffled spatial constraints. In this case the literal in tube end(rightstick hook2,

tube2, front, State) was applied near the top of the list, which meant that the

tool hook was constrained to lie in the front half of the tube. As a consequence

neither of the touching predicates could be satisfied2.

2It could be argued that certain predicates (eg. touching) should always be given higher
precedence in the constraint satisfaction process to avoid situations like this. However, in some
tool-use scenarios it is not desirable for the tool to actually touch the object it is interacting
with — pouring water from a jug into a cup for example. Thus these sorts of precendence-based
heuristics may be unlikely to be significant in general.

132 Experimental evaluation

Clearly state s3 is not a good tool pose state. The agent soon discovers this

when it tries to use the tool from this position. The action fails and the agent

records s3 as a negative example.

Hypothesis revision

Having received a negative example the agent revises its most-general hypothesis

hG once again, via negative-based reduction of the most-specific hypothesis. It

becomes:

tool poseG(Tool, Box, State) :-

attached side(Tool, Hook, right),

touching(Hook, Box, back, State).

The new clause requires that the back of the hook be touching the box. The

most-specific hypothesis remains unchanged since there have been no additional

positive examples.

A positive example (s4)

The tool and pose selection steps are repeated in a similar manner to collect an-

other example state: s4. In this case the agent selects the same rightstick2

tool it was using in s3, since it still satisfies the most-general clause. The spatial

constraints are again extracted from the most-specific clause and shuffled before

being applied. However, this time the most-general clause also contains a spatial

constraint touching(Hook, Box, back, State). This spatial constraint is ap-

plied first, before any of the literals from the most-specific clause. This ensures

that the ground pose satisfies the most-general clause.

The resulting tool pose is shown as state s4 in Figure 5.12. In this case the

spatial constraints have been applied in an order which produces a “correct” pose.

The agent places the tool in this pose and pulls the box from the tube successfully

— a positive example can therefore be recorded.

5.2 Pull-tool problem: A detailed experimental trace and
analysis 133

Revision of the most-specific clause

Since the learner has just collected a positive example, it is able to revise its

most-specific clause. It does this by computing the lgg of the saturated clauses

representing the two positive examples it has observed (s1 and s4), a process

described in detail in Chapter 4.

In general the lgg produces a shortened most-specific clause, since literals

which are not present in both examples are eliminated. For example, the lit-

eral narrower(Tool,Box) which was present in the original most-specific clause

is dropped because in s4 the tool is wider than the box.

Literals with matching predicate names but containing differing ground con-

stants may be generalised by the lgg process. For example, the literal

in tube end(Tool, Tube, front, State)

from s1 and

in tube end(Tool, Tube, back, State)

from s4 are generalised in the lgg to give:

in tube end(Tool, Tube, X, State)

where X indicates a new variable which can be satisfied by either front or back.

This generalisation allows the hook to be placed anywhere in the tube (front or

back) and avoids repetitions of the situation in s3 where the tool was forced into

the front half of the tube (producing a negative example).

We will not reproduce the full lgg here since it is still quite lengthy (see Figure

5.14 for another full listing of the lgg). However the new spatial literals involving

the tool are as follows:

parallel(Tool, TubeLeft, State),

at oblique angle(Tool, Box, State),

in tube(Hook, Tube, State),

touching(Tool, Box, right, State),

in tube end(Hook, Tube, X, State),

134 Experimental evaluation

at right angles(Hook, TubeRight, State),

at right angles(Tool, TubeBack, State),

at oblique angle(Box, Hook, State),

parallel(Tool, TubeRight, State),

at right angles(Hook, TubeLeft, State),

touching(Hook, Box, back, State),

parallel(Hook, TubeBack, State),

in tube side(Hook, Tube, right, State)

Thus the only spatial generalisation which occurred in this step was the generali-

sation of in tube end(Hook, Tube, front, State) as described above.

The most-general clause hG remains unchanged.

Further examples

A new task is generated for the agent to tackle, since the previous task has been

solved successfully. The cycle of generating examples and updating the learner’s

hypothesis now continues. Since the process has already been illustrated in de-

tail we will step more quickly through the remaining examples, pointing out the

interesting features of the algorithm along the way.

• Example s5 (neg): The agent selects the right-hook tool because it is

most similar to the two positive examples seen previously. It also manages

to place the tool in a pose very similar to the previous positive examples.

Unfortunately this produces a negative example because the desired pose is

unreachable. The most-general hypothesis is revised to:

tool poseG(Tool, Box, State) :-

attached side(Tool, Hook, right),

in tube side(Hook, Tube, right, State),

at oblique angle(Tool, Box, State).

• Example s6 (neg): The agent persists with the right-side hook tool, and

tries to place it in a pose satisfying hG and as many literals from hS as

5.2 Pull-tool problem: A detailed experimental trace and
analysis 135

possible. This results in the pose shown in state s6 in Figure 5.12, which

is another negative example. Note how in s6 the tool is touching the box

on the left hand side. This results from the constraint solver trying to ap-

ply the constraint touching(Tool,Box,right,State), but failing to find a

valid solution — so it instead tries to impose the more general condition

touching(Tool,Box, ,State) (where indicates a variable which can be

bound as required). A solution pose is then found which allows the tool to

be touching the box.

After revising its hypothesis the new most-general clause is:

tool poseG(Tool, Box, State) :-

attached(Tool, Hook),

narrower(Hook, Box),

touching(Hook, Box, back, State).

• Example s7 (pos): The new hG forces the agent to select a different tool

— one with a hook narrower than the box. This requirement is consistent

with the observed positive examples, but is not actually useful. Most of the

tools satisfy this constraint (excluding the tool it was just using), and the

highest scoring tool is again the left-sided hook stick.

This time there is only a single spatial constraint to satisfy in the

most-general clause. This gives the agent some flexibility in attempting to

apply the remaining spatial constraints from the most-specific clause hS.

After applying touching(Hook,Box,back,State) the constraint solver is

able to satisfy most of the remaining constraints in hS. As in the previous

example, it was unable to satisfy touching(Tool,Box,right,State) and

instead relaxed this constraint to touching(Tool,Box, ,State).

The resulting pose is a successful one and the agent records a positive

example. The most-specific clause hS can now be generalised by computing

the lgg of the positive examples. This produces an important generalisa-

tion which we now explain. The previous most-specific clause contained the

literals

136 Experimental evaluation

attached side(Tool, Hook, right),

in tube side(Box, Tube, right, State)

whereas the new example contains the corresponding terms

attached side(Tool, Hook, left),

in tube side(Box, Tube, left, State)

The lgg of these two terms produces the generalisation:

attached side(Tool, Hook, Side),

in tube side(Box, Tube, Side, State)

where Side is a new variable. The important thing about this generalisation

is that it links the side of the tube on which the box appears to the side of

the tool on which the hook should appear. Thus if the box is on the right-

hand side of the tube, the new hS suggests that it is desirable for the hook

to also be on the right-hand side. A tool will now score more highly in the

tool-selection step if it matches this constraint.

Another interesting feature of the new hS is that more of the spatial

constraints have dropped out: specifically those requiring the tool and box

to be at an oblique angle. The remaining spatial constraints in hS are:

touching(Tool, Box, Side, State),

touching(Hook, Box, back, State),

in tube(Hook, Tube, State),

in tube end(Hook, Tube, , State),

in tube side(Hook, Tube, Side, State),

at right angles(Hook, TubeRight, State),

at right angles(Tool, TubeBack, State),

at right angles(Hook, TubeLeft, State),

parallel(Hook, TubeBack, State),

parallel(Tool, TubeRight, State),

parallel(Tool, TubeLeft, State)

5.2 Pull-tool problem: A detailed experimental trace and
analysis 137

Many of these literals are redundant, but importantly the order in which

they are applied is unimportant. The “problematic” literals have already

been weeded out and these remaining constraints are commutative (at least

in the tube problem). Redundant spatial literals can also be detected by the

constraint solver as we discuss following example s12.

• Example s8 (neg): A new learning task is generated. The most-general

hypothesis hG is unchanged from example s6 so the agent selects a tool with

a narrow hook, the best of which is a middlestick as shown in Figure 5.12.

This time the agent is unable to find a valid solution pose which satisfies hG,

since the touching(Hook, Box, back, State) causes a collision in each

position. The learner therefore adds the selected pose as a negative example

of the hypothesis.

The most-general hypothesis becomes:

tool poseG(Tool, Box, State) :-

in tube side(Box, Tube, Side, State),

attached side(Tool, Hook, Side),

narrower(Hook, Box),

attached end(Tool, Hook, back).

• Examples s9 to s12: No tool satisfying the new structural constraints of

hG exists (ie. a tool with a left-sided, narrow hook, attached at the end).

The learner therefore backtracks and generates an alternative most-general

clause:

tool poseG(Tool, Box, State) :-

in tube side(Box, Tube, Side, State),

attached side(Tool, Hook, Side),

touching(Hook, Box, back, State),

attached end(Tool, Hook, back).

This allows the agent to choose the left-sided hook stick, and achieve the

successful example shown as s9 in the figure. The hypothesis is once again

138 Experimental evaluation

revised, and a new learning task generated. In the remaining examples

s10 through s12 only one further negative example is encountered (s10).

This negative example forces hG to include the restriction attached angle(

Tool, Hook, rightangle). After each additional positive example the most-

specific hypothesis hS based on the lgg is revised. The learning experiment is

terminated after the agent successfully solves three more tasks (not shown in

the Figure), meaning that it has solved five consecutive tasks without failure

(s11 through s15). The final form of the hypothesis is given below.

The learnt hypothesis

The final form of the most-general clause hG is:

tool poseG(Tool, Box, State) :-

in tube side(Box, Tube, Side, State),

attached side(Tool, Hook, Side),

touching(Hook, Box, back, State),

attached angle(Tool, Hook, rightangle),

attached end(Tool, Hook, back).

This states that the tool should have a hook attached on the same side as the

box is in the tube, and the hook should be at a right-angle at the end of the

handle. It also contains a spatial literal constraining the back of the hook to be

touching the box. Note that this clause does not, by itself, contain all of the

necessary information to carry out the task successfully. There are a number

of important spatial relations which are missing from hG (but which are present

in hS). Nevertheless, in combination with the most-specific clause hS a correct

solution to pulling tasks can still be generated.

The final most-specific clause hS is shown in Figure 5.14. This hypothesis is still

quite lengthy because it is a characteristic description of the positive examples,

rather than a discriminative one (as in the case of hG). It therefore contains

some irrelevant terms like shorter(TubeBack,TubeRight), which describes the

fact that tubes are longer than they are wide.

5.2 Pull-tool problem: A detailed experimental trace and
analysis 139

tool poseS(Tool, Box, State):-

% static literals:

attached(Tool, Hook),

num attachments(Tool, 1),

num attachments(Box, 0),

longest component(Tool),

shorter(Box, Tool),

shape(Tool, sticklike),

shape(Box, boxlike),

closed tube(Tube, TubeLeft, TubeRight, TubeBack),

attached side(Tool, Hook, Side),

attached side(TubeLeft, TubeBack, right),

attached side(TubeRight, TubeBack, left),

attached end(Tool, Hook, front),

attached end(TubeLeft, TubeBack, front),

attached end(TubeRight, TubeBack, front),

attached angle(Tool, Hook, right angle),

attached angle(TubeLeft, TubeBack, right angle),

attached angle(TubeRight, TubeBack, right angle),

attached type(Tool, Hook, end to end),

attached type(TubeLeft, TubeBack, end to end),

attached type(TubeRight, TubeBack, end to end),

num attachments(Hook, 0),

num attachments(TubeLeft, 1),

num attachments(TubeRight, 1),

num attachments(TubeBack, 0),

narrower(Tool, TubeBack),

shorter(Hook, Tool),

shorter(TubeBack, Tool),

shorter(Box, TubeLeft),

shorter(Hook, TubeLeft),

shorter(Box, TubeRight),

shorter(Hook, TubeRight),

shorter(TubeBack, TubeRight),

shorter(TubeBack, TubeLeft),

shorter(Box, TubeBack),

shorter(Hook, TubeBack),

shape(TubeLeft, sticklike),

shape(TubeRight, sticklike),

shape(TubeBack, sticklike),

% dynamic literals:

in gripper(Tool, State),

touching(Tool, Box, Side, State),

touching(Hook, Box, back, State),

in tube(Box, Tube, State),

in tube end(Box, Tube, , State),

in tube side(Box, Tube, Side, State),

in tube(Hook, Tube, State),

in tube end(Hook, Tube, , State),

in tube side(Hook, Tube, Side, State),

at right angles(Hook, TubeLeft, State),

at right angles(Hook, TubeRight, State),

at right angles(Tool, TubeBack, State),

parallel(Tool, TubeLeft, State),

parallel(Tool, TubeRight, State),

parallel(Hook, TubeBack, State).

Figure 5.14: The final most-specific hypothesis clause hS, split into static and
dynamic components.

The dynamic (spatial) literals in hS which refer directly to the tool (and are

therefore involved in pose selection) are as follows:

touching(Tool, Box, Side, State),

touching(Hook, Box, back, State),

in tube(Hook, Tube, State),

in tube end(Hook, Tube, , State),

in tube side(Hook, Tube, Side, State),

140 Experimental evaluation

at right angles(Hook, TubeRight, State),

at right angles(Tool, TubeBack, State),

at right angles(Hook, TubeLeft, State),

parallel(Hook, TubeBack, State),

parallel(Tool, TubeRight, State),

parallel(Tool, TubeLeft, State)

where Side must satisfy in tube side(Box,Tube,Side,State). As we have al-

ready mentioned, there are a number of redundant literals in this clause. This does

not cause any problems because the constraint solver simply ignores constraints

which have already been satisfied (recall that the constraint literals are applied

one at a time). Typically the subset of (non-redundant) literals actually applied

by the constraint solver is much shorter:

touching(Hook, Box, back, State),

at right angles(Hook, TubeLeft, State),

touching(Tool, Box, Side, State)

In fact, following a positive example the learner caches this set of successfully

applied spatial constraints and tries to reuse it on subsequent tasks. If a further

negative example is encountered then the cached constraints are deleted, and the

agent returns to random shuffling of the spatial constraints in hS. The constraints

immediately above were applied successfully for the final four examples in the

experiment.

The final most-specific clause hS also contains the following structural (static)

literals which refer directly to the tool:

attached(Tool, Hook),

num attachments(Tool, 1),

longest component(Tool),

shorter(Box, Tool),

shape(Tool, sticklike),

attached side(Tool, Hook, Side),

attached end(Tool, Hook, front),

5.3 Push-tool problem 141

attached angle(Tool, Hook, right angle),

attached type(Tool, Hook, end to end),

num attachments(Hook, 0),

narrower(Tool, TubeBack),

shorter(Hook, Tool),

shorter(TubeBack, Tool),

shorter(Hook, TubeLeft),

shorter(Hook, TubeRight),

shorter(Hook, TubeBack)

These literals are the ones which are used in the tool selection step. Note that

most of the important structural literals have been promoted to the most-general

clause hG, where they are given top priority in the tool selection process.

The agent retains the learnt versions of both hS and hG after the completion of

the learning episode. Whilst it seems tempting to collapse the ‘version space’ and

select a single learnt hypothesis for the agent to use in future there are significant

disadvantages to this approach. If the most general boundary clause hG alone

is chosen to be the final hypothesis the agent may experience a glut of negative

examples, since the guidance offered by the most-specific clause has been lost.

Conversely, if the most-specific clause hS is chosen the agent will likely encounter

tasks which the planner cannot find a solution to, because the hypothesis is still

too specific. Keeping both hS and hG intact allows the agent to continue to learn

when further examples are encountered in future.

5.3 Push-tool problem

The push-tool problem, as the name suggests, involves using a tool to push an

object in order to solve a problem. In our version of the task the robot is given

the goal of obtaining a box in an open-ended tube, and must use a stick-tool to

extract it. An illustration of our robot performing the task is shown in Figure

5.15.

As in the pull-tool problem of Section 5.2, a teacher demonstrates performing

the task with a suitable tool and then the agent is allowed to experiment. The

142 Experimental evaluation

Figure 5.15: The push-tool problem.

types of tool objects available in our pushing experiments are shown in Figure

5.16. Of these tools, the goodstick type tool is best for performing the task, and

this is the tool chosen for the teacher’s demonstration.

Figure 5.16: Tool types available in the push-tool problem.

The push-tool problem is closely related, at least in an abstract sense, to the

pull-tool task. It is nevertheless interesting because it involves learning that a

different subset of the state literals are relevant to performing the task correctly. In

the pull-tool task the predicate shorter(A,B) is usually irrelevant to performing

the task (in our experiments the shortest hook sticks were sufficiently long to

reach the box). In the push-tool task, however, learning that the tool must satisfy

5.3 Push-tool problem 143

shorter(Tubewall,Tool) (ie. be longer than the tube) is a critical distinction to

make.

5.3.1 Background knowledge

The background knowledge predicates provided to the agent for this task are al-

most identical to those used in the pull-tool task earlier in this Chapter. The

one exception is that the closed tube(Tube, TubeLeft, TubeRight, TubeBack)

which names the components of the closed tube is replaced with an analogous pred-

icate open tube(Tube, TubeLeft, TubeRight). The abstract actions defined in

the agent’s background knowledge are unchanged from the pull-tool task.

5.3.2 Learnt action and tool pose concept

The learnt action model for the push-tool action is:

push from tube(Tool,Box,Tube)

PRE: in tube(Box, Tube),

in gripper(Tool),

gripping,

tool pose(Tool, Box)

ADD: -

DEL: in tube(Box, Tube)

The learner typically requires 10-15 examples before it is able to consistently solve

new versions of this task. Learning is often a bit faster than in the pulling task

due to the fact that there are fewer object components involved in the clause (the

open tube does not have a tube back part and the tool usually does not have a

hook). The learnt most-general tool pose predicate from a typical experiment is:

tool poseG(Tool, Box, State) :-

num attachments(Tool, 0),

open tube(Tube, TubeLeft, TubeRight),

shorter(TubeRight, Tool),

144 Experimental evaluation

parallel(Tool, TubeLeft, State),

touching(Tool, Box, front, State).

Note that the learner has correctly identified the most important structural prop-

erties of the tool — that it should have no attached hooks, and be longer than the

tube. It has also learnt to place the tool so that the Box is at the front end of the

tool, and the tool is parallel to the tube walls.

In this problem the constraint parallel(Tool,TubeLeft,State) is more im-

portant than one might initially suppose. Our motion planner does not take ac-

count of the fact that if the box collides with the wall it will often start sliding,

rather than stop. Thus non-parallel poses for the tool lead the motion planner to

predict a collision will occur when it tries to push — as a result, no valid pushing

path is returned and the action fails.

The most-specific clause is shown in Figure 5.17. However, most of the inter-

esting predicates have made their way into the most-general clause above.

5.4 Ramp tool problem

The ramp tool problem involves using a ramp to help the agent reach an object

on a raised platform. It is analogous to the problem of using a ladder to get up

on to a higher surface. Figure 5.18 shows the agent using a ramp in this manner

in order get up onto a platform and pick up a box.

This is essentially the same problem that was faced by Shakey the robot (Nils-

son, 1984), except that Shakey was supplied with all of the required background

knowledge needed in order to complete the task. Our agent is, of course, not given

a climb ramp action and must learn the action by watching the teacher and then

experimenting in the world.

A selection of the available ramp tools used in our experiments is shown in

Figure 5.19. The key properties of a good ramp tool are that it must reach the

height of the platform, should not be too steep, and should be wider than the

robot. The agent must also, of course, learn to place the ramp in a pose where it

is lined up properly with the edge of the platform.

5.4 Ramp tool problem 145

tool poseS(Tool, Box, State):-

% static literals:

num attachments(Tool, 0),

num attachments(Box, 0),

longest component(Tool),

shorter(Box, Tool),

shape(Tool, sticklike),

shape(Box, boxlike),

open tube(Tube, TubeLeft, TubeRight),

attached type(TubeLeft, TubeRight, gap),

num attachments(TubeLeft, 1),

num attachments(TubeRight, 0),

narrower(Tool, TubeLeft),

narrower(Tool, TubeRight),

narrower(Box, TubeLeft),

narrower(Box, TubeRight),

shorter(TubeLeft, Tool),

shorter(TubeRight, Tool),

shorter(Box, TubeLeft),

shorter(Box, TubeRight),

shape(TubeLeft, sticklike),

shape(TubeRight, sticklike)

% dynamic literals:

in gripper(Tool, State),

touching(Tool, Box, front, State),

in tube(Box, Tube, State),

in tube end(Box, Tube, , State),

in tube side(Box, Tube, , State),

in tube(Tool, Tube, State),

in tube side(Tool, Tube, , State),

parallel(Tool, TubeLeft, State),

parallel(Tool, TubeRight, State).

Figure 5.17: A typical most-specific hypothesis clause hS learnt for the push-tool
problem, split into static and dynamic components.

5.4.1 Background knowledge

For the ramp problem we augment the set of state predicates in the agent’s back-

ground knowledge with the following additional predicates:

• shorter height(A,B): True if A is shorter (in height) than B.

• same height(A,B): True if A is approximately the same height as B.

• pitch(A,Slope): Gives the slope of an inclined object, where Slope can take

on values zero, shallow, moderate, steep, or vertical.

• on(A,B): True if A is on B, where B can be another object or the floor (eg.

on(robot,floor)).

• colour(A,Colour): Irrelevant to solving the task, but added as an addtional

‘distractor’ predicate.

The abstract actions for moving objects and recognising goto and carry ac-

tions are the same as for the previous problems in this chapter. However, we

146 Experimental evaluation

Figure 5.18: The ramp problem. The agent must learn to identify the properties
of a useful ramp object, and how it should be correctly positioned.

modify the put in gripper(Obj) definition to reflect the fact that the robot must

be on the same surface (the platform or the floor) as the object in order to pick it

up. The action model is therefore:

put in gripper(Obj,Surface)

PRE on(Obj,Surface),

on(robot,Surface),

empty gripper,

¬gripping,

ADD in gripper(Obj)

DEL empty gripper

PRIMTV fwd,back,rotleft,rotright

MOVING robot

5.4.2 Learnt action and tool pose concept

From the explanation of the teacher’s demonstration, the agent learns the following

simple tool use action model:

5.4 Ramp tool problem 147

Figure 5.19: Some of the ramp tools available for performing the task. The best
ramp tool in this case is the green one — the others shown are too narrow, too
steep, or do not reach high enough to access the platform.

climb ramp(Ramp, Platform)

PRE: ¬on(robot, Platform),

tool pose(Ramp, robot)

ADD: on(robot, Platform)

DEL: -

The sub-goal of this action is to move the robot up on the platform where on(robot,

Platform) is true. This enables the put in gripper(Obj) action so that the agent

can achieve the goal of picking up the box.

The required properties and spatial pose of the ramp are encapsulated in the

tool pose predicate. In our experiments the agent typically learns to solve the

task consistently after around 9–13 examples. The most-general tool pose clause

learnt during one of these experiments is as follows:

tool poseG(Ramp, robot, State) :-

touching(Ramp, Platform, front, State),

same height(Ramp, Platform),

148 Experimental evaluation

tool poseS(Ramp, robot, State):-

% static literals:

attached(Ramp, RampBase),

num attachments(Ramp, 0),

shorter length(robot, Ramp),

shape(Ramp, flat),

pitch(Ramp, shallow),

pitch(robot, zero),

num attachments(Ramp, 1),

num attachments(RampBase, 0),

narrower(Ramp, Platform),

narrower(Ramp, RampBase),

narrower(robot, Platform),

narrower(robot, Ramp),

shorter height(Ramp, robot),

shorter height(RampBase, Ramp),

shorter height(Platform, robot),

same height(Ramp, Platform),

shorter length(robot, Ramp),

shorter length(robot, RampBase),

shorter length(RampBase, Ramp),

shorter length(robot, Platform),

pitch(RampBase, zero),

pitch(Platform, zero),

shape(Ramp, flat),

shape(RampBase, sticklike),

shape(Platform, boxlike)

colour(Ramp, X),

colour(RampBase, X),

colour(Platform, Y),

% dynamic literals:

touching(Ramp, Platform, front,

State),

touching(robot, Ramp, front, State),

onaxis(robot, Platform, State),

onaxis(robot, Ramp, State),

onaxis(RampBase, robot, State),

onaxis(Ramp, Platform, State),

onaxis(RampBase, Platform, State),

at right angles(RampBase, robot, State),

at right angles(Platform, RampBase, State),

parallel(robot, Platform, State),

parallel(robot, Ramp, State),

parallel(RampBase, Platform, State),

parallel(Ramp, Platform, State).

Figure 5.20: The most-specific hypothesis clause hS learnt on a typical experimen-
tal run of the ramp problem, split into static and dynamic components.

pitch(Ramp, shallow),

narrower(robot, Ramp).

Interestingly, the agent has learnt three correct structural predicates describing

the ramp tool pose state, but only one spatial. It has identified that a ramp with

a shallow slope is necessary, that the ramp should be the same height as the

platform, and wider than the robot. However only the touching spatial predicate

has appeared in the most-general clause. This spatial constraint alone is not

sufficient to produce correct placement of the ramp, as there are many primitive

states in which the front of the ramp is touching the platform that are not good

poses for getting onto the platform.

5.5 Discussion 149

However, as we saw in the pull-tool problem, the agent is still able to consis-

tently solve the task because it always applies as many spatial constraints from

hS as possible. In this case hS (shown in Figure 5.20) contains the following

non-redundant spatial constraints which are always able to be applied (since any

conflicting spatial constraints have already been eliminated):

onaxis(Ramp, Platform, State),

parallel(Ramp, Platform, State)

Once hS is reduced to a point where there are no conflicting spatial constraints

then all of the constraints will be applied. Learning therefore levels off because our

agent never deliberately chooses to apply a smaller subset of constraints than is

possible — which would be required in order to obtain additional negative examples

to force hG to be refined.

The justification for our approach is that the agent does not need to produce

a compact description of the hypothesis in order to perform the task correctly.

However, we note that the agent could choose to engage in deliberate exploration

of negative examples once learning has levelled off. This would involve generating

experiments which satisfy only a subset of the most-specific constraints. This

would be an interesting topic for future work.

5.5 Discussion

We finish our evaluation of our tool-learning agent with a brief discussion of some

of the advantages and limitations of our approach.

Importance of an underlying geometric model

One of the reasons our agent is able to learn from relatively few examples in this

domain is that it takes advantage of its constraint solver and collision model to rule

out potential hypotheses without needing to carry out a physical experiment. The

pose selection algorithm effectively tests out a number of candidate hypotheses

in the version space as it tries to generate a solution pose. Recall that at each

step of the pose selection algorithm the learner adds in a new spatial constraint

150 Experimental evaluation

literal (creating a new hypothesis to test) and then solves for a solution. If the

solution produces a collision pose then that literal is discarded. By allowing the

constraint solver to check whether the current working hypothesis is invalid (due to

collisions), we are able to search through many more candidate solutions without

needing to physically experiment.

Comparison to a top-down approach

In contrast to the top-down approach used by many action model learners (eg.

(Benson, 1996; Pasula et al., 2004)), our approach to learning is well suited to the

tool use domain. Good performance in the tool domain involves learning lengthy

hypotheses which constrain both the spatial arrangement and the structural com-

position of tools. It is common for a target hypothesis to involve 8 or more literals.

Learning long chains of literals in a top-down manner is difficult, because in

order to consider very specific hypotheses one must first eliminate all the more

general ones. When only a few examples exist there are many short clauses which

may be consistent with the observations. This can lead to a considerable amount

of additional experimentation being necessary in order to rule out the shorter

hypotheses.

In this work we are focused on having an agent which can learn quickly in a

primarily bottom-up manner, based on the lgg. Although the lgg may contain

a number of redundant terms, it contains all of the information necessary for

the agent to solve the task and the agent can quickly learn lengthy clauses. The

problem then becomes that the hypothesis is often too specific to be applied to the

situation at hand. In this thesis we have presented some useful exploration methods

to help overcome this difficulty, by using a version space type representation and

using a constraint solver during hypothesis testing.

Noise

It should be noted that our experiments have contained few noisy examples. This

is a consequence of the task domain and the perfect state information supplied to

the agent. Nevertheless the learning algorithm is indeed capable of dealing with

noise in the examples. The main loop which calculates the most-specific clause hS

5.5 Discussion 151

operates in an identical manner to GOLEM (at the high level, though not at the

level of the lgg). It therefore handles noisy examples in the same way: a “false

positive” example will not be included in the most-specific lgg if it causes the clause

to lose coverage. False negative examples are accounted for by allowing a clause to

cover a certain proportion of negative examples — set by a user-defined parameter.

Of course, more noisy examples would increase the number of examples required

to learn the hypothesis.

Dependency on user-defined predicates

A limitation of our current approach is that it relies too heavily on user-defined

background predicates and constants. For example, we gave the learner five dif-

ferent values for describing the slope of the ramp. In general this approach will

not work, because firstly it relies on the user to segment the world well (a very

difficult task), and secondly because a single segmentation of slopes, for example,

is unlikely to be useful on a wide variety of tasks and objects.

One likely solution to this problem would be to modify the learning algorithm

to allow ‘lazy’ generation of constants during learning. That is, the learner would

set the value of the constants in such a way as to maximise coverage over the exam-

ples. This could be implemented in the lgg by allowing two numerical constants

to be generalised to a range. For example, the lgg of slope(ramp1,0.1), and

slope(ramp2,0.15) would become slope(Ramp,0.1-0.15). This would allow

the agent to generate its own constants which better cover the observed data.

152 Experimental evaluation

Chapter 6

System architecture and

implementation

In this chapter we describe in detail how the various components of our agent are

implemented. We begin by illustrating the robot and simulator used in our experi-

ments, and then describe the overall agent architecture and the main control loop.

We finish by describing how each system component is implemented, including

some low-level algorithms not already described in Chapter 4.

6.1 Robot and simulator

6.1.1 Robot

The agent architecture presented in this thesis is intended to be sufficiently gen-

eral that it can be applied to any robot. In this research our tool-using robot

platform is a Pioneer 2DX with a vertical lift and gripper attachment (see Figure

6.1). Although the Pioneer robot is limited to very simple manipulation, it can

perform sufficiently well to demonstrate that the approach we have adopted for

tool learning works. Indeed, agents with limited effectors often have the most to

gain by employing tools to overcome their shortcomings.

154 System architecture and implementation

Figure 6.1: Pioneer 2 robot used in our experiments.

6.1.2 Simulator

Our robot tool use experiments are carried out in a three-dimensional rigid-body

simulator. This allows us to test ideas and carry out experiments much more

rapidly than would be possible in the real world. The simulator used is the Gazebo

robot simulator (Koenig and Howard, 2004) which has been developed as part

of the well-known Player/Stage (Gerkey et al., 2003) suite of robot control and

simulation tools. The experiments described in this thesis were carried out using

Gazebo v0.7 and Player v2.0.

The Gazebo simulator is built on top of the Open Dynamics Engine (ODE)

(Smith, 2006) physics engine, which simulates rigid-body dynamics in three dimen-

sions and incorporates a collision detection engine. ODE is designed to simulate

articulated rigid body structures — that is, structures composed of a collection of

rigid bodies held together by a variety of joints. It is unable to simulate non-rigid

bodies such as ropes, liquids or pieces of paper.

The robot in our simulator is controlled through the Player network interface:

a series of clients (one for each sensor/effector) which connect to a central Player

server. The Player server reads the current state of the simulator and transmits

commands from the robot clients to the simulator. The advantage of the Player

6.1 Robot and simulator 155

“middle-man” is that client-side robot control code uses the same interface API

whether it is communicating with a simulated robot or a real-world robot — this

makes it simpler to translate code from the simulation on to a real-world robot.

World specification

The objects, agents, light sources, and observer cameras present in the Gazebo

simulator – and their initial configuration – are described in a world file written

in a simple xml format. An example entry in the world file corresponding to a

simple “stick” initially located at position x, y, z with orientation (roll,pitch,yaw)

r, p, y is:

<model:SimpleSolid>

<id>stick7</id>

<xyz>2.400 4.580 0.000</xyz>

<rpy>0.0 0.0 0.35</rpy>

<shape>box</shape>

<size>0.80 0.08 0.12</size>

<color>1.0 0.0 0.0</color>

<mass>0.5</mass>

</model:SimpleSolid>

Composite objects can be built by adding extra boxes, cylinders, or spheres as

sub-models of an existing model. A t-shaped stick tool for example consists of a

“parent” box-shaped model (corresponding to the handle), with one “child” box-

shaped model (corresponding to the cross-piece). The pose parameters of child

models are given relative to the parent body.

All of the objects present in our simulator experiments are built from the

<model:SimpleSolid> model type described above. More complex types of ob-

jects with moveable joints, such as a gripper, must be specified in models written

in C++ code. Robots are built from a collection of such models written in C++.

In recent release versions (Gazebo-0.9) of the Gazebo simulator, models with joints

and forces can be constructed entirely in xml.

156 System architecture and implementation

6.2 Running times

The experiments described in Chapter 5 were carried out on a Pentium 4 2.5

GHz machine running linux with 1Gb of RAM. As we shall describe in Section

6.3 the learning modules were all implemented in Prolog (SWI-Prolog) for ease of

development and the natural symbolic representation. As a consequence our im-

plementation has emphasised ease of prototyping over speed, and a more efficient

implementation in a low-level language such as C would likely be an order of mag-

nitude or two faster. Nevertheless, it is worthwhile presenting some approximate

running times here.

Table 6.2 shows example run times for each of the experiments presented in

Chapter 5. We have broken the run time down to illustrate the contributions from

the various components of the algorithm. The columns of the table refer to the

time required to segment the teacher’s example, construct a STRIPS explanation

from these segments (along with novel action models), compute the lgg of a single

pair of examples, compute the most-specific hypothesis hs and obtain the most-

general hypothesis hg.

Problem Segment Explain lgg (e1, e2) hs hg

pull-tool 6.8 0.2 0.03 4.3 0.8
push-tool 5.3 0.2 0.04 2.7 1.2
ramp-tool 15.1 0.2 0.03 3.8 0.9

Table 6.1: Example run times (in seconds) for the pull-tool, push-tool and ramp-
tool problems presented in Chapter 5. The times in each column refer to the time
required to: segment the teacher’s explanation, construct an explanation from
the segmented trace, calculate the lgg for a pair of examples, compute the most-
specific hypothesis hs, and reduce the most-specific hypothesis to the most-general
hypothesis hg.

As is apparent from the table, the most time consuming component of the

algorithm is the segmentation of the teacher’s example. This is because a large

number of data frames need to be read from a file, and object velocities calculated

in each. Our implementation of this process in Prolog was convenient but inef-

ficient, and clearly a C-based algorithm would perform considerably better. The

ramp-tool problem was slowest at segmentation due to the longer length of the

6.3 System architecture 157

teacher example in this case, producing a larger example file to be processed.

6.3 System architecture

Our agent architecture is illustrated in Figure 6.2 and is comprised of the following

eight modules:

• User interface

• Symbolic planning and execution

• Learning by explanation module

• Learning by trial-and-error module

• Spatial constraint solver

• Motion planner

• Collision detector

• Primitive controller

As shown in the Figure, three different programming languages were used in the

implementation of these modules. Prolog was used for the high-level control,

planning and learning modules. C++ was the language of choice for low-level

control, motion planning and collision detection. Finally, ECLiPSe was used only

in the constraint solver module, a purpose to which it was ideally suited. In

the remainder of this chapter we give further details on how these modules are

implemented.

6.3.1 User interface

The learning system is controlled by the user through a simple high-level user

interface written in Prolog. After loading the main control program the user is

presented with the following command options:

158 System architecture and implementation

Figure 6.2: System architecture showing component modules and the data flow
between them. Green rectangles indicate prolog modules, orange rectangles indi-
cate C++ modules, yellow is an ECLiPSe module, whilst the simulator is shown
in purple.

6.3 System architecture 159

load(Task). Load a task description and world file.

record demo. Allow user to record a demonstration.

learn demo. Learn from demonstration.

experiment. Learn from experimentation.

show. Show learnt tool action models.

A typical learning session consists of the sequence load(task), record demo, learn demo,

experiment.

Loading a task definition

A task definition consists of the following, each of which must be specified by the

user:

• a task goal

• a tool/object generator file

• an action model definition file

• a learning background knowledge file, containing known state predicate

definitions and mode declarations

The goal specifies the desired objective of the agent, which is not possible to achieve

without the use of a tool. The aim for all of our tool-use experiments is simply for

the agent to obtain a user specified goal object. Thus each of the task descriptions

has the same goal: holding(GoalObject), where GoalObject is the name of the

goal object.

The tool/object generator file defines a set of generalised objects which can

appear in a given type of task. For example, in the tube problem the file defines

a variety of types of stick objects which can be used by the agent to obtain the

reward. The generator program varies the dimensions and composition of each

object according to the constraints set out in the file. The tool/object generator

file is described in detail in the next section below.

The action model file contains abstract action model definitions of all the ac-

tions known to the agent, along with a set of recognition models. Both of these

models were described previously in Chapter 3.

160 System architecture and implementation

Finally, the learning background knowledge file contains all of the information

necessary for learning first-order concepts for the given task. First and foremost

this consists of a set of predicate definitions which comprise the high-level back-

ground knowledge that the agent knows about the world. These predicates are

used to interpret the primitive state and provide an abstract description of the

current state of the world which can be used by the symbolic planner. In addition

to the predicate definitions, the learning file also contains mode declarations used

by the relational concept learner in the trial-and-error learning module.

Tool and object generation

Each time the agent succeeds at achieving the goal we present it with a new version

of the task. For the tube problem, this might involve a tube of different length

and/or width and the goal object located at a different position within the tube.

In addition, the set of objects which are available to be used as tools are varied in

their length, width, and composition.

The kinds of objects and tools which may appear in a task are specified in

a tool/object generator file. This file consists of a set of object type definitions

which describe the way in which kinds of objects are constructed, and the ways in

which they are allowed to vary. Each type definition specifies:

• A list of component parts

• Allowed range of dimensions for the component parts

• An allowed range of angles and locations for the (fixed) joints which connect

these parts

• The allowed initial locations for the object (or alternatively the allowed

initial region)

A generate world program written in Prolog is used to translate a set of type

definitions into a world file which can be input into the Gazebo simulator. The

generator randomly creates a set of objects which fit the parameters specified in

the object type definitions.

One example of a type of object in the tube problem is a hookstick, which

consists of a single “handle” with a hook at the end of the handle. The definition

6.3 System architecture 161

of a hookstick type object in the tube problem task file is as follows:

object type(tstick).

has part(tstick, handle).

has part(tstick, hook).

length(handle, 0.5:1.5).

length(hook, 0.02:0.40).

width(handle, 0.03:0.20).

width(hook, 0.03:0.15).

height(handle, 0.05:0.05).

height(hook, 0.05:0.05).

attach(handle, hook, 0.9:1.0, 0.0:0.0, 90:90).

This object type definition says that the length of the handle must be between

0.5m and 1.5m long, with a width between 3cm and 20cm. The attach(handle,

hook, 0.9:1.0, 0.0:0.0, 90:90) literal says that the hook should be attached

to the handle at a point which is between 90-100% along the length of the handle,

and 0% along the length of the hook, at an angle of 90 degrees.

The tool/object generator file also defines the number of objects of each type

which should appear, and their location. In our experiments we supply the agent

with a choice of six different objects each time a new task is generated. The objects

are arranged near the starting location of the robot, spaced evenly to ensure that

they can be accessed easily and do not get in the way of each other.

Recording a demonstration

A demonstration of tool-use consists of the user driving the robot around to show

how a task can be accomplished using a suitable object as a tool. Before the

demonstration begins the user loads a task file and generates a random version of

the task.

The robot is controlled by the user via the user interface, using the Gazebo

GUI wxgazebo to display an image of the scene. The user is able to execute the

same abstract actions which are posessed by the learner agent, in addition to the

new tool action which is the target of the learning process. Alternatively the user

162 System architecture and implementation

may choose to use the Gazebo GUI interface to control the robot directly with

primitive commands.

As the user drives the robot around the agent records primitive world state

snapshots at fixed intervals of time (we use 0.1 seconds in our experiments). For

each snapshot the pose of every object in the world is recorded. The agent does

not have access to view the commands executed by the user, and so must infer its

behaviour by watching changes in the primitive state. The user does not give any

high-level information to the agent about the demonstration — either its goal or

how it was achieved.

6.3.2 STRIPS Planner

For the planner module we use an off-the-shelf implementation of the Fast Forward

(FF) planning system (Hoffmann and Nebel, 2001). Fast Forward, as the name

suggests, is a forward search planner which searches through the state space using

a goal-distance heuristic which ignores delete lists. It was the most successful

automatic planner at the AIPS-2000 planning competition (ibid.).

The FF planner takes as input a set of action models and a problem definition

written in standard Planning Domain Definition Language (PDDL) syntax (Mc-

Dermott, 2000). We have written a parser which translates our abstract action

models from Prolog into a corresponding PDDL file. A second parser captures

the output from the planner and translates it back into Prolog so that it can be

understood by our agent.

6.3.3 Motion planner

For the motion planner module we have implemented a version of the RRT-Connect

(Kuffner and LaValle, 2000) algorithm, a Rapidly-exploring Random Tree (RRT)

motion planner. The RRT algorithm is well-suited to robotics applications where

the dimensionality of the search space is often high, and the algorithm has been

successfully used to plan complex motions of humanoid robots in cluttered envi-

ronments (Kuffner et al., 2003; Hirano et al., 2005). RRT works by sampling poses

in real space (as opposed to building a configuration space) and employs a heuris-

6.3 System architecture 163

tic which causes it to aggressively and efficiently explore unvisited regions of the

state space. The RRT-Connect version of the algorithm used in this thesis involves

two search trees which fan out from the goal and the initial state respectively, and

attempt to connect somewhere in the middle.

Our implementation of RRT-Connect is written in C++ and takes three inputs:

• A set of fixed “background” objects in specific poses.

• A set of manipulated objects in a fixed relative pose (eg. a pulling tool

attached to the robot).

• A set of permissible displacements in real space, representing the allowed

motion primitives.

As explained in Chapter 3 the motion planner is used to generate trajectories to

primitive goal states which satisfy the goals of abstract actions. Below we discuss

how the constraint solver is able to convert from abstract into primitive goal states.

6.3.4 Constraint solver

Each time the agent wishes to execute an abstract action it must be able to identify

a primitive goal state which satisfies the abstract goals of the action — in other

words, the abstract goals must be made operational. Consider for example exe-

cuting the action put on(book,table) which has primary goal on(book,table).

The agent must first find a primitive world state in which on(book,table) holds.

It can then use its motion planner to find a path which leads to this state.

One way of finding a primitive state which satisfies an action sub-goal is to

generate a random selection of primitive states and check if any of them satisfy

the goal property. This is, however, a terribly inefficient way of finding a suitable

goal state. In the case of the sub-goal on(book,table) there are an infinite number

of states which do not satisfy the goal condition, and randomly sampling the space

of relative poses between the book and table objects looking for a goal state would

be very slow indeed.

The problem of finding a primitive state which satisfies an abstract goal is a

constraint satisfaction problem. Since the constraints (goals) we wish to satisfy

are expressed in first-order logic we use the constraint logic programming system

164 System architecture and implementation

ECLiPSe (Apt and Wallace, 2007) to find primitive solution states. ECLiPSe

is able to use the abstract state concept definitions written in Prolog to search

efficiently for satisfactory primitive solution states.

The ECLiPSe constraint solver in our system is run as an independent module

which is accessed through a socket interface. It receives a set of abstract spatial

goals to solve, and sends back a primitive state which satisfies these goal con-

straints. Within ECLiPSe we are using the interval constraint library ic, which

provides constraint propagation and search mechanisms on real valued quantities

(in this case object pose coordinates).

Preprocessing state predicates

In order to apply ECLiPSe to our state predicates written in Prolog we must first

do some preprocessing to convert Prolog goals into ECLiPSe constraints. The pre-

processing step is performed just once, after the state predicates have been defined

in Prolog. The file containing Prolog state predicate definitions worldstate.pl is con-

verted to an equivalent ECLiPSe file worldstate.ecl via a small program written in

Prolog.

Converting Prolog goals to ECLiPSe constraints involves replacing any arith-

metic Prolog comparison operators (less than, greater than, equals etc.) which

occur in the predicate definitions with corresponding ECLiPSe arithmetic con-

straint operators.

As an example of this process, consider the state predicate on axis(ObjA,

ObjB, State) which is true when ObjA lies on the axis of ObjB in a given primitive

state. This abstract state predicate is defined in Prolog as:

on axis(ObjA, ObjB, State) :-

pose(ObjA, PoseA, State),

pose(ObjB, PoseB, State),

relpose(PoseB, PoseA, [X,Y,Theta]),

close const(C),

Y < C,

Y > -C.

6.3 System architecture 165

where relpose is a geometric predicate which calculates the relative pose [X,Y,Theta]

of PoseA relative to PoseB. This Prolog predicate is replaced in ECLiPSe with an

equivalent predicate containing constraints rather than comparison operators:

on axis(ObjA, ObjB, State) :-

pose(ObjA, PoseA, State),

pose(ObjB, PoseB, State),

relpose(PoseB, PoseA, [X,Y,Theta]),

close const(C),

Y $< C,

Y $> -C.

Here we have replaced the greater-than and less-than comparison operators (>

and <) with the corresponding arithmetic constraint operators $> and $<. In

the general case the arithmetic comparisons <, =<, ==, \=, >=, > are replaced

by the corresponding arithmetic constraints $ <, $ =<, $ =, $\=, $ >=, $ >. In

addition the numeric evaluation predicate ‘is’ is replaced by $ =. When ECLiPSe

encounters these primitive constraints as it executes a predicate, it applies the

relevant constraint to numeric variables involved, rather than evaluating for true

or false (as Prolog would do). In our predicates the variables represent, or are

directly linked to, the poses of the objects we are trying to constrain. ECLiPSe is

able to propagate these constraints in an efficient way so that constraints applied

to one object are also applied to connected objects.

Finding a solution: An example

The method used to find a ground state which satisfies one or more goals is best

illustrated with an example. Suppose we wish to find a primitive state State

which satisfies on axis(stick,robot,State) so that the stick is lined up on the

axis of the robot. To represent the primitive state we set the State parameter

equal to a list of objects and their corresponding poses. Using a robot-centred

coordinate system, with the robot pose fixed at the origin, State can be written

as:

State = [robot:[0,0,0], stick:[X,Y,Theta]]

166 System architecture and implementation

where X, Y, Theta are variables representing the stick pose coordinates which

we wish to constrain.

We begin by limiting the domain of these variables to -5.0 to 5.0 (for X and

Y) and -pi to pi (for Theta), where the X and Y values are expressed in metres.

The on axis(stick,robot,State) goal can then be solved by simply calling it

from within ECLiPSe as follows:

[eclipse]: State = [robot:[0,0,0], stick:[X,Y,Theta]],

[X,Y]::[-5.0..5.0], Theta::[-3.14..3.14],

on axis(stick,robot,State).

The :: operator constrains the domain of a variable to the range on the right

hand side. ECLiPSe immediately gives the constrained solution (in robot-centred

coordinates):

X = X{-5.0..5.0}

Y = Y{-0.05..0.05}

Theta = Theta{-3.14..3.14}

which indicates that the stick must be positioned along the robot’s main axis where

the Y coordinate is limited to the values -0.05 < Y < 0.05 as shown in Figure

6.3. Meanwhile the X and Theta coordinates are not constrained any further within

their defined domains.

This method gives us a range of solutions, expressed as a set of simple con-

straints on the X,Y,Theta coordinates. In this simple example, every point within

the range of coordinate values corresponds to a valid solution. In general, however,

ECLiPSe does not guarantee that every point will give a solution — only that at

least one solution lies somewhere within the range indicated. To find these solu-

tions requires committing to particular choices for one variable or another, and then

backtracking where necessary — that is, search. The ECLiPSe built-in predicate

locate does the heavy-lifting, and simply adding locate([X,Y,Theta],0.01,lin)

to the end of the above ECLiPSe program will cause ECLiPSe to search for specific

solutions within an accuracy of 0.01 (the parameter lin tells it to split the domain

linearly during search, rather than logarithmically).

6.3 System architecture 167

Figure 6.3: Illustration of the onaxis predicate.

If we wish to find a solution to on axis(stick,robot,State) in world coordi-

nates – rather than robot-centred coordinates – we can do so by applying a further

constraint: that all objects satisfy the same coordinate transformation between

world coordinates and robot coordinates. If we let the robot pose (in world coor-

dinates) of the solution be RobotPose, and the object pose be RelPose (in robot co-

ordinates) or WorldPose (in world coordinates) then these quantities must all sat-

isfy the coordinate transformation constraint relpose(RobotPose, WorldPose,

RelPose). If the stick object is located at, say, WorldPose=[0.3,1.2,-0.8]

(in world coordinates) then the complete ECLiPSe call to find a solution to

on axis(stick,robot,State) is:

[eclipse]: State = [robot:[0,0,0], stick:[X,Y,Theta]],

[X,Y] :: [-5.0..5.0], Theta :: [-3.14..3.14],

WorldPose = [0.3,1.2,-0.8],

on axis(robot, stick, State),

relpose([Rx,Ry,RTh], WorldPose, [X,Y,Theta]),

locate([Rx,Ry,RTh], 0.1, lin).

This returns a solution [Rx,Ry,RTh] which corresponds to the robot pose in world

coordinates.

168 System architecture and implementation

Algorithm 3 Solve a set of goals using ECLiPSe.

solve(+Goals, +RelToolPoses, +BackgrState, -Soln)

1: solve(Goals, RelToolPoses, BackgrState, Soln) :-

2: create var state(BackgrState, VarState),

3: restrict domains(VarState),

4: restrict domains([robot:[Rx,Ry,RTh]]),

5: append(robot:[Rx,Ry,RTh]), RelToolPoses, VarState, State),

6: call(Goals),

7: get backgr constraints(BackgrState, State, [Rx,Ry,RTh], BackgrConstraints),

8: call(BackgrConstraints),

9: locate([Rx,Ry,RTh], 0.1, lin),

10: collision check([Rx,Ry,RTh]),

11: Soln = [Rx,Ry,RTh].

Non-physical states: Collision checking

Finding a primitive state solution to a set of goals does not guarantee that the

primitive state is a valid state in the real world — in particular, it may imply

a collision between two rigid-body objects occupying the same region of space.

To avoid producing non-physical states we add a collision check to any solutions

produced using the above method.

It should be noted that whilst it is possible to introduce a “no collisions”

predicate as an explicit constraint, we do not do so in this work. Rather, we apply

the check to any solutions produced after solve is called. We decided against

using an explicit constraint simply because it would introduce a lot of additional

non-linear constraints, require re-writing the code in an ECLiPSe-friendly form,

and would add a lot of choice points to the search. In practice, imposing the check

after the locate predicate is called still allows for backtracking over locate when

collisions are encountered and was sufficient for our purposes in this work.

6.3.5 Finding a solution: General case

The general form of our solve predicate is given in Algorithm 3. The steps

6.3 System architecture 169

involved in finding a solution using solve are as follows:

1. Construct the inputs:

There are three inputs to the solve predicate:

(a) Goals: A list of goals to be solved (eg. on axis(stick,robot,State))

(b) RelToolPoses: A list of object poses describing the (fixed) orienta-

tion of the tool(s) relative to the robot at the origin. For example,

in the case of a robot gripping a stick so that it sits at a position

0.5m directly in front of the robot the RelToolPoses state would be:

RelToolPoses = [robot:[0.0,0.0,0.0], stick:[0.5, 0.0, 0.0]]

Note that this state is written in robot-centred coordinates.

(c) BackgrState: A list of all other object poses (ie. other than those in

RelToolPoses). These poses should correspond to the fixed position

of the objects in world coordinates. eg.

BackgrState = [tube:[3.4,1.2,0.0], reward:[3.4, 0.6, 0.5]]

(d) SolnState: A variable for returning the solution state.

2. Create a variable state:

Create a state containing the same objects as those in BackgrState, except

replace the fixed poses with variables. eg.

VarState = [tube:[X1,Y1,Th1], reward:[X2,Y2,Th2]]

3. Construct the search state:

The search state State is defined by appending the RelToolPoses to the

VarState. This corresponds to the state of the world in robot-centred

coordinates, where the objects other than the robot and tool are given

variable poses which we wish to constrain by the list of Goals.

4. Set search state equal to state parameter in goals:

The last parameter of each dynamic goal is an empty state variable. This

variable in each goal, must be set equal to the search state defined in the

previous step. This allows the goals to impose their constraints on the

solution.

5. Call the goals:

170 System architecture and implementation

The goals are executed, which applies the constraints implied in the defini-

tions of the goal predicates.

6. Constrain to fit background state:

At this point, the State variable contains goal constraints applied in a

robot-centred coordinate system. We now apply a further set of constraints

to ensure that when the robot-centred solution is transformed into world

coordinates it is equal to the poses defined in BackgrState. This is done

by creating a set of goals of the form relpose([Rx,Ry,RTh], WorldPose,

RelPose) for each object in the background state, and executing the goals

to apply the constraints.

7. Locate solutions:

The penultimate step is to search for solutions which satisfy all of the

constraints. This is done using the built-in search predicate locate. We

use a linear division of the search space when calling this predicate, and

search for solutions to within an accuracy of 0.01 (the second and third

parameters of locate).

8. Check for collisions:

The final step is to check that the solution given by [Rx,Ry,RTh] is a valid

state by calculating the complete state and calling the collision checker. If

collisions occur then we backtrack to other solutions produced by locate.

6.3.6 Collision detector

The agent is provided with a simple geometric model of each object in the world

as part of its background knowledge. In the case of a stick object, for example,

this would simply consist of its length, width and height. The collision detection

module uses these geometric models to determine whether any given pair of objects

is colliding.

The collision detector is employed by a number of higher-level modules, as

shown in Figure 6.2. The constraint solver module uses it to check whether its

solutions to logical constraints are valid poses. The motion planner module uses

it to find collision-free paths to a given sub-goal. Finally, the primitive controller

6.3 System architecture 171

uses to detect when a collision has occurred during execution.

The collision detection engine used in our work is the C++ library SWIFT

(Ehmann, 2001; Ehmann and Lin, 2000). SWIFT is a simple library for collision

detection and distance computation for rigid three-dimensional polygonal objects.

Any alternative collision detection library would work just as well, as we have

made no alterations to the code.

6.3.7 Primitive controller

The primitive controller module is a straightforward pd-controller used to drive the

robot along a path supplied by the motion planner. This module is implemented

entirely in C++. The desired robot path is input to the controller as a list of

intermediate poses which must be passed through on the way to the final goal pose.

After each intermediate pose has been attained (approximately) the controller sets

the subsequent intermediate pose as the new target.

In cases where an unexpected collision occurs, causing the robot to become

stuck, the controller returns a “fail” signal to the abstract action (eg. put in gripper)

which called it. The STRIPS planner is then able to replan, the motion planner is

called once again, and a new path is generated. In rare cases in our experiments

where the agent was unable to recover from getting stuck the simulator was simply

reset. However, if the agent was in the process of using the tool when it became

stuck, a negative example of the tool pose state was first recorded.

6.3.8 Learning by explanation module

The learning by explanation module takes as input the teacher’s demonstration

trace and outputs an explanation, along with any novel action models which were

needed to complete the explanation. The new action models are then refined

through additional trial-and-error based learning.

The learning by explanation module is written entirely in Prolog and consists

of three primary components:

• segmentation of the teacher’s trace

• segment labelling

172 System architecture and implementation

• construction of action models for novel action segments

The approach to each of the above components of the explanation-based algorithm

has been given in Chapter 4, and illustrated in Chapter 5. Below we give some

more detailed pseudo-code and some additional comments on its implementation.

Segmentation

High-level pseudo-code for the segmentation process is given in Algorithm 4. The

first step in the segmentation algorithm is the thresholding of object velocities

observed in the teacher’s example trace. As described in Chapter 4, a hysteresis-

style threshold is used to avoid flickering between stationary and moving states.

Detailed code is not given here as the process is straightforward.

The thresholding process is followed by creating a list of segment boundaries

occurring during the trace. A segment boundary is placed at each point in the trace

at which any object stops or starts moving. A segment boundary is represented

in the list by a triple of the form (frame, object, ‘start’/‘stop’), where frame is the

frame number at which the transition occurs, object is the name of the object, and

‘start’ or ‘stop’ notes whether the object started or stopped moving at that point.

The initial list of segment boundaries is then sorted (into chronological order)

and used to build a sequence of segments. A segment is represented by a pair

(frame, objects) where frame is the frame at which the segment begins, and objects

is a list of all the objects which are moving within the segment. The end point

of the segment is defined implicitly by the start point of the next segment in the

sequence. The objects which are moving in the segment are determined by keeping

track of a list of moving objects (movingobjs in Algorithm 4) and updating it each

time a segment boundary is traversed — meaning an object has started or stopped

moving.

An important part of the process of creating the segments list is to merge

segment boundaries which lie very close to one another. As discussed in Chapter

4, it is common for objects to start or stop moving at almost the same time.

This produces a series of closely spaced boundaries, which our code treats as a

single ‘combined’ boundary for the purposes of building segments. It does this by

6.3 System architecture 173

Algorithm 4 Segmentation of the teacher’s example.

segment trace(trace)

1: segBoundaries ← {}

2: for each object obj do

3: for each frame in trace do

4: if obj started moving in frame then

5: segBoundaries ← segBoundaries + (frame, obj, ‘start’)

6: else if obj stopped moving in frame then

7: segBoundaries ← segBoundaries + (frame, obj, ‘stop’)

8: end if

9: end for

10: end for

11: Sort segBoundaries by frame

12: last ← 0

13: movingobjs ← {}

14: segments ← {}

15: for each (frame, obj, type) in segBoundaries do

16: if type=‘start’ then

17: movingobjs ← movingobjs + obj

18: else

19: movingobjs ← movingobjs − obj

20: end if

21: f ← frame

22: if frame − last < mergethreshold then

23: loop

24: else

25: segments ← segments + (f, movingobjs)

26: last ← f

27: end if

28: end for

29: segments ← remove ‘paused’ segments in segments

30: return segments

174 System architecture and implementation

ignoring segment boundaries which lie within mergethreshold of the most recently

started segment.

The final step in the segmentation process is to remove any segments in which

no objects are moving (which we refer to as “paused” segments). This occurs

when the robot stops to, for example, turn and move in a new direction. Paused

segments contain no interesting information and can be safely removed without

affecting the explanation of the teacher’s example.

The end result of the segmentation process is a list of segments, represented

by a series of (frame, objects) pairs, where objects is a list of objects moving

in the segment which began at frame frame. It should be noted that the above

algorithm assumes that the velocities of objects determined by the observing agent

are not excessively noisy (to avoid spurious segments being created). To deal

with the case of a noisy state signal we have conducted preliminary experiments

with anisotropic smoothing (Rao et al., 2002) and it appears to be a promising

approach. Smoothing was ultimately not necessary in our simulations due to the

lack of noise in the simulator data. However, when moving on to a real-world

robot (as described in Chapter 8) some form of velocity smoothing would need to

be added to the implementation.

Labelling segments

The next step in the explanation-based learning module is to label the segments

produced by the segmentation algorithm. Pseudo-code for this process is given in

Algortihm 5, and a detailed explanation and illustration of this algorithm were

presented in Chapter 4 and Chapter 5 respectively.

The algorithm works in a straightforward manner, by looping through each

segment identified in the teacher’s example trace and attempting to recognise the

action(s) being performed within the segment. Each segment can be labelled by:

• a single known action

• a sequence of known actions

• a recognition model (representing a general positioning-type action)

• a novel action

6.3 System architecture 175

Algorithm 5 Label the segments in the teacher’s example.

label segment(segments)

1: labelled ← {}

2: for each seg in segments do

3: action ← explain segment(seg)

4: labelled ← labelled + {action}

5: end for

6: return labelled

explain segment(segment)

1: action ← explain segment action(segment)

2: if action 6= {} then

3: return action

4: else

5: model ← explain segment recogmodel(segment)

6: if model 6= none then

7: return model

8: else

9: return ’novelAction’

10: end if

11: end if

The explain segment(segment) procedure in Algorithm 5 carries out this pro-

cess of labelling a given segment. In order to do so, it calls the sub-procedures ex-

plain segment action(segment) and explain segment recogmodel(seg-

ment). The first of these, explain segment action attempts to match the

segment with a sequence of one or more actions in the agent’s background knowl-

edge (ie. known actions). If this fails, explain segment recogmodel is used

to try and match the segment to a recognition model. If this, in turn, fails the

agent labels the segment as a novel action.

The explain segment action(segment) procedure (Algorithm 6) works by

seeking to find a series of known actions A1, A2, . . .An which can be used to “cover”

176 System architecture and implementation

Algorithm 6 Explain a segment as a sequence of one or more known actions.

explain segment action(segment)

1: moving ← objects moving in segment

2: enabled ← list of ’enabled’ actions in segment, each represented as a tuple

(action, P1, P2, E), where P1, P2 and E are the frames at which:

- P1 : the action’s precons become true

- P2 : the action’s precons cease to be true

- E : the action’s effects become true

3: Remove from enabled any actions whose action model’s object list does not

match with moving

4: begin ← beginning frame of segment

5: end ← last frame of segment

6: explanation ← ordered sublist A1, A2, . . . An of actions in enabled which cover

the segment from begin to end such that:

- the precondition of A1 is true at begin

- the effects of An are true at end

- for any successive actions Ai and Ai+1 with tuples (Ai, P1i, P2i, Ei) and

(Ai+1, P1i+1, P2i+1, Ei+1), the condition P1i+1 < Ei < P2i+1 is satisfied

7: return explanation

or “traverse” the segment from beginning to end. The algorithm imposes the con-

straint that the preconditions of the first action A1 must be true at the beginning

of the segment, and the effects of the final action An must be true at the end of

the segment. In addition, at the point at which one action Ai ends and the next

action Ai+1 begins, the effects of Ai must be true and the preconditions of Ai+1

must be true. In many cases the sequence may consist of a single action, whose

preconditions are true at the beginning of the segment and whose effects are true

at the end.

In order to facilitate the process of matching the sequence of preconditions

and effects, the algorithm first produces a list of actions whose preconditions and

effects are satisfied at some point during the segment — these actions are said to

be enabled. For each enabled action three key frames numbers are recorded:

6.3 System architecture 177

Algorithm 7 Explain a segment with a recognition model.

explain segment recogmodel(segment)

1: moving ← objects moving in segment

2: for each model in agent’s recognition models do

3: if moving is not a subset of model.MOVING then

4: loop

5: end if

6: preState ← world state at start of segment

7: if model.PRE not satisfied in preState then

8: loop

9: end if

10: explanations ← explanations + {model}

11: end for

12: if explanations = {} then

13: return none

14: else

15: model’ ← model in explanations with the most specific precons

16: return model’

17: end if

• P1: the frame at which the precondition is first satisfied

• P2: the frame at which the precondition ceases to be satisfied

• E: the frame at which the effects are first satisfied

These frames are illustrated in Figure 6.4. By recording a list of enabled actions

in the form of a list of tuples (Action, P1, P2, E), the algorithm can find a valid

sequence which traverses the segment from beginning to end.

If the agent is unable to match the segment to a sequence of one or more known

actions, the algorithm instead tries to match the segment to one of its recognition

models. The pseudo code for this process is given in Algorithm 7. In order to

be matched to a segment a recognition model must share the same list of moving

objects as observed in the segment, and the preconditions must be true at the

start of the segment. If more than one recognition model is satisfied, the one with

178 System architecture and implementation

Figure 6.4: Illustration of the quantities P1, P2 and E referred to in Algorithm 6

the most specific preconditions is selected.

Finally, if the agent is unable to match the segment to known action(s) or a

recognition model, the explain segment algorithm labels it as a novel action.

A new action model to represent this novel action is constructed in the last step

of the explanation-based learning module.

Building novel action models

The final step in the explanation-based learning algorithm involves building new

action models to represent the observed novel action. Recall from Chapter 4 that

novel tool actions usually consist of a “positioning” action, where the tool is put

into place, followed by an “effects” action in which the desired effect of the tool is

achieved. Although other types of tool action structures are possible (see Chapter

4) this is the common form of tool action which is addressed in this thesis.

Pseudo-code for building action models for the two components (positioning-

step and effects-step) of the novel tool action is given in Algorithm 8. The algo-

rithm takes as input the explanation generated by the segment labelling algorithm

described in the previous section, and outputs new action models which are added

to the agent’s action model database.

The first step of the algorithm is to split the explanation of the teacher’s actions

into four pieces:

• actionsBefore: actions occurring before any recognition model or novel ac-

tion

6.3 System architecture 179

Algorithm 8 Building new action models to explain novel segments.

build new action models(labelledSegments)

1: Split labelledSegments into four pieces: actionsBefore, recognModel, novelAc-

tion, actionsAfter

2: unsupportedPre ← unsupported precons in actionsAfter

3: unexplained1 ← unexplained effects in recognModel segment

4: unexplained2 ← unexplained effects in novelAction segment

5: Define new positioning-step action model placeTool with:

placeTool.PRE ← recognModel.PRE

placeTool.EFFECTS ← tool pose(Tool), unexplained1

placeTool.MOVING ← recognModel.MOVING

6: Define new effect-step action model useTool with:

useTool.PRE ← net effects of actionsBefore and placeTool

useTool.EFFECTS ← unexplained2

useTool.MOVING ← objects moving in novelAction segment

7: Replace ground objects by variables in placeTool, useTool

8: return placeTool, useTool

• recognModel : the recognition model (the positioning-step)

• novelAction: the novel action (the effects-step)

• actionsAfter : actions occurring after the novel action

The algorithm identifies any actions in actionsAfter which have unsupported pre-

conditions — that is, any actions with preconditions which are not enabled by an

earlier action. Likewise, any unexplained effects in the segments corresponding to

recognModel and novelAction are recorded. An unexplained effect is defined as

any effect which might support a later action in the explanation, but is not yet

accounted for by the existing action models represented in the explanation.

The algorithm uses the lists of unsupported preconditions and unexplained

effects to construct new action models for the positioning and effects step of the

novel action according to the principles defined in Chapter 4. The primary effect of

the positioning action is defined to be the tool pose state literal tool pose(Tool).

180 System architecture and implementation

This literal, which is also a precondition of the effects-step, encapsulates all of

the additional positional and structural conditions which must be true in order

for the tool-use action to succeed. These additional requirements might include

restrictions on the dimensions or shape of the tool, along with a detailed description

of the relative pose in which it must be placed. A definition of the tool pose

literal is learnt through inductive logic programming in the agent’s trial-and-error

learning module.

6.3.9 Learning by trial-and-error module

The agent’s learning by trial-and-error module aims to learn a definition of the

structural and positional conditions under which the tool can be used to achieve

the desired goals. Whilst some of the novel action preconditions were inferred

by the explanation module, the remainder were encapsulated by an undefined

tool pose(Tool) predicate. The trial-and-error module learns a definition of this

predicate through repeated experimentation and the use of an inductive logic pro-

gramming learning algorithm.

Pseduo-code for the main loop of the trial-and-error learner is shown in Al-

gorithm 9. As with the learning by explanation module, all of the code in this

module is implemented entirely in SWI-Prolog.

The algorithm repeatedly selects a new tool and tries to use it to solve the task.

For ease of experimentation the same generic plan is used each time the agent per-

forms the task. Each time a new tool is selected, the agent updates the plan with

the newly selected tool. During execution of the plan the agent records the state

learnState — defined as the world state which exists at the point the novel action

effects-step commences. If the novel action succeeds, the agent adds learnState as

a positive example of the tool pose(Tool,State) predicate. Conversely, if the

action failed learnState becomes a negative example of tool pose(Tool,State).

To record an example the agent creates a new label for the state, such as s7,

and records the new example in the examples file. For instance, if s7 was a positive

example involving stick3 the entry would be:

example(pos, tool pose(stick3, s7)).

The primitive world state corresponding to this example state is also recorded in

6.3 System architecture 181

Algorithm 9 Learn the tool pose predicate by trial-and-error.

learn by trial and error

1: Read the user-defined task file

2: Set learning target as tool pose(Tool,State)

3: Generate new instance of learning task

4: plan ← Generate a new plan

5: repeat

6: tool ← select new tool

7: Insert tool into plan

8: Execute plan, including novel tool action

9: learnState ← world state encountered at start of novel action

10: if plan succeeded then

11: add learnState as positive example of tool pose(Tool,State)

12: hs ← revise most specific hypothesis (ILP)

13: Generate new learning task instance

14: else

15: Add learnState as negative example of tool pose(Tool,State)

16: hg ← revise most general hypothesis (ILP)

17: Reset current learning task

18: end if

19: until max trials completed

an accompanying file.

Having recorded a new learning example, the agent revises its most-specific (hs)

or most-general (hg) hypotheses describing the tool pose state. These hypotheses

affect the future actions of the agent in two ways: they determine how a new tool

is selected (the tool structure), and they determine how the tool is used (the tool

pose).

Tool selection is governed by the select new tool procedure shown in Al-

gorithm 10. This algorithm examines each potential tool in turn and scores

it according to its structural similarity to the current most-specific and most-

general hypotheses. Recall from Chapter 4 that a structural literal is defined

182 System architecture and implementation

Algorithm 10 Select a new tool.

select new tool

1: hg, hs ← current hypothesis

2: for each obj in available tools do

3: score ← score structural similarity(hg, hs, obj)

4: end for

5: bestTool ← tool with highest score

6: return bestTool

score structural similarity (hg, hs, tool)

1: h′

s ← structural literals in hs

2: h′

g ← structural literals in hg

3: Set tool parameter in h′

g and h′

s equal to tool

4: score ← number of satisfiable literals in h′

s

5: if any literals in h′

g are not satisfiable then

6: score ← 0

7: end if

8: return score

as one which is time-independent (ie. contains no “state” parameter), such as

length(Tool,Length). An object receives a score equal to the number of struc-

tural literals in hs which it satisfies. However, any object which does not satisfy

all of the structural literals in hg receives a score of zero. The select new tool

algorithm then chooses the tool with the highest score. As the learner’s current

definition of hg and hs changes so too does the score assigned to any particular

object.

Tool pose generation is likewise affected by both hg and hs, although the al-

gorithm is more complex and involves the use of the constraint solver module

described in Section 6.3.4. Tool pose generation occurs each time the agent at-

tempts to execute an action, and in the case of novel actions a special version of

the algorithm is used. This algorithm was detailed in Chapter 4 (see Algorithm

1) and so will not be discussed further here.

6.3 System architecture 183

Generation of new hypotheses

The agent’s ILP algorithms are invoked after each new learning example has been

collected, in order to revise the current hypothesis describing the tool pose state.

As described in Chapter 4, our algorithms for generating revised hypotheses from

examples are based on Muggleton’s GOLEM algorithm (Muggleton and Feng,

1992). Here we give some further detail on how they are implemented.

The most-specific hypothesis hs is generated by firstly selecting pairs of positive

examples and calculating their least-general generalisation (lgg). The pair whose

lgg has the best coverage provides the starting point for the search. The algorithm

then repeatedly tries to improve its hypothesis by including additional positive

examples in the lgg. This process continues until coverage stops improving or all

of the examples are covered. The pseudo-code for generating the most-specific

hypothesis is given in Algorithm 2 (Chapter 4). Our implementation is once again

written in SWI-Prolog.

The key step in generating a new most-specific hypothesis is the computation

of the (relative) least-general generalisation of two or more examples. The rules

for generating our version of the lgg (a mode-restricted lgg) were given in 4.3.5,

and the corresponding pseudo-code is presented here in Algorithms 11 through 13.

The first step in the lgg algorithm is to create a new clause representing each

example. A clause is created from an example by setting tool pose as the head

of the clause and saturating the body with literals listed in the agent’s mode

declarations (supplied as background knowledge). This results in a clause:

tool pose(Tool, State) :- a1, a2, . . ., an

where the ai are the generated body literals, and State and Tool are given by

the example. The saturation process we have used works in the usual manner, by

chaining forward from the head of the clause and using the mode declarations to

generate all valid body literals up to a given depth. A body literal is generated

by instantiating its input parameters with terms appearing as output parameters

earlier in the clause (or input parameters of the clause head).

The lgg of the two clauses representing the examples can then be calculated.

The pseudo-code for this process is given in Algorithm 11. It works by calculating

184 System architecture and implementation

Algorithm 11 Compute the lgg of positive examples.

lgg(exampleA, exampleB)

1: clauseA ← saturate exampleA clause with background knowledge

2: clauseB ← saturate exampleB clause with background knowledge

3: Let headA, bodyA be the head and body of clauseA

4: Let headB, bodyB be the head and body of clauseB

5: lgghead, subs ← lgg lit(headA, headB)

6: for i = 1 to maxdepth do

7: lgg, newsubs ← lgg body(bodyA, bodyB, subs)

8: lggbody ← lggbody ∪ lgg

9: subs ← subs + newsubs

10: end for

11: return (lgghead :– lggbody)

lgg body(bodyA, bodyB, subs)

1: for each literal ai in bodyA do

2: for each literal bj in bodyB do

3: lgg ij, newsubs ij ← lgg lit(ai, bj , subs)

4: if lgg ij = none then

5: loop

6: else

7: lgg ← lgg + lgg ij

8: newsubs ← newsubs ∪ newsubs ij

9: end if

10: end for

11: end for

12: return (lgg, newsubs)

the lgg of the two clause heads, and then finding the lgg of each pair of body

literals from either clause. The lgg of a pair of literals depends on the available

substitutions, and so this process of generating body literal lggs is repeated up to

a user-defined ‘depth’. During each loop zero or more new variable substitutions

may be introduced.

6.3 System architecture 185

Algorithm 12 Compute the mode-restricted lgg of two literals.

lgg lit(lita, litb, subs)

1: if functor(lita) 6= functor(litb) or arity(lita) 6= arity(litb) then

2: return (none, none)

3: end if

4: Let a1, a2, . . . , an be the parameters of lita

5: Let b1, b2, . . . , bn be the parameters of litb

6: Let m1, m2, . . . , mn be the modes of a1, a2, . . . , an

7: Let n1, n2, . . . , nn be the modes of b1, b2, . . . , bn

8: for i = 1 to n do

9: lgg i, newsubi ← lgg term(ai, bi, mi, ni, subs)

10: if lgg i = none then

11: return (none, none)

12: end if

13: newsubs ← newsubs + newsubi

14: end for

15: define lgg with

16: - same functor as lita and litb

17: - parameters equal to lgg i

18: return (lgg, newsubs)

The algorithm for determining the lgg of a pair of body literals is shown as

lgg lit in Algorithm 12. It involves finding the lgg of each pair of parameters,

using the function lgg term (Algorithm 13). In order for the lgg of a pair of

literals to be defined, the lgg of each parameter pair must be defined.

The crucial point in our mode-restricted lgg is that the lgg of two terms (see

lgg term) depends upon the mode of the parameter and the set of valid sub-

stitutions which already exist in the lgg. Given a pair of ground terms x and y,

a new variable X, may only be introduced if x and y are output parameters and

no Y: x/y substitution already exists for these parameters. In addition, this new

variable will only survive if the lgg of all of the input parameters pairs in the literal

are well-defined.

186 System architecture and implementation

Algorithm 13 Compute the mode-restricted lgg of a pair of terms.

lgg term(terma, termb, modea, modeb, subs)

1: if modea 6=modeb then

2: lgg ← none

3: newsub ← none

4: else if terma = termb then

5: lgg ← terma

6: newsub ← none

7: else if if modea = ’−’ then

8: if X:terma/termb ∈ subs then

9: lgg ← X

10: newsub ← none

11: else

12: create new substitution Y:terma/termb

13: lgg ← Y

14: newsub ← Y:terma/termb

15: end if

16: else if modea = ’+’ then

17: if X:terma/termb ∈ subs then

18: lgg ← X

19: newsub ← none

20: else

21: lgg ← none

22: newsub ← none

23: end if

24: end if

25: return (lgg, newsub)

The most-specific hypothesis hs is constructed as the lgg of two or more positive

examples, as described above, including new variables which may not exist in

the head of the clause. The most-general hypothesis hg describing the tool pose

state may then be generated directly from hs via the process of negative-based

reduction. Negative-based reduction attempts to find a shorter (more general)

6.3 System architecture 187

clause by deleting literals from the hypothesis in a greedy manner. The pseudo-

code for this algorithm, which appeared as part of GOLEM, is detailed at the end

of Chapter 4.

188 System architecture and implementation

Chapter 7

Conclusions and future work

In this thesis we have presented a robot agent which is able to learn to use objects as

tools to solve problems. The agent employs both explanation-based and inductive

approaches to learn the correct way in which a tool should be used, what the tool

is useful for, and what the key properties are that make an object a suitable tool.

Our approach involves learning at the abstract relational level, which allows our

agent to generalise over objects and situations more broadly than previous robot

tool-learning approaches.

This chapter summarises the research presented in this thesis and outlines the

most interesting and challenging ways in which the work could be extended.

7.1 Summary

The main goal of this research was to build a robot agent capable of learning to

solve problems by using objects as tools. We introduced a broad definition of a

tool as any object which enables the agent to achieve a goal which would have

otherwise been more difficult or impossible to achieve.

One of the distinguishing features of our approach is that our agent is learning

tool-use in the context of problem-solving. The agent’s learning is motivated by

the need to solve a problem, and it is able to identify the purpose and benefits of

using a tool by watching another agent — rather than having tool subgoals defined

a priori by a programmer.

190 Conclusions and future work

The other main difference in our approach is that we have emphasised relational

learning, and an ability to generalise over situations and tool objects. An ability

to generalise effectively is essential for a general-purpose robot because it never

has to solve exactly the same problem twice. Previous work on tool-use learning in

robots has focused at the more primitive level of learning manipulation behaviours.

The main contributions of this thesis are:

• The integration of tool-use learning and problem solving in a robot agent.

• The use of a relational learner for solving robot tool-use learning prob-

lems. Our agent can learn important tool-use concepts which cannot be

represented by the approaches used in previous work.

• A novel action representation which integrates symbolic planning, con-

straint solving, and motion planning. We use STRIPS models and first-

order relations to constrain motion planning behaviours.

• A novel method for learning action models via a form of explanation-based

learning.

• A novel method for incremental learning of relational concepts, based upon

a version-space-like representation and a restricted form of least general

generalisation.

7.2 Lessons and limitations

A number of general conclusions can be drawn from the work we have completed

on tool-use learning. The lessons learned here may be useful to researchers con-

templating an extension of our work, or to those who are working in a related

area.

Learning bias

A key characteristic of our approach was the learning bias employed, involving

the use of both the most-specific and most-general forms of the hypothesis. This

contrasts strongly with the majority of existing work in ILP in which either a

purely top-down or bottom-up approach is adopted. Each of these approaches,

7.2 Lessons and limitations 191

used in isolation, would have suffered from significant disadvantages in our tool-

use domain.

The top-down (general-to-specific) approach has the disadvantage that it learns

a purely discriminative hypothesis — the shortest possible description of how a

positive example can be distinguished from a negative one. In the case where the

agent has only a few examples to work with (as in our experiments) this clause is

typically only one or two literals in length. Short hypotheses such as these provide

only limited information about how an action should be executed. In order to

obtain a more detailed hypothesis it is necessary to collect a very large number of

learning examples.

In contrast, the bottom-up (specific-to-general) approach very quickly arrives

at a detailed description of the action, a so-called characteristic hypothesis. This

hypothesis contains all of the essential elements which the observed positive exam-

ples have in common. Unfortunately, the most-specific hypothesis only contains

information about positive examples and is usually so overly-specific that it is not

directly applicable to the current world situation.

Our approach resolves these problems by making use of both most-specific

and most-general hypotheses. This allows the hypothesis space to explored more

efficiently, as the agent can ensure that it selects new examples to test which lie

somewhere in between these two hypothesis boundaries. It should be noted that

this advantage is most useful in the incremental learning scenario, such as the

learning problems addressed in this thesis.

Bootstrapping inductive learning with explanation-based learning

One of the useful lessons which has come out of this research is that explanation-

based learning (EBL) can play an effective role in “bootstrapping” trial-and-error

learning of action models.

As we discussed in Chapter 2 (section 2.2.2), EBL has an unfortunate repu-

tation of being unable to learn anything which was not already implied by the

background knowledge. This reputation has no doubt come about because of

EBL’s origins in speedup learning and learning action “macros”. However, in the

case where the agent’s domain theory is incomplete it is indeed possible for EBL to

192 Conclusions and future work

introduce new domain knowledge. This is of course the exact situation addressed

in this thesis, where an explanation allows the agent to infer useful information

about a novel action.

The advantage of the explanation-based approach is that it is able to learn a

significant amount of information from a single example. This is important in an

action-learning context because it allows an agent to quickly focus its experimenta-

tion on a narrower part of the hypothesis space. In this manner, explanation-based

learning provides an effective starting point for inductive trial-and-error learning

and allows the agent to learn from fewer examples.

One of the goals of our work was to present a learning system which would

be able to define its own learning objectives, motivated by the desire to achieve

a goal. We would argue that all tool-use is goal-oriented, and so it makes sense

to learn tool-use in a goal-oriented context. Explanation-based learning was an

essential component of making this possible, by providing the agent the ability to

recognise and explain novel behaviours which it might wish to learn.

Close interaction between geometric and logical representations of space

Solving tool-use problems involves an interesting mix of abstract logic and low-

level object interaction. To reflect this fact, a key aspect of our approach is the

very close interaction between logical spatial predicates and a primitive geometric

model of the world. This interaction is manifested in both action execution and

action learning.

In our approach to action representation and execution, the spatial goal predi-

cates in STRIPS models are transformed to motion plans in geometric space. This

process is facilitated through the use of a constraint solver, which is able to find ge-

ometric solution poses satisfying a set of logical constraints. This tight integration

between “geometric” (motion) planning and abstract (STRIPS) planning allows

our agent to solve problems at both the abstract and fine-grained manipulation

level. Our review of the literature in Chapter 2 notes a number of related pieces

of work which have adopted the same theme.

The close interplay between geometric and logical models of objects and space is

also apparent in our approach to action learning. Our learning-by-explanation al-

7.2 Lessons and limitations 193

gorithm relies on low-level motion and contact-based segmentation of the teacher’s

example, before a more abstract explanation is constructed using STRIPS models.

The learning by trial-and-error algorithm also makes heavy usage of a geometric

model in testing hypotheses, as discussed in Section 5.5. The collision checker and

constraint solver allow the agent to eliminate non-physical solution poses, without

needing to test them physically.

Whilst our approach has been developed to specifically address tool-use learn-

ing problems, it seems likely that some of the ideas developed in our work could

be useful more generally — particularly in other spatial domains.

Determinacy assumption

As noted in Chapter 4, the ILP component of our learning algorithm which deals

with generating a new most-specific hypothesis is based on GOLEM. One of the

significant limitations of GOLEM which also applies to our work is the assumption

of determinacy in the background predicates. The determinacy assumption states

that the values of any output parameters of a predicate should be determined

uniquely by the value of its input parameters. The determinacy restriction ensures

that the hypothesis clause grows at worst polynomially with the number of positive

examples.

In practice the determinacy restriction can make it awkward to describe some

physical objects. Consider, for example, describing a table with four legs. It

would seem natural to describe the fact that each leg is attached to the table top

by assertions such as attached(tabletop, leg1) and attached(tabletop,

leg2) and so on. However if the second parameter of attached is an output

parameter this would violate the determinacy restriction.

Determinacy could be imposed artificially in this example by writing the at-

tachment predicate as four separate predicates (attached1, attached2 . . .), rep-

resenting the “first” attachment, “second” attachment and so on. This approach

will only be useful in cases where each of the attachments are identical (eg. in

the case of table legs) or we can apply a heuristic ordering to the attachments.

In other cases, an alternative modification to the lgg algorithm would need to be

developed to limit the number of valid lggs.

194 Conclusions and future work

Assumption of complete action models

Another important limitation of our approach is the assumption that the action

models supplied to the agent are accurate. In reality, an agent would be continually

refining each of its action models as it gains experience — as a consequence its

current set of models would contain errors or omissions. Our approach to learning

by explanation assumes that the agent’s existing models are correct, which allows

it to confidently spot novel actions during the course of the teacher’s example. If

we allow for the fact that agent’s action models may contain significant errors then

the question arises — does a gap in the explanation represent a novel action, or

simply a unrecognised action due to an incorrect action model?

Fortunately it seems likely that our approach could be suitably modified to

take account of the possibility of errors in the agent’s action models. For example,

an agent might be able to explain a ‘gap’ by making a minor revision to one of

its existing action models — the proposed correction could then be tested through

experimentation.

Noise-free assumption

The final limitation we will remind the reader of here is that our approach as-

sumes that the state signal from the world is noise-free. Introducing significant

noise would certainly complicate the learning-by-explanation algorithm, since it

would be difficult to reliably distinguish from a single teacher example whether an

“interesting” effect was the result of a novel action or simply noise. The most ob-

vious solution to this problem would seem to be to allow the agent access to more

than one demonstration example from the teacher. The learning-by-explanation

problem would then involve an inductive component to help isolate noise in the

example.

7.3 Future work

The most interesting extensions to this work would involve extending the world

representation and learning algorithms to allow a greater range of tool problems

7.3 Future work 195

to be tackled. These include learning skillful manipulation of tools, analogical

problem-solving for tool-use problems, learning repetitive tool actions, and the

representation and use of non-rigid body tools and objects.

A more challenging task would be to implement the existing learning system

on a robot operating in the real world. This would involve addressing considerable

challenges in sensing and control which we have not addressed in this thesis. It

would, however, allow the agent to tackle some interesting real world tool-use

problems which are difficult to simulate (such as mopping up a liquid).

7.3.1 Learning complex manipulation behaviours

There is considerable scope in future work for more sophisticated learning of object

and tool manipulation at the primitive level.

Due to the complex nature of the object manipulation problem, in our research

we have deliberately chosen to examine tool use problems where dexterous ma-

nipulation is not required. We have instead focused on learning how tools can be

incorporated into planning, and on learning the relations which must exist between

tools, objects, the user and the surrounding environment. It is a fact however that

many tools can be used more effectively, usefully and easily when manipulated by

a skillful user.

As an example we might wish to consider the problem of an agent learning

to hit a nail into a piece of wood with a hammer. Our current system would

be sufficient for learning the necessary properties of the hammer, along with the

necessary spatial relationships which must exist between the hammer head and

the nail. However, it would be unable to replicate the proper hitting behaviour

demonstrated by the teacher. Instead it would try to plan a path for the hammer

head, in order to move the head into contact with the nail; it would then attempt

to push the nail into the wood with the hammer head. A better system would

learn as a subgoal the desired velocity of the hammer head at the point of contact,

not just the relative pose. The motion planner would therefore need to operate in

velocity space as well as pose space.

A more sophisticated approach might try to marry our abstract model learning

approach with a primitive behaviour learner at the lower level. As in the work

196 Conclusions and future work

presented here, the action model would define the desired goal of the lower level

behaviour. However the lower level behaviour would then be learnt rather than

implemented by a motion planner. A similar idea has been addressed in previous

work by Ryan (2004), where the agent is provided with an abstract action model by

the user and must learn a behaviour (via reinforcement learning) which implements

it.

7.3.2 Richer action models

The action models used in our current implementation of the architecture are

based on a simple extension to the parameterised STRIPS model (see Chapter

3). Whilst these basic action models were sufficient for the problems addressed

in this research, it would be interesting to incorporate richer action models into

the system. This would allow us to address problems in which conditional effects,

stochastic actions and concurrent execution are required, for example. More gen-

erally, a worthwhile project would be to extend the architecture to support action

models defined by the PDDL (Planning Domain Definition Language) standard

(McDermott, 2000).

In order to make these extensions changes would need to be made to the learn-

ing by explanation, learning by trial-and-error, and planning modules. The plan-

ning module would be replaced by a suitable PDDL planner according to the

requirements of the problem or preferences of the user1. The learning by expla-

nation module would require straightforward modification to account for actions

with conditional or stochastic effects and concurrent execution, but the fundamen-

tal algorithm would remain largely unchanged.

The trial-and-error module would present the greatest challenge to the imple-

mentation of richer action models — at least in the case where the novel action to

be learnt is an action with conditional or stochastic effects. Our current approach

to learning the new action model assumes that there is a single set of effects which

occur, and can be observed from the teacher’s example. In order to extend this it

would be necessary to adopt a more complex approach to learning action effects,

1Although it should be noted that our current Fast-Forward planner can handle a number of
PDDL extensions such as conditional effects.

7.3 Future work 197

such as that presented in Pasula et al. (2007).

7.3.3 Repetitive tool actions

Many tool actions involve repetitive application of the tool in order to achieve the

desired goal — peeling a carrot, sweeping a floor, or painting a wall for example.

Incorporating these types of actions into our learner would involve modifying the

learning from explanation module to recognise repeated subsequences of actions,

where the overall goal of the action is not achieved until a number of repetitions

of the tool-object interaction have been carried out.

Repetitive tool actions would also require modifications to the way actions

are represented and executed in our architecture. Repetitive actions often involve

moving across a defined region or surface, where each repeat of the action sequence

“covers” part of the goal region. The need to cover an area with multiple repe-

titions of an action could perhaps be incorporated into an extended version of a

motion planner.

7.3.4 Analogical problem solving

Some tool-use problems are related on an abstract conceptual level. For example,

using a ladder to reach a light bulb and using a stick to reach an object on a shelf

are conceptually similar problems. Our existing agent relies on a demonstration

from a teacher agent to seed each learning task. In some situations it should be

possible to avoid this step by using analogical reasoning. For example, if the agent

already has an abstract action for box-pushing it could hypothesise an equivalent

action involving the use of a tool which would act on the object instead.

7.3.5 Implementation on a real-world robot

The next logical step in the development of our tool learning system would be to

apply it to a robot operating in the real world. Doing so would involve overcoming

a number of significant challenges in sensing and actuation, as we discuss below.

The robot platform used in our simulator, the Pioneer 2 robot, imposed sig-

nificant constraints on the tool-learning experiments we were able to carry out.

198 Conclusions and future work

Although the Pioneer platform was sufficient to demonstrate the tool-learning

abilities of our system, somewhat ironically the “simplicity” of the platform made

life more difficult than it would have been with a more complex, but flexible robot

platform.

The major limitation was imposed, not unexpectedly, by the limited object

manipulation abilities of the Pioneer robot. The simple form of the Pioneer gripper

meant that using tools in a vertical plane of motion was difficult or impossible.

This greatly restricted the variety of tool-use problems that our system was able

to attempt.

In addition, the differential constraints imposed by the non-holonomic nature

of the Pioneer robot meant that manipulation of tools and objects was more dif-

ficult than it would have been with a robot capable of making omni-directional

movements. The Pioneer cannot move sideways so it is difficult to correct small

lateral errors in desired pose without rotating the robot by 90 degrees in order to

shift its position ‘sideways’. This makes both path-planning and path-following a

more difficult problem for a differentially constrained robot. These problems are

compounded when the robot is holding a lengthy tool, since small errors in robot

pose can cause large errors in the pose of the end of the tool, and small adjust-

ments are not possible without making a series of maneuvers (such as reversing,

turning slightly, and then moving back in). An omni-directional robot would be

able to make small adjustments much more simply.

Implementation on a robot arm

With these points in mind, the most straightforward real-world robot platform

would be to use a multi-jointed arm mounted on a fixed platform as the robot,

with a camera mounted above the base of the arm. This setup is commonly

used in robotics system research, and was in fact used in Stoytchev’s work on

a developmental approach to robot tool use (Stoytchev, 2007)). A suitable robot

arm was not available in our lab at the time this research was commenced — hence

the choice of the Pioneer as our robot platform in this research.

There are a number of advantages to using a robot-arm on a fixed platform

(with an overhead camera) to implement a real-world tool learning system. For

7.3 Future work 199

the vision system, the benefits of the fixed overhead camera include:

• no object pose uncertainty due to robot/camera motion

• less occlusion of objects than would occur with a camera mounted lower

• no changes in lighting due to changes in viewpoint

The greater flexibility of movement in the arm/gripper combination would also

make things easier for object manipulation. Advantages include:

• more object affordances are available for grasping

• objects can be moved into any orientation

• omni-directional movement possible, so small corrections to object poses

are easy to make

In short, a robot-arm based system would make both the sensing and object con-

trol tasks simpler, meaning that a wider and more interesting range of tool-use

problems could be studied. A simulated version of the arm could still be used for

development and testing, although only for problems involving rigid body objects.

One of the benefits of moving to a real-world robot implementation would be

the ability to learn tool-use problems which are difficult or impossible to study

in a rigid-body simulator. Some examples of the type of tool-use problems which

would be interesting to investigate include:

• mopping up liquid with a sponge

• using a knife to cut with

• peeling a carrot with a peeler

• buttering a piece of toast with a knife

Key implementation issues

A significant difficulty in a real-world implementation of our work would be to

obtain sufficiently robust sensing of object poses. In our simulation we were able

to ignore this issue by obtaining a global object pose directly from the simulator.

In a real-world scenario however this is obviously not feasible and the robot must

estimate object poses (or relative object poses) only from its noisy sensor data. A

200 Conclusions and future work

huge amount of work would need to be done to get to a stage where the noise in

the state signal was at a manageable level.

Furthermore, a robot’s actions are rarely deterministic, and an executed action

does not always produce the desired effects. Learning in the presence of a noisy

state signal and non-deterministic actions is a significant challenge which would

require aspects of our system to be considerably modified.

Most of these changes in our learning algorithms would need to occur in the

learning from explanation module. This module currently assumes a noise-free

trace of the demonstration in order to construct a correct explanation of the

teacher’s actions. This is due to the fact that we are learning from a single example

and it would be very difficult to distinguish between noise and a novel action in

this case. One of the solutions to this problem would be to supply the agent with

multiple demonstration examples. The explanation-based learner would then be

in a better position to be able to distinguish noise from the actual actions executed

by the teacher.

Our relational tool-learning algorithm in the trial-and-error learning module

of our agent is already able to handle noise in the examples it receives, so fewer

changes would be needed here. However, more examples would be required in

order to learn a concept of the same length.

The implementation of our approach on a robotic arm would also involve

addressing the challenge of working with a system with many more degrees of

freedom. At the level of the motion planner, the RRT planner we have used is

ideally suited to problems with high dimensionality such as motion-planning for

humanoid robots (Chestnutt et al., 2005) and this module would therefore require

only straightforward modification.

Representing a multi-jointed robotic arm in abstract logic, although not diffi-

cult, would complicate the action learning (ILP) process by introducing additional

objects into the world state. The hypothesis space would then grow to include

additional relations between components of the arm and the objects the agent or

tool is interacting with. It would seem reasonable in many instances to hide this

extra complexity from the ILP learner by ignoring the extra arm components, at

least initially. After all, in most practical tool-use situations it is the relative po-

7.3 Future work 201

sition of the tool and gripper which is most important. The implications of the

complex geometry of the arm would then simply be captured at the level of the

motion planner.

An interesting extension of our work along these lines would be an iterative-

deepening style approach to identifying “relevant” objects from which the hypoth-

esis is constructed. The algorithm would start by considering the interactions

between the most important objects, such as the tool and the object it is inter-

acting with. If a suitable hypothesis is not found the search would expand to

include relations between other nearby objects, or components of the robot arm.

A distance heuristic would be a simple way of determining the order in which new

objects are added into consideration.

202 Conclusions and future work

Bibliography

Abbeel, P., Coates, A., Quigley, M., and Ng, A. (2007). An application of rein-

forcement learning to aerobatic helicopter flight. In Proceedings of the Advances

in Neural Information Processing.

Abbeel, P. and Ng, A. (2004). Apprenticeship learning via inverse reinforcement

learning. In Proceedings of the 21st International Conference on Machine Learn-

ing.

Amir, E. (2005). Learning partially observable deterministic action models. In Pro-

ceedings of the International Joint Conference on Artificial Intelligence (IJCAI

2005), pages 1433–1439, Edinburgh, Scotland, UK.

Apt, K. R. and Wallace, M. G. (2007). Constraint Logic Programming using

ECLiPSe. Cambridge University Press.

Argall, B., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot

learning from demonstration. Robotics And Autonomous Systems (to appear),

doi:10.1016/j.robot.2008.10.024.

Atkeson, C. and Schaal, S. (1997). Robot learning from demonstration. In Proceed-

ings of the 14th International Conference on Machine Learning, pages 12–20.

Baber, C. (2003). Cognition and tool use: Forms of engagement in human and

animal use of tools. Taylor & Francis.

Beck, B. B. (1980). Animal tool behaviour: The use and manufacture of tools by

animals. Taylor & Francis.

204 BIBLIOGRAPHY

Benson, S. (1996). Learning action models for reactive autonomous agents. PhD

thesis, Department of Computer Science, Stanford University.

Bogoni, L. (1995). Identification of functional features through observations and

interactions. PhD thesis, University of Pennsylvania.

Bratko, I., Urbancic, T., and Sammut, C. (1998). Behavioural cloning: Phenom-

ena, results and problems. In IFAC Symposium, Berlin.

Brown, S. and Sammut, C. (2007). An architecture for tool use and learning in

robots. In Proceedings of the 2007 Australasian Conference on Robotics and

Automation.

Cambon, S., Alami, R., and Gravot, F. (2009). A hybrid approach to intricate

motion, manipulation and task planning. International Journal of Robotics Re-

search, 28(1):104–126.

Cambon, S., Gravot, F., and Alami, R. (2004). aSyMov: Towards more realistic

robot plans. In International Conference on Automatic Planning and Scheduling.

Chappell, J. and Kacelnik, A. (2002). Tool selectivity in a non-primate, the New

Caledonian crow (Corvus moneduloides). Animal Cognition, 5:71–78.

Chappell, J. and Kacelnik, A. (2004). Selection of tool diameter by New Caledo-

nian crows Corvus moneduloides. Animal Cognition, 7:121–127.

Chestnutt, J., Lau, M., Kuffner, J., Cheung, G., Hodgins, J., and Kanade, T.

(2005). Footstep planning for the ASIMO humanoid robot. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA 2005).

Christiansen, A., Mason, M., and Mitchell, T. (1990). Learning reliable manip-

ulation strategies without initial physical models. In Proceedings of the 1990

IEEE International Conference on Robotics and Automation, pages 1224–1230,

Cincinnati, Ohio.

Cruse, H. (2003). The evolution of cognition: A hypothesis. Cognitive Science,

27:135–155.

BIBLIOGRAPHY 205

Dietterich, T. (1990). Exploratory research in machine learning. Machine Learning,

5(1):5–9.

Ehmann, S. (2001). SWIFT – A library for collision detection, distance computa-

tion, and contact determination. http://gamma.cs.unc.edu/SWIFT/.

Ehmann, S. and Lin, M. (2000). SWIFT: Accelerated Proximity Queries Between

Convex Polyhedra By Multi-Level Voronoi Marching. In Proceedings of the

International Conference on Intelligent Robots and Systems.

Fikes, R. and Nilsson, N. (1971). STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3-4):189–208.

Fitzpatrick, P., Metta, G., Natale, L., Rao, S., and Sandini, G. (2003). Learning

about objects through action — initial steps toward artificial cognition. In

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA 03), volume 3, pages 3140–3145.

Fuentes, O. and Nelson, R. (1998). Learning dextrous manipulation skills for mul-

tifingered robot hands using the evolution strategy. Machine Learning, 31:223–

237.

Gat, E., Bonnasso, R., and Murphy, R. (1998). On three-layer architectures. In

Artificial Intelligence and Mobile Robots, pages 195–210. AAAI Press.

Gerkey, B. P., Vaughan, R. T., and Howard, A. (2003). The Player/Stage Project:

Tools for multi-robot and distributed sensor systems. In Proceedings of the In-

ternational Conference on Advanced Robotics (ICAR 2003), Coimbra, Portugal.

Gil, Y. (1993). Efficient domain-independent experimentation. In Proceedings of

the Tenth International Conference on Machine Learning.

Gil, Y. (1994). Learning by experimentation: Incremental refinement of incomplete

planning domains. In Proceedings of the Eleventh International Conference on

Machine Learning.

Goodall, J. and van Lawick, H. (1966). Use of tools by egyptian vultures. Nature,

212:1468–1469.

http://gamma.cs.unc.edu/SWIFT/

206 BIBLIOGRAPHY

Guitton, J. and Farges, J.-L. (2008). Geometric and symbolic reasoning for mobile

robotics. In Proceedings of the 3rd National Conference on Control Architectures

of Robots, Bourges, France.

Hirano, Y., Kitahama, K., and Yoshizawa, S. (2005). Image-based

object recognition and dexterous hand/arm motion planning using

RRTs for grasping in cluttered scene. In Proceedings of IEEE/RSJ

Intl.\ConferenceonIntelligentRobotsandSystems(IROS2005).

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14:2001.

Hume, D. (1995). Induction of procedures in simulated worlds. PhD thesis, Uni-

versity of New South Wales.

Hunt, G. (1996). Manufacture and use of hook-tools by New Caledonian crows.

Nature, 379:249–251.

Isaac, A. and Sammut, C. (2003). Goal-directed learning to fly. In Proceedings of

the 20th International Conference on Machine Learning, pages 258–265.

Kambhampati, S. and Yoon, S. (2008). Encyclopedia of Machine Learning, chapter

Explanation-based learning for planning. Springer-Verlag, New York.

Katz, D., Pyuro, Y., and Brock, O. (2008). Learning to manipulate articulated

objects in unstructured environments using a grounded relational representation.

In Proceedings of Robotics: Science and Systems IV.

Kemp, C. C. and Edsinger, A. (2006). Robot manipulation of human tools: Au-

tonomous detection and control of task relevant features. In Proceedings of the

Fifth International Conference on Development and Learning, Special Session

on Classifying Activities in Manual Tasks.

Kenward, B., Weir, A., Rutz, C., and Kacelnik, A. (2005). Tool manufacture by

naive juvenile crows. Nature, 433(121).

BIBLIOGRAPHY 207

Koenig, N. and Howard, A. (2004). Design and use paradigms for Gazebo, an open-

source multi-robot simulator. In Proceedings of the International Conference on

Intelligent Robots and Systems (IROS 2004), volume 3, pages 2149–2154.

Kohler, W. (1925). The Mentality of Apes. Harcourt, Brace & Co, New York.

Translated from German by Winter, E.

Krützen, M., Mann, J., Heithaus, M. R., Connor, R. C., Bejder, L., and Sher-

win, W. B. (2005). Cultural transmission of tool use in bottlenose dolphins.

Proceedings of the National Academy of Sciences, 102(25):8939–8943.

Kuffner, J. and LaValle, S. (2000). RRT-Connect: An efficient approach to single-

query path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation

(ICRA’2000), San Francisco, CA.

Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., and Inoue, H. (2003).

Motion Planning for Humanoid Robots. In Proceedings of the 11th

Intl.\Symp.\ofRoboticsResearch(ISRR2003).

Kuniyoshi, Y., Inaba, M., and Inoue, H. (1994). Learning by watching: Extracting

reusable task knowledge from visual observation of human performance. IEEE

Transactions on Robotics and Automation, 10(6):799–822.

LaValle, S. and Kuffner, J. (1999). Randomized kinodynamic planning. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation,

Detroit, MI.

Lavrac, N. and Dzeroski, S. (1994). Inductive logic programming: Techniques and

applications. Ellis Horwood.

Levey, D., Duncan, R., and Levins, C. (2004). Use of dung as a tool by burrowing

owls. Nature, 431:39.

Levine, G. and DeJong, G. (2006). Explanation-based acquisition of planning

operators. In ICAPS, pages 152–161.

Lorenzo, D. and Otero, R. (2000). Learning to reason about actions. In Proceedings

of the 14th European Conference on Artificial Intelligence.

208 BIBLIOGRAPHY

Lynch, K. (1993). Estimating the friction parameters of pushed objects. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

186–193.

Mason, M., Christiansen, A. D., and Mitchell, T. (1989). Experiments in robot

learning. In Proceedings of the Sixth International Workshop on Machine Learn-

ing. Morgan Kaufmann.

McCarthy, J. and Hayes, P. (1969). Some philosophical problems from the stand-

point of artificial intelligence. Machine Intelligence, 4:463–502.

McDermott, D. (2000). The 1998 AI planning systems competition. AI Magazine,

21(2).

Michie, D. (1993). Knowledge, learning and machine intelligence. Intelligent Sys-

tems, pages 2–19.

Mitchell, T. (1978). Version space: An approach to concept learning. PhD thesis,

Stanford University.

Mitchell, T. (1982). Generalization as search. Artificial Intelligence, 18:203–266.

Mitchell, T., Keller, R., and Kedar-Cabelli, S. (1986). Explanation-based general-

ization: A unifying view. Machine Learning, 1:47–80.

Morales, E. and Sammut, C. (2004). Learning to fly by combining reinforcement

learning with behavioural cloning. In Proceedings of the 21st International Con-

ference on Machine Learning.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing,

Special issue on Inductive Logic Programming, 13(3-4):245–286.

Muggleton, S. and Feng, C. (1992). Efficient induction of logic programs. In

Muggleton, S., editor, Inductive Logic Programming, pages 281–298. Academic

Press.

BIBLIOGRAPHY 209

Narasimhan, S. (1995). Task-level strategies for robot tasks. PhD thesis, Depar-

ment of Computer Science and Electrical Engineering, Massachusetts Institute

of Technology.

Ng, A. and Russell, S. (2000). Algorithms for inverse reinforcement learning. In

Proceedings of the International Conference on Machine Learning.

Nicolescu, M. and Mataric, M. (2001). Learning and interacting in human-robot

domains. IEEE Transactions on Systems, Man., and Cybernetics — Part A:

Systems and Humans, 31(5):419–430.

Nicolescu, M. and Mataric, M. (2003). Natural methods for robot task learning:

Instructive demonstrations, generalization and practice. In Proceedings of the

Second International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 241–248.

Nilsson, N. J. (1984). Shakey the Robot. Technical note 323, SRI International,

Menlo Park, CA.

Oates, T. and Cohen, P. (1996). Searching for planning operators with context-

dependent and probalistic effects. In Proceedings of the Thirteenth National

Conference On Artificial Intelligence, pages 865–868. AAAI Press.

Palhang, M. and Sowmya, A. (1997). Visual Information Systems, chapter Auto-

matic acquisition of object models by relational learning, pages 239–258. Lecture

Notes in Computer Science. Springer Berlin.

Pasula, H., Zettlemoyer, L., and Kaelbling, L. (2004). Learning probabilistic plan-

ning rules. International Conference on Automated Planning and Scheduling.

Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2007). Learning symbolic

models of stochastic domains. Journal of Artificial Intelligence Research, 29:309–

352.

Plotkin, G. (1970). A note on inductive generalization. In Meltzer, B. and Mitchie,

D., editors, Machine Intelligence.

210 BIBLIOGRAPHY

Pollard, N. and Hodgins, J. (2002). Generalizing demonstrated manipulation tasks.

In Workshop on the Algorithmic Foundations of Robotics (WAFR 02), Nice,

France.

Potts, D. (2007). Learning to control. PhD thesis, University of New South Wales.

Povinelli, D. (2000). Folk physics for apes: the chimpanzee’s theory of how the

world works. Oxford University Press, Oxford.

Rao, C., Yilmaz, A., and Shah, M. (2002). View-invariant representation and

recognition of actions. International Journal of Computer Vision, 50(2):203–

226.

Ratliff, N., Bagnell, J., and Zinkevich, M. (2006). Maximum margin planning. In

International Conference on Machine Learning.

Ryan, M. R. (2004). Hierarchical reinforcement learning: A hybrid approach. PhD

thesis, School of Computer Science and Engineering, University of NSW.

Salganicoff, M., Metta, G., Oddera, A., and Sandini, G. (1993). A vison-based

learning method for pushing manipulation. In AAAI Fall Symposium Series:

Machine Learning in Vision: What Why and How?, Raleigh, N.C.

Salganicoff, M., Ungar, L., and Bajcsy, R. (1996). Active learning for vision-based

robot learning. Machine Learning, 23:251–278.

Sammut, C., Hurst, S., Kedzier, D., and Michie, D. (1992). Learning to fly. In

Proceedings of the Ninth International Conference on Machine Learning, pages

385–393.

Schmill, M., Schmill, D., Oates, T., and Cohen, P. (2000). Learning planning oper-

ators in real-world, partially observable environments. In Proceedings of the Fifth

International Conference on Artificial Intelligence, Planning and Scheduling.

Shen, W. (1994). Autonomous Learning from the Environment. Computer Science

Press, W.H. Freeman and Company.

BIBLIOGRAPHY 211

Sinapov, J. and Stoytchev, A. (2008). Detecting the functional similarities between

tools using a hierarchical representation of outcomes. In Proceedings of the IEEE

Conference on Development and Learning (ICDL 2008).

Smith, R. (2006). Open Dynamics Engine (rigid body dynamics simulator).

http://www.ode.org.

Sridhar, M., Cohn, A., and Hogg, D. (2008). Learning functional object-categories

from a relational spatio-temporal representation. In Proceedings of ECAI 08.

Stilman, M., Shamburek, J.-U., Kuffner, J., and Asfour, T. (2007). Manipula-

tion planning among movable obstacles. In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA 07).

Stoytchev, A. (2005). Behaviour-grounded representation of tool affordances.

In Proceedings of IEEE International Conference on Robotics and Automation

(ICRA).

Stoytchev, A. (2007). Robot Tool Behaviour: A Developmental Approach to Au-

tonomous Tool Use. PhD thesis, College of Computing, Georgia Institute of

Technology.

Stulp, F. and Beetz, M. (2008). Refining the execution of abstract actions with

learned action models. Journal of Artificial Intelligence Research, 32:487–523.

Suc, D. and Bratko, I. (1997). Skill reconstruction as induction of LQ controllers

with subgoals. In Proceedings of IJCAI-97, pages 914–919.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA.

van Lawick-Goodall, J. (1970). Tool-using in primates and other vertebrates.

In Lehrman, D., Hinde, R., and Shaw, E., editors, Advances in the Study of

Behaviour, volume 3, pages 195–249. Academic Press, London.

Veeraraghavan, H. and Veloso, M. (2008). Teaching sequential tasks with repetition

through demonstration (short paper). In Proceedings of the 7th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS08).

http://www.ode.org

212 BIBLIOGRAPHY

Wang, X. (1995). Learning by observation and practice: An incremental approach

for operator acquisition. In Proceedings of the 12th International Conference on

Machine Learning, pages 549–557. Morgan Kaufmann.

Wood, A. (2005). Effective tool use in a habile agent. Master’s thesis, North

Carolina State University.

Yik, T. and Sammut, C. (2007). Trial-and-error learning of a biped gait con-

strained by qualitative reasoning. In Proceedings of the Australasian Conference

on Robotics and Automation.

Yoshikawa, T. and Kurisu, M. (1991). Identifcation of the center of friction from

pushing an object by a mobile robot. IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 449–454.

Zrimec, T. (1990). Towards autonomous learning of behaviour by a robot. PhD

thesis, Department of Computer and Information Science, University of Ljubl-

jana.

	Title Page - A relational approach to tool-use learning in robots
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Algorithms

	Chapter 1 - Introduction
	Chapter 2 - Background and related work
	Chapter 3 - State and action representation
	Chapter 4 - Learning
	Chapter 5 - Experimental evaluation
	Chapter 6 - System architecture and implementation
	Chapter 7 - Conclusions and future work

