
The Abstract Domain of

Segmented Ranking Functions

Caterina Urban

École Normale Supérieure - CNRS - INRIA, Paris, France
urban@di.ens.fr

Abstract. We present a parameterized abstract domain for proving pro-
gram termination by abstract interpretation. The domain automatically
synthesizes piecewise-defined ranking functions and infers sufficient con-
ditions for program termination. The analysis uses over-approximations
but we prove its soundness, meaning that all program executions respect-
ing these sufficient conditions are indeed terminating.
The abstract domain is parameterized by a numerical abstract domain
for environments and a numerical abstract domain for functions. This
parameterization allows to easily tune the trade-off between precision
and cost of the analysis. We describe an instantiation of this generic do-
main with intervals and affine functions. We define all abstract operators,
including widening to ensure convergence.
To illustrate the potential of the proposed framework, we have imple-
mented a research prototype static analyzer, for a small imperative lan-
guage, that yielded interesting preliminary results.

1 Introduction

Static analysis has made great progress since the introduction of Abstract In-
terpretation [10,12]. Most results in this area are concerned with the verification
of safety properties. The verification of liveness properties (and, in particular,
termination) has received considerable attention recently.

The traditional method for proving program termination is based on the
synthesis of ranking functions, which map program states to elements of a well-
founded domain. Termination is guaranteed if a ranking function that decreases
during computation is found. In [14], Patrick Cousot and Radhia Cousot pro-
posed a unifying point of view on the existing approaches to termination, and
introduced the idea of the computation of a ranking function by abstract in-
terpretation. We build our work on their proposed general framework, and we
design and implement a suitable parameterized abstract domain for proving ter-
mination of imperative programs by abstract interpretation.

The domain automatically synthesizes piecewise-defined ranking functions
through backward invariance analysis. The analysis does not rely on assumptions
about the structure of the analyzed program: for example, is not limited to simple
loops, as in [22]. The ranking functions can be used to give upper bounds on the
computational complexity of the program in terms of execution steps. Moreover,

the domain infers sufficient conditions for program termination. The analysis
uses over-approximations but we prove its soundness, meaning that all program
executions respecting these sufficient conditions are indeed terminating, while a
program execution that does not respect these conditions might not terminate.

We employ segmentations to handle disjunctions arising in static program
analysis, as proposed in [15] for array content analysis. The analysis automati-
cally partitions the space of values for the program variables by means of abstract
environments. A segment is a pair of an abstract environment and an abstract
function. During the analysis (similarly to other partitioning approaches in static
analysis [19,24]), segments are split by tests, modified by assignment and joined
when merging control flows. Widening limits the number of segments of a ranking
function to a maximum given as a parameter of the analysis.

The segmented ranking functions abstract domain is parameterized by the
choice of the abstract environments (e.g. intervals, as in Section 3.1) and the
choice of the abstract functions (e.g. affine functions, as in Section 3.2). This
parameterization allows a wide range of instantiations of the domain making it
possible to easily tune the trade-off between analysis precision and cost.

Motivating Example. To illustrate the potential of segmentations, let us consider
the following program annotated with numbered labels to denote control points:

while 1(x ≥ 0) do
2x := −2x+ 10

od3

The program terminates if we consider variables with integer values (if we admit
non-integer values, for x = 10

3
the program is not terminating). However, it does

not have a linear ranking function. As a result, well-known methods to synthesize
ranking functions like [22,5], would not be capable to guarantee its termination.

Figure 1 illustrates the details of our backward invariance analysis. We will
map each program control point to a function f ∈ Z 7→ N of the (integer-valued)
variable x, representing an upper bound on the number of execution steps before
termination. We denote by 2[x ≥ 0] the function obtained from the test x ≥ 0
applied to the function at program point 2. Similarly, 3[x < 0] denotes the
function obtained from the test x < 0 applied to the function at program point 3.

The analysis is performed backwards starting with the totally undefined func-
tion ⊥ at each program point. The first iteration begins from the total function
f(x) = 0 at program point 3. The test x < 0 enforces loop exit: it splits the
domain of the function and enforces termination in 1 step. At program point 1,
the function 3[x < 0] is unmodified by the join with the yet totally undefined
function 2[x ≥ 0]. At program point 2, the assignment x := −2x+10 propagates
the function increasing its value to 2. Then, the test x ≥ 0, since it does not
need to split further the function domain, just propagates the function increas-
ing again its value to 3. Finally, a second iteration starts joining once more the
functions 3[x < 0] and 2[x ≥ 0] at program point 1.

2

1st iteration 2nd iteration . . . 5th/6th iteration

3 ⊥ f(x) = 0 f(x) = 0 . . . f(x) = 0

3[x < 0] ⊥ f(x) =

{
1 x < 0

⊥ x ≥ 0
f(x) =

{
1 x < 0

⊥ x ≥ 0
. . . f(x) =

{
1 x < 0

⊥ x ≥ 0

1 ⊥ f(x) =

{
1 x < 0

⊥ x ≥ 0
f(x) =

1 x < 0

⊥ 0 ≤ x ≤ 5

3 x > 5

. . . f(x) =

1 x < 0

5 0 ≤ x ≤ 2

9 x = 3

7 4 ≤ x ≤ 5

3 x > 5

2 ⊥ f(x) =

{
⊥ x ≤ 5

2 x > 5
f(x) =

4 x ≤ 2

⊥ 3 ≤ x ≤ 5

2 x > 5

. . . f(x) =

4 x ≤ 2

8 x = 3

6 4 ≤ x ≤ 5

2 x > 5

2[x ≥ 0] ⊥ f(x) =

{
⊥ x ≤ 5

3 x > 5
f(x) =

⊥ x < 0

5 0 ≤ x ≤ 2

⊥ 3 ≤ x ≤ 5

3 x > 5

. . . f(x) =

⊥ x < 0

5 0 ≤ x ≤ 2

9 x = 3

7 4 ≤ x ≤ 5

3 x > 5

Fig. 1: Motivating Example Analysis. The analysis starts from f(x) = 0 at pro-
gram point 3. At program point 1, the functions 3[x < 0] (obtained from the
test x < 0) and 2[x ≥ 0] (obtained from the test x ≥ 0) are joined.

In this particular case, there is no need for convergence acceleration and the
analysis is rather precise: at the sixth iteration, a fix-point is reached providing
the following ranking function f ∈ Z 7→ N as loop invariant at program point 1:

f(x) =

1 x < 0

5 0 ≤ x ≤ 2

9 x = 3

7 4 ≤ x ≤ 5

3 x > 5

Unlike [22,5], our method is not impaired from the fact that the program
does not have a linear ranking function.

Our Contribution. In summary, this paper proposes a new abstract domain for
proving termination of imperative programs. We introduce the family of param-
eterized abstract domains of segmented ranking functions (Section 3). We also
describe the design (Section 3.3) and implementation (Section 4) of a particular
instance of these generic domains based on affine functions.

3

Outline of the Paper. Section 2 introduces the syntax and concrete semantics of
our language. In Section 3 we define the segmented ranking functions abstract
domain. We describe the implementation of our prototype static analyzer, in
Section 4. Finally, Section 5 discusses related work and Section 6 concludes and
envisions future work.

2 Concrete Termination Semantics

In the following, we briefly recall some results presented in a language indepen-
dent way in [14]. Then, we tailor these results for a small imperative language.

2.1 Termination Semantics

We consider a programming language with non-deterministic programs. We de-
scribe the small-step operational semantics of a program by means of a transition
system 〈Σ, τ〉. Σ is the set of all program states, and τ ⊆ Σ×Σ is the transition
relation: a binary relation describing the transitions between a state and its pos-
sible successors during program execution. Let βτ denote the set of final states:
βτ , {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 6∈ τ}. The program trace semantics generated
by a transition system 〈Σ, τ〉 is the set of all infinite traces over the states in Σ

and all finite traces that end with a final state in βτ .
The traditional method for proving program termination is based on ranking

functions, mapping program states to elements of a well-founded domain (e.g.,
ordinals in O). Termination is guaranteed if a ranking function that decreases
during computation is found.

In [14], Patrick Cousot and Radhia Cousot prove the existence of a most pre-
cise ranking function that can be expressed in fix-point form by abstract inter-
pretation of the program trace semantics. This function1 vτ ∈ Σ 67→ O associates
to each program state definitely leading to a final state in βτ (i.e. a program
state such that all traces to which it belongs end up at a final state in βτ), an
ordinal in O representing an upper bound on the number of remaining program
execution steps to termination. Otherwise stated, vτ is a partial function which
domain dom(vτ) is the set of states leading to program termination: any trace
starting in a state s ∈ dom(vτ) must terminate in at most vτ (s) execution steps,
while a trace starting in a state s 6∈ dom(vτ) might not terminate.

Let us define a computational partial order 4:

v1 4 v2 , dom(v1) ⊆ dom(v2) ∧ ∀x ∈ dom(v1) : v1(x) ≤ v2(x).

Its related join operator is:

v1 g v2 , λρ.

v1(ρ) if ρ ∈ dom(v1) \ dom(v2)

sup{v1(ρ), v2(ρ)} if ρ ∈ dom(v1) ∩ dom(v2)

v2(ρ) if ρ ∈ dom(v2) \ dom(v1)

1 A 67→ B is the set of partial maps from a set A to a set B.

4

Then, the ranking function vτ is computed by fix-point iteration2 starting from
the totally undefined function ∅̇:

vτ , lfp
4

∅̇
φτ

φτ (v) , λs.

{
0 if s ∈ βτ

sup{v(s′) + 1 | 〈s, s′〉 ∈ τ} if s ∈ p̃re(dom(v))

The idea is to extract the well-founded part of the transition relation τ : start-
ing from the states in βτ and, through a backward computation based on the
inverse of the transition relation τ , mapping all the states definitely leading to
a final state to their ordinal rank. In case of a non-deterministic transition sys-
tem 〈Σ, τ〉, using p̃re ensures that we take into account all the possibly infinite
choices made at each execution step, eliminating all traces potentially branching
(through local non-determinism) to non-termination.

The next example is taken from [14].

Example 1. Let us consider the following trace semantics:

The fix-point iterates for the corresponding ranking function are:

0

0

1 0

0

2
1 0

0

2
1 0

0

⊓⊔

Note that the computational order 4 does not coincide (see [12,13] for further
discussion) with the approximation order ⊑. The order ⊑ is defined as follows:

v1 ⊑ v2 , dom(v1) ⊇ dom(v2) ∧ ∀x ∈ dom(v2) : v1(x) ≤ v2(x).

Its corresponding join operator is:

v1 ⊔ v2 , λρ ∈ dom(v1) ∩ dom(v2). sup{v1(ρ), v2(ρ)}.

The partial orders coincide only when the functions have the same domain:

Lemma 1. dom(v1) = dom(v2) ⇒ (v1 ⊑ v2 ⇔ v1 4 v2).

2 p̃re(X) , {s ∈ Σ | ∀s′ ∈ Σ : 〈s, s′〉 ∈ τ ⇒ s′ ∈ X}.

5

X ∈ X , n, n1, n2 ∈ I

A ::= X | n | [n1, n2] | ? | −A | A1 ⋄A2 ⋄ ∈ {+,−, ∗, /}

B ::= true | false | ? | !B | B1 ∨B2 | B1 ∧B2 | A1 ⊲⊳ A2 ⊲⊳∈ {<,≤,=, 6=, >,≥}

S ::= X := A | if B then S1 else S2 fi | while B do S od | S1;S2

Fig. 2: Syntax

The termination semantics vτ is sound and complete to prove termination of
a program P with initial states in I:

Theorem 1. A program P , with trace semantics generated by a transition sys-

tem 〈Σ, τ〉, terminates for all traces starting from initial states in I ∈ ℘(Σ) if

and only if there exists v ∈ Σ 67→ O such that vτ ⊑ v ∧ I ⊆ dom(v).

Proof. See [14]. ⊓⊔

2.2 A Small Imperative Language.

In the following, we give a denotational definition of vτ ∈ Σ 67→ O for a simple
imperative language. We consider a small sequential non-deterministic program-
ming language with no procedures, no pointers and no recursion. Let X be a
finite set of variables and let I be a set of values, where I ∈ {Z,Q,R}. In Figure 2,
we define inductively the syntax of programs.

An environment ρ ∈ X 7→ I maps each variable in X to a value in I. Let E
denote the set of all environments. The semantics of an arithmetic expression A

is a function AJAK ∈ E 7→ ℘(I) mapping an environment to the set of all possible
values for the expression in the given environment. Similarly, the semantics of a
boolean expression B is a function BJBK ∈ E 7→ ℘({T,F}) mapping an environ-
ment to the set of all possible truth values for the expression in the environment.
We need power-sets because we also consider non-deterministic arithmetic and
boolean expressions (cf. Figure 2). Non-determinism comes in handy to model
program input and to approximate non-linear expressions.

Let L be a finite set of labels. The initial and final labels of a program are de-
noted by i and e, respectively. A state s ∈ L×E is a pair consisting of a program
control point l ∈ L and an environment ρ ∈ E . LetΣ denote the set of all program
states. The program initial states belong to Σi , {s ∈ Σ | ∃ρ ∈ E : s = 〈i, ρ〉}
while Σe , {s ∈ Σ | ∃ρ ∈ E : s = 〈e, ρ〉} is the set of program final states. The
semantics of a statement S is a function SJSK ∈ (Σ 67→ O) 7→ (Σ 67→ O) mapping
a partial function from states to ordinals into a partial function from states to
ordinals with greater value. The program semantics vτ ∈ Σ 67→ O is computed
backwards, starting from the partial function λs(s ∈ Σe). 0 and propagating it
towards the initial states by means of SJSK.

Note that we can redefine vτ ∈ Σ 67→ O = (L×E) 67→ O in an isomorphic way
by point-wise lifting to L of the partial function from environments to ordinals:

6

SJX := AKv , λρ. sup{v(ρ[X 7→ n]) + 1 | ∀n ∈ AJAKρ : ρ[X 7→ n] ∈ dom(v)}

SJif B then S1 else S2 fiKv , (λρ(ρ ∈ dom(v1) ∧ F 6∈ BJBKρ). v1(ρ))

g (λρ(ρ ∈ dom(v2) ∧ T 6∈ BJBKρ). v2(ρ)) g (v1 ⊔ v2)

where v1 , λρ(ρ ∈ dom(SJS1Kv) ∧ T ∈ BJBKρ). (SJS1Kv)(ρ) + 1

v2 , λρ(ρ ∈ dom(SJS2Kv) ∧ F ∈ BJBKρ). (SJS2Kv)(ρ) + 1

SJwhile B do S odKv , lfp
4

∅̇
φ

where φ , λx. (λρ(ρ ∈ dom(v1) ∧ F 6∈ BJBKρ). v1(ρ))

g (λρ(ρ ∈ dom(v2) ∧ T 6∈ BJBKρ). v2(ρ)) g (v1 ⊔ v2))

v1 , λρ(ρ ∈ dom(SJS1Kx) ∧ T ∈ BJBKρ). (SJS1Kx)(ρ) + 1

v2 , λρ(ρ ∈ dom(v) ∧ F ∈ BJBKρ). v(ρ) + 1

SJS1;S2Kv , SJS1K(SJS2Kv)

Fig. 3: Concrete Semantics

vτ ∈ L 7→ (E 67→ O). In a similar way, we can redefine the statement semantics:
SJSK ∈ (E 67→ O) 7→ (E 67→ O) is defined by induction on the syntax of programs
in Figure 3. In this form, we can consider vτ ∈ L 7→ (E 67→ O) as an invariance
semantics: to each program control point l ∈ L, it associates a partial function
in E 67→ O representing the program ranking function in that particular program
point. Loop semantics requires the computation of a loop invariant as the least
fix-point of a monotonic function φ ∈ (E 67→ O) 7→ (E 67→ O). However, such a
fix-point is usually not computable.

In the next section, we will present a decidable abstraction of vτ by means
of piecewise-defined functions computed through backward invariance analysis.

3 An Abstract Domain Functor for Termination

We derive an approximate program semantics by abstract interpretation [10,12].
We look for v#

τ
∈ L 7→ V# mapping each program point l ∈ L to an abstraction

of the program ranking function in that specific program point.
In particular, we abstract the ranking functions in E 67→ O by piecewise-

defined ranking functions in V#. To this end, we introduce the family of seg-
mented ranking functions abstract domains V(E,P), parameterized by the envi-
ronments abstract domains E and the functions abstract domains P. Adopting an
OCaml terminology, each V is an abstract domain functor: a function mapping
the parameter abstract domains E and P into a new abstract domain V(E,P). V
can be applied to various implementations of E and P yielding the corresponding
implementations of V(E,P), with no need for further programming effort.

In the following, in order we present the family of environments abstract
domains E, the family of functions abstract domains P, and the family of pa-

7

rameterized abstract domains of segmented ranking function V(E,P). We also
describe the design of particular instances, based on intervals and affine func-
tions, of each one of these abstract domains.

To ensure the soundness of our abstraction, throughout the rest of the paper
we will continue to maintain a strict separation between approximation and
computational orders (as we already did in Section 2).

3.1 Environments Abstract Domain

The environments abstract domain E abstracts sets of concrete environments in
℘(E). The abstract properties ρ# ∈ E# are called abstract environments. The
concretization function γE ∈ E# 7→ ℘(E) maps an abstract property to the set
of concrete environments having that abstract property.

In case E is a non-relational domain, ℘(E) = ℘(X 7→ I) is abstracted to
X 7→ ℘(I), and we have E# , X 7→ B#, where the abstract domain B abstracts
properties of values in I with concretization function γB ∈ B# 7→ ℘(I).

Intervals Abstract Domain. In the literature, numerous environments ab-
stract domains have already been proposed (e.g., the numerical abstract domains
of intervals [9], octagons [21], and convex polyhedra [16]).

In the following, as a simple example of non-relational environments ab-
stract domain, we will consider the intervals abstract domain [9]. The abstract
properties in B# are empty (⊥B) or non-empty ([a, b]) intervals with bounds in
I ∪ {−∞,+∞}. We denote the abstract partial order by ⊑B, the join operator
by ⊔B, the meet operator by ⊓B and the widening operator by ▽B.

As for the abstract transformers for assignments and tests, we recall that our
program concrete semantics is defined backwards (cf. Section 2), and we will see
(in Section 3.4) that the program abstract semantics is computed backwards as
well. Consequently, we consider backward assignment and test transfer functions,
denoted by ASSIGNB and FILTERB, respectively. The primitive ASSIGNB re-
turns an abstraction of a set of environments that can lead to another given
abstraction of a set of environments by an assignment X := A. The primitive
FILTERB filters out environments that do not verify a boolean expression B.

Example 2. Let us consider the ranking function at program point 2 in the sec-
ond iteration column of Figure 1. The test x ≥ 0 is applied to each segment of
the function, yielding the function 2[x ≥ 0]. In particular, we consider one of the
segments on which such function is defined: the segment represented by the envi-
ronment ρ# ≡ x 7→ [−∞, 2]. The result of FILTERB for x ≥ 0 on ρ# is x 7→ [0, 2].

Let us consider now the assignment x := −2x + 10 applied segment-wise to
the ranking function at program point 1 in the last column of the table. In par-
ticular, the result of ASSIGNB on the segment represented by the environment
x 7→ [4, 5] is the segment represented by x 7→ [3, 3] (recall that we consider the
space of values for the variable x to be the set of integers Z). ⊓⊔

8

3.2 Functions Abstract Domain

The functions abstract domain P is itself a functor P(E), parameterized by the
environment abstract domain E. It abstracts partial functions E 67→ O from envi-
ronments to ordinals by natural-valued partial functions of the I-valued variables
in X . Let n denote |X |. The abstract properties of P belong to E# ×F#, where
F# , {⊥F} ∪ {f# | f# ∈ In 7→ N} ∪ {⊤F}. The bottom function ⊥F denotes
the totally undefined function, and the top function ⊤F, abstracts all functions
mapping environments to infinite ordinals.

The concretization function γP ∈ (E# × F#) 7→ (E 67→ O) depends on the
value of the variables in X according to an abstract environment ρ# ∈ E#:

γP(〈ρ
#,⊥F〉) = ∅̇

γP(〈ρ
#, f#〉) = λρ ∈ γE(ρ

#). f#(ρ(x1), . . . , ρ(xn))

γP(〈ρ
#,⊤F〉) = ∅̇

We define the abstract approximation preorder ⊑P, in such a way that
〈ρ#1 , f

#
1 〉 ⊑P 〈ρ#2 , f

#
2 〉 ⇔ γP(〈ρ

#
1 , f

#
1 〉) ⊑ γP(〈ρ

#
2 , f

#
2 〉), as follows:

〈ρ#1 , f
#
1 〉 ⊑P 〈ρ#2 , f

#
2 〉 , ρ

#
2 ⊑E ρ

#
1 ∧ f

#
1 ⊑F f

#
2

where

f
#
1 ⊑F f

#
2 , ∀ρ ∈ γE(ρ

#
1 ⊓E ρ

#
2) : f

#
1 (ρ(x1), . . . , ρ(xn)) ≤ f

#
2 (ρ(x1), . . . , ρ(xn)).

Theorem 2. 〈ρ#1 , f
#
1 〉 ⊑P 〈ρ#2 , f

#
2 〉 ⇔ γP(〈ρ

#
1 , f

#
1 〉) ⊑ γP(〈ρ

#
2 , f

#
2 〉).

The result proves that γP is monotonic.
We also define a computational partial order 4P:

〈ρ#1 , f
#
1 〉 4P 〈ρ#2 , f

#
2 〉 , ρ

#
1 ⊑E ρ

#
2 ∧ f

#
1 ⊑F f

#
2 .

Lemma 2.

(ρ#1 ⊑E ρ
#
2 ∧ ρ

#
2 ⊑E ρ

#
1) ⇒ (〈ρ#1 , f

#
1 〉 ⊑ 〈ρ#2 , f

#
2 〉 ⇔ 〈ρ#1 , f

#
1 〉 4 〈ρ#2 , f

#
2 〉).

Finally, in addition to a join operator ⊔P, P is equipped with backward assign-
ment and test abstract transformers ASSIGNP and FILTERP. In the following,
we will define these operators for the affine functions abstract domain.

Affine Functions Abstract Domain. As an example of functions abstract
domain, we instantiate the functor P with the intervals environment abstract
domain E described above, and as abstract properties f# ∈ F# we choose affine
functions of the form:

y = f(x1, . . . , xn) = m1x1 + · · ·+mnxn + q

where x1, . . . , xn are variables in X , y 6∈ X is a special variable not included in
X , and m1, . . . ,mn, q are constants.

The operators of the affine functions abstract domain include the join oper-
ator ⊔P, and the abstract property transformers ASSIGNP for backward assign-
ments and FILTERP for backward tests.

9

Join. The join operator ⊔P, given two partial functions 〈ρ#1 , f
#
1 〉 and 〈ρ#2 , f

#
2 〉,

determines ρ# ≡ ρ
#
1 ⊓E ρ

#
2 and then computes f# ≡ f

#
1 ⊔F f

#
2 within ρ#.

Let ρ# ≡ {x1 7→ [a1, b1], . . . , xn 7→ [an, bn]}, f
#
1 ≡ y = f1(x1, . . . , xn) and

f
#
2 ≡ y = f2(x1, . . . , xn). The operator ⊔F basically reuses the join of polyhedra

[16]; it transforms f#
1 and f

#
2 into two set of constraints of the form:

{a1 ≤ x1 ≤ b1, . . . , an ≤ xn ≤ bn, 0 ≤ y ≤ fi(x1, . . . , xn)}

for i = 1, 2. Then, it computes their convex hull:

{a1 ≤ x1 ≤ b1, . . . , an ≤ xn ≤ bn, 0 ≤ y ≤ f(x1, . . . , xn)}

and transforms it back to 〈ρ#, f#〉, where f# ≡ y = f(x1, . . . , xn). In case the
convex hull contains more than one constraint on y (except for the constraint
0 ≤ y), we are in presence of several not comparable choices for f#. In such
situation, we prefer a deterministic behavior for ⊔F, and we choose f# = ⊤F.

Example 3. Let us consider the abstract functions

f
#
1 ≡ y = f1(x1, x2) = −

1

2
x2 + 2

f
#
2 ≡ y = f2(x1, x2) = −

1

2
x1 + 2

within the environment ρ# ≡ {x1 7→ (−∞, 4], x2 7→ (−∞, 4]}. Their join is the
convex hull of the sets of constraints {x1 ≤ 4, x2 ≤ 4, 0 ≤ y ≤ − 1

2
x2 + 2}

and {x1 ≤ 4, x2 ≤ 4, 0 ≤ y ≤ − 1
2
x1 + 2}. Thus f

#
1 ⊔F f

#
2 = f# where

f# ≡ y = f(x1, x2) = − 1
2
x1 −

1
2
x2 + 4 (see Figure 4). ⊓⊔

In the particular case where f
#
1 ≡ ⊥F or f

#
2 ≡ ⊥F, their join f

#
1 ⊔F f

#
2 is

f# ≡ ⊥F. In all the other cases, f#
1 ⊔F f

#
2 is f# ≡ ⊤F.

The following result proves the soundness of the join operator ⊔P.

Theorem 3. γP(〈ρ
#
1 , f

#
1 〉) ⊔ γP(〈ρ

#
2 , f

#
2 〉) ⊑ γP(〈ρ

#
1 , f

#
1 〉 ⊔P 〈ρ#2 , f

#
2 〉).

Assignments. In order to handle assignments X := A, the abstract domain P

is equipped with an operation to substitute an arithmetic expression A for a
variable X within an abstract function f#. Given 〈ρ#, f#〉 ∈ E# × F#, the
backward abstract transformer ASSIGNP, applies the assignment independently
to ρ#, by means of ASSIGNE, and to f#. Let f# ≡ f(x1, . . . , X, . . . , xn). The
transformer ASSIGNF has to take into account the assignment X := A and
increase the value of f#: the result is the function f(x1, . . . , A, . . . , xn) + 1.

Example 4. Let consider again the ranking function at program point 1 in the
last column of Figure 1. The result of the assignment x := −2x + 10, on the
segment represented by the environment x 7→ [4, 5] and the function f(x) = 7,
is represented by ρ# ≡ x 7→ [3, 3] and f# ≡ f(−2x+ 10) = 7 + 1 = 8. ⊓⊔

10

x1

x2

4 4

(a)

x1

x2

4 4

(b)

x1

x2

4 4

(c)

Fig. 4: Example of join of two abstract functions of two variables. The function
f1(x1, x2) = − 1

2
x2+2 (shown in (a)) is joined with f2(x1, x2) = − 1

2
x1+2 (shown

in (b)), within the environment {x1 7→ (−∞, 4], x2 7→ (−∞, 4]}. The result is
the function f(x1, x2) = − 1

2
x1 −

1
2
x2 + 4 (shown in (c)).

Example 5. Let us consider f(x) = 2x + 1 within the environment x 7→ [4, 6],
and the assignment x := x+ 1. The result of the assignment is 〈ρ#, f#〉, where
ρ# ≡ x 7→ [3, 5] and f# ≡ f(x+ 1) + 1 = 2(x+ 1) + 1 + 1 = 2x+ 4. ⊓⊔

In case of a non-linear expression A, the limited expressiveness of the domain
forces the assignment to be approximated using non-determinism and taking into
account all possible outcomes of the resulting non-deterministic assignment.

Note that the assignment abstract transformer ASSIGNP is not sound due to
the over-approximation introduced by the environments transformer ASSIGNE.

Example 6. Let us consider ρ# ≡ x 7→ [2, 3] and f# ≡ f(x) = x + 1, and
the assignment x := x + [1, 2]. The result of the assignment is 〈ρ̄#, f̄#〉, where
ρ̄# ≡ x 7→ [0, 2] and f̄# ≡ f(x + [1, 2]) ≡ f̄(x) = x + 4. It is not sound
because SJx := x + [1, 2]KγP(〈ρ

#, f#〉) 6⊑ γP(〈ρ̄
#, f̄#〉): in fact, the domain of

γP(〈ρ̄
#, f̄#〉), that is {x 7→ 0, x 7→ 1, x 7→ 2}, is not included in the domain of

SJx := x+ [1, 2]KγP(〈ρ
#, f#〉), that is {x 7→ 1}. ⊓⊔

However, in the next section, we will exploit ASSIGNP to define ASSIGNV,
for the abstract domain V(E,P), and we will prove the soundness of such trans-
former, despite the fact that it uses an unsound ASSIGNP.

Tests. The test abstract transformer FILTERP, given 〈ρ#, f#〉 ∈ E# × F#,
simply narrows the domain of f#, represented by the environment ρ#, by means
of the environments transformer FILTERE.

3.3 Segmented Ranking Functions Abstract Domain

The segmented ranking functions abstract domain V(E,P) introduces segmen-
tations into P: it abstracts ranking functions in E 67→ O by piecewise-defined

11

abstract ranking functions belonging to:

V# , {(E# ×F#)k | k ≥ 0}.

An abstract property v# ∈ V# has the form v# ≡ 〈ρ#1 , f
#
1 〉 . . . 〈ρ#

k
, f

#

k
〉, where

ρ
#
1 , . . . , ρ

#

k
are non-overlapping abstract environments forming a partition of the

space of values for the program variables in X .
Let ⊥V denote the totally undefined function.
The concretization function γV ∈ V# 7→ (E 67→ O) is defined as follows3:

γV(v
#) = γV(〈ρ

#
1 , f

#
1 〉 . . . 〈ρ#

k
, f

#

k
〉) =

⋃̇

i

γP(〈ρ
#
i
, f

#
i
〉)

As in [15], the abstract domain V(E,P) relies on a segmentation unification

algorithm: given two functions v#1 and v
#
2 , it modifies their segments so that they

form a common refined partition of the space of values for each program variable.
The abstract order ⊑V applies such segmentation unification and then compares
the abstract ranking functions. First, their domains are compared considering
the number of segments 〈ρ#, f#〉 in which each of the functions is defined (i.e.

in which f# 6= ⊥F and f# 6= ⊤F). Then, if v
#
2 is defined on less segments than

v
#
1 , the functions are compared piecewise using the functions order ⊑P.

Theorem 4. v
#
1 ⊑V v

#
2 ⇔ γV(v

#
1) ⊑ γV(v

#
2)

The result shows that γV is monotonic.
We define as well a computational partial order 4V that also exploits the

segmentation unification algorithm. Then, it compares the domains of the func-
tions v#1 and v

#
2 (as ⊑V does) and, if v#1 is defined on less segments than v

#
2 , it

compares the functions piecewise using the partial order 4P.
Note that, the approximation order ⊑V and the computational order 4V co-

incide when the functions are defined on the same segments.
Let ⊔V denote the join operator, ▽V the widening operator, and let ASSIGNV

and FILTERV denote the backward assignment and test transfer functions, re-
spectively. In the following, we will define these operators and prove their sound-
ness for an instance of V(E,P) with intervals and affine functions.

Segmented Affine Ranking Functions Abstract Domain As an example
of segmented ranking functions abstract domain, we apply the functor V to the
interval environments abstract domain E (described in Section 3.1) and to the
affine functions abstract domain P(E) (described in Section 3.2). The abstract
properties v# ∈ V# are piecewise-defined affine ranking functions.

In this case, since the segments are determined by abstract intervals with
constant bounds, the segmentation unification algorithm is rather simple: the
unification simply introduces new bounds consequently splitting intervals in both
segmentations. An example of segmentation unification is illustrated in Figure 5.

3 ∪̇ joins partial functions with disjoint domains: (f1∪̇f2)(x) , f1(x), if x ∈ dom(f1),
and (f1∪̇f2)(x) , f2(x), if x ∈ dom(f2), where dom(f1) ∩ dom(f2) = ∅.

12

x

y

4

3

(a)

x

y

2

1

(b)

x

y

2 4

1

3

(c)

Fig. 5: Example of segmentation unification. The segmentation shown in (a) is
joined with the one shown in (b). The resulting segmentation is depicted in (c).

Join. As the order ⊑V, also the join operator ⊔V depends on the segmentation
unification algorithm. After the unification, the abstract ranking functions are
joined piecewise by means of the abstract functions join operator ⊔P.

The next result proves the soundness of ⊔V.

Theorem 5. γV(v
#
1) ⊔ γV(v

#
2) ⊑ γV(v

#
1 ⊔V v

#
2)

We now define another join operator gV that we will use in the following to
join two functions v

#
1 and v

#
2 , the segmentations of which have different lower

and upper bounds. Where both segmentation are defined, gV applies the seg-
mentation unification algorithm and then joins the ranking functions piecewise
using the join operator ⊔P. To the resulting segmented function, segments are
added, where only one of the functions is defined.

Example 7. Let us consider the abstract piecewise-defined ranking functions
v
#
1 ≡ 〈x 7→ [2, 4], y = 2〉 and v

#
2 ≡ 〈x 7→ (−∞, 4], y = −x + 4〉 represented in

Figure 6a and Figure 6b, respectively. Their join is the piecewise-defined ranking
function v# ≡ 〈x 7→ (−∞, 2), y = −x+ 4〉〈x 7→ [2, 4], y = 2〉 of Figure 6c. ⊓⊔

Assignments. The backward assignment abstract transformer ASSIGNV, given
a segmented function v#, applies piecewise the transformer ASSIGNP and then
joins the resulting segments using the join operator gV. In this way, it refines
the segmentation of the function so as to avoid overlapping segments.

Example 8. Let us consider v# ≡ 〈x 7→ [−∞, 9],⊥F〉〈x 7→ [10,+∞], y = 0〉
and the assignment x := x + [0, 2]. The result of the assignment on v# is
〈x 7→ [−∞, 9],⊥F〉 gV 〈x 7→ [8,+∞], y = 1〉. That is the segmented function
〈x 7→ [−∞, 7],⊥F〉〈x 7→ [8, 9],⊥F〉〈x 7→ [10,+∞], y = 1〉.

The following result proves the soundness of ASSIGNV.

Theorem 6. SJX := AKγV(v
#) ⊑ γV(ASSIGNV(X := A, v#)).

13

x
2 4

(a)

x
4

(b)

x
2 4

(c)

Fig. 6: Example of join of partial piecewise-defined ranking functions. v#1 (shown

in (a)) is joined with v
#
2 (shown in (b)). The result v# is shown in (c).

We omit the proof due to space limits. Intuitively, as we have seen in the pre-
vious section, the transformer ASSIGNP is unsound because it introduces over-
approximations. In particular, over-approximations are more likely to appear
because of non-determinism (cf. Example 8). However, since the resulting seg-
ments are joined by means of gV, we recover from the unsoundness of ASSIGNP.
In fact, by definition of gV, the possible overlaps are handled with the sound join
operator ⊔P and this yields a sound backward assignment transformer ASSIGNV.

Tests. The transformer FILTERV for backward tests simply applies piecewise
the transformer FILTERP.

In the following (cf. Figure 8), we will exploit FILTERV and the operator gV

to define the abstract counterpart of the concrete semantics for the if statement,
and the abstract counterpart φ# ∈ V# 7→ V# of φ ∈ (E 67→ O) 7→ (E 67→ O), as
defined in Figure 3 for the while statement. The soundness of these operators
relies on an argument similar to the one we used to justify ASSIGNV.

Widening. The widening operator ▽V prevents the number of pieces of an ab-
stract ranking function from growing indefinitely. First, to avoid infinite chains,
it performs a segmentation unification that keeps only the bounds occurring in
the first segmentation. Then, it widens the functions piecewise (basically reusing4

the widening on polyhedra) and toward the adjacent segments (cf. Example 9).

Example 9. Let us consider the widening between the segmented functions v
#
1

and v
#
2 represented in Figure 7a and Figure 7b, respectively. The operator ▽V

keeps only the segmentation of v#1 . Thus, the segments 〈x 7→ (−∞, 3),⊥F〉 and

〈x 7→ [3, 5), y = 5〉 of v#2 , are joined into a single segment 〈x 7→ (−∞, 5), y = 5〉.
Then, 〈x 7→ (−∞, 5), y = 5〉 is widened toward 〈x 7→ [5, 10), y = 3〉: both
segments are considered as sets of constraints (as we have seen for the definition
of the operator ⊔F of Section 3.2) and their convex-hull

{x ≤ 10, 0 ≤ y, y ≤ 3, y ≤ −
2

5
x+ 7}

4 In a similar way as the join of polyhedra was reused to define ⊔F in Section 3.2.

14

x

5 10

(a)

x

3 5 10

(b)

x

5 10

(c)

Fig. 7: Example of widening of abstract piecewise-defined ranking functions. The
result of widening v

#
1 (shown in (a)) with v

#
2 (shown in (b) is shown in (c).

is shrunk by the constraint x < 5 originating from the first segment:

{x < 5, 0 ≤ y ≤ −
2

5
x+ 7}.

The resulting widened segmented function is

v# ≡ 〈x 7→ (−∞, 5), y = −
2

5
x+ 7〉〈x 7→ [5, 10), y = 3〉〈x 7→ [10,+∞), y = 1〉

represented in Figure 7c. ⊓⊔

Note that this widening does not respect the traditional definition [10], since

the property γV(v
#
1) ⊔ γV(v

#
2) ⊑ γV(v

#
1 ▽Vv

#
2) does not always hold.

However, we are able to prove the following weaker result (that will be deci-
sive for the soundness of the iterations with widening):

Lemma 3. (X ▽V Y = X) ⇒ Y ⊑V X

Proof. When X ▽V Y = X, we have Y 4V X. Moreover, since the widening
force the segmentation of X on Y , having X ▽V Y = X means that X and Y

are defined on the same segments. In this case, as we have already observed, the
orders ⊑V and 4V coincide, and we have Y ⊑V X. ⊓⊔

3.4 Abstract Termination Semantics

We now use the operators of V(E,P) to define the statement abstract semantics
S#JSK ∈ V # 7→ V # by induction on the syntax of programs in Figure 8.

The program abstract semantics r#
τ

∈ L 7→ V# is computed through back-
ward invariance analysis, starting from the program final control point e ∈ L
with the constant function equals to 0. The ranking function is then propagated
towards the program initial control point i ∈ L taking assignments and tests

15

S#JX := AKv , ASSIGNV(X := A, v)

S#Jif B then S1 else S2 fiKv , FILTERS(B,S#JS1Kv) gV FILTERS(¬B,S#JS2Kv)

S#Jwhile B do S odKv , lfp
#4V

⊥V
φ#

where φ# , λx. FILTERS(¬B, v) gV FILTERS(B,S#JSKx)

S#JS1;S2Kv , S#JS1K(S
#JS2Kv)

Fig. 8: Abstract Semantics

into account with widening around loops [4]. The upward iteration sequence
with widening

X0 = ⊥V

Xi+1 = Xi ▽V φ#(Xi)

is ultimately stationary and we prove that its limit lfp#
4V

⊥V
φ# is a sound over-

approximation of lfp4
∅̇

φ:

Lemma 4. lfp
4

∅̇
φ ⊑ γV(lfp

#4V

⊥V
φ#)

Proof. Follows from the soundness of the function φ# and Lemma 3. ⊓⊔

Finally, thanks to the soundness of all abstract operators, with the follow-
ing result we establish the soundness of the program semantics r#

τ
for proving

program termination for initial states in I.

Theorem 7. Let v# be such that r#
τ

⊑V v# ∧ I ⊆ dom(γV(v
#)). Then, a pro-

gram P , with trace semantics described by a transition system 〈Σ, τ〉, terminates

for all traces starting from initial states in I ∈ ℘(Σ).

4 Implementation

We have implemented a research prototype static analyzer, based on our abstract
domain of segmented ranking functions. It is written in OCaml on top of the
Apron library [20], and we have used it to analyze programs written in the small
non-deterministic imperative language presented in Section 2.2.

To improve precision, we avoid trying to compute a ranking function for the
non-reachable states: our tool runs an iterated forward and backward invariance
analysis to over-approximate the reachable states definitely leading to final states
[11]. Then, it runs the backward analysis to infer the ranking function, intersect-
ing its domain at each step with the states identified by the previous analysis.

16

The analysis proceeds by structural induction on the program syntax, iterat-
ing loops until an abstract fix-point is reached. In case of nested loops, a fix-point
on the inner loop is computed for each iteration of the outer loop, following [4].

To illustrate the expressiveness of our domain, we consider more examples,
besides the one shown in Section 1.

Example 10. Let us consider the following program:

while 1(x1 ≥ 0 ∧ x2 ≥ 0) do

if 2(?) then
3x1 := x1 − 1

else

4x2 := x2 − 1

fi

od5

The presence of the test within the loop does not impair our method.
We run our analysis delaying widening of 2 iterations, and we obtained the

following loop invariant at program point 1:

f(x1, x2) =

1 x1 < 0

1 x2 < 0

3 0 ≤ x1 < 1 ∧ 0 ≤ x2 < 1

5 0 ≤ x1 < 1 ∧ 1 ≤ x2 < 2

5 1 ≤ x1 < 2 ∧ 0 ≤ x2 < 1

2x1 + 3 2 ≤ x1 ∧ 0 ≤ x2 < 1

2x2 + 3 0 ≤ x1 < 1 ∧ 2 ≤ x2

2x1 + 2x2 + 3 1 ≤ x1 ∧ 1 ≤ x2

Note how the ranking function, since its value represents an upper bound on
the number of steps to termination, also provides information on the program
computational complexity. ⊓⊔

Example 11. Let us consider the following program:

while 1(x < 10) do
2x := 2x

od3

Such program always terminates if and only if x > 0.
Our tool, with delayed widening of 2 iterations, is able to provide the follow-

ing loop invariant:

f(x) =

{
3 5 ≤ x < 10

1 10 ≤ x

17

We can see that even when the analysis fails to prove whole program termination,
it can still infer useful sufficient conditions for termination.

Besides, in this case, if we assume that the variable x takes values in Z, it
is sufficient to further delay the widening, to obtain the most precise ranking
function:

f(x) =

9 x = 1

7 x = 2

5 3 ≤ x ≤ 4

3 5 ≤ x ≤ 9

1 10 ≤ x

⊓⊔

5 Related Work

Termination analysis has attracted increased interest over the years (cf. [8]).
Proving termination of programs is necessary for ensuring the correct behavior
of systems, especially those for which unexpected behavior can be catastrophic.

The first results in this field date back to [26] and [18]. In the recent past,
despite the undecidability of termination, termination analysis has benefited
from many research advances and powerful termination provers have emerged.

Many results are developed on the basis of the transition invariants method
introduced in [23]. In particular, the Terminator prover [7] is based on an al-
gorithm for the iterative construction of transition invariants. This algorithm
search for counterexamples (i.e. single paths of a program) to termination, com-
putes a ranking function for each one of them individually (as in [22]), and
combines them into a single termination argument. Our approach differs in that
it aims to prove termination for all program paths at the same time, without re-
sorting to counterexample-guided analysis. Moreover, it avoids the cost of explicit
checking for the well-foundedness of the termination argument. The approach
presented in [25] shares similar motivations, but prefers loop summarization to
iterative fix-point computation with widening, as considered in this paper.

Among the methods based on transition invariants, we also recall the strat-
egy, proposed in [3], based on the indirect use of invariants to prove program
termination (and liveness properties). On the other hand, our approach infers
ranking functions directly as invariants.

In [2], the invariants are pre-computed as in [3], but each program point is
assigned with a ranking function (that also provides information on the program
computational complexity), as in our technique.

Finally, in the literature, we found only few works that have addressed the
problem of automatically finding preconditions to program termination. In [6],
the authors proposed a method based on preconditions generating valid ranking
functions. Our approach somehow goes the other way around, using the compu-
tation of ranking functions to infer sufficient condition for termination.

18

6 Conclusions and Future Work

In this paper, we presented a family of parameterized abstract domains for prov-
ing termination of imperative programs. These domains automatically synthesize
piecewise-defined ranking functions through backward invariance analysis.

We also described the design and implementation of a particular instance
of these generic abstract domains based on intervals and affine functions. We
have seen that the piecewise-definition of the functions allows us to overcome
the non-existence of a linear ranking function for a program (cf. Section 1). Our
invariance analysis is not limited to simple loop (cf. Example 10) and, even when
it fails to prove whole program termination, it can still infer useful information
as sufficient conditions for termination (cf. Example 11).

As might be expected, the implemented domain has a limited expressiveness
that translates into an imprecision of the analysis especially in the case of nested
loops (and, in general, of programs with non-linear complexity). For this reason,
we would like to consider the possibility of structuring computations as suggested
by [14]. It also remains for future work to design more abstract domains, based
on non-linear functions as exponentials [17] or polynomials. In addition, we plan
to extend our research to proving other liveness properties.

We are interested as well in exploring further the possible potential of our
approach in the termination-related field of automatic cost analysis [1].

Finally, another line of research would be proving definite non-termination
by abstraction of the potential termination semantics proposed in [14].

Acknowledgments. We are deeply grateful to Patrick Cousot, Radhia Cousot,
Antoine Miné, Xavier Rival, Jérôme Feret, Damien Massé and the anonymous
referees for all their useful comments and helpful suggestions.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. J. Autom. Reasoning, 46(2):161–203, 2011.

2. C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-Dimensional Rankings,
Program Termination, and Complexity Bounds of Flowchart Programs. In SAS,
pages 117–133, 2010.

3. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. W. O’Hearn. Variance
Analyses from Invariance Analyses. In POPL, pages 211–224, 2007.

4. F. Bourdoncle. Efficient Chaotic Iteration Strategies with Widenings. In FMPA,
pages 128–141, 1993.

5. A. R. Bradley, Z. Manna, and H. B. Sipma. The Polyranking Principle. In ICALP,
pages 1349–1361, 2005.

6. B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving Con-
ditional Termination. In CAV, pages 328–340, 2008.

7. B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond Safety. In CAV,
pages 415–418, 2006.

8. B. Cook, A. Podelski, and A. Rybalchenko. Proving Program Termination. Com-

mun. ACM, 54(5):88–98, 2011.

19

9. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Pro-
grams. In Proceedings of the Second International Symposium on Programming,
pages 106–130, 1976.

10. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL, pages 238–252, 1977.

11. P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Pro-
grams. J. Log. Program., 13(2&3):103–179, 1992.

12. P. Cousot and R. Cousot. Abstract Interpretation Frameworks. J. Log. Comput.,
2(4):511–547, 1992.

13. P. Cousot and R. Cousot. Higher Order Abstract Interpretation (and Application
to Comportment Analysis Generalizing Strictness, Termination, Projection, and
PER Analysis. In ICCL, pages 95–112, 1994.

14. P. Cousot and R. Cousot. An Abstract Interpretation Framework for Termination.
In POPL, pages 245–258, 2012.

15. P. Cousot, R. Cousot, and F. Logozzo. A Parametric Segmentation Functor for
Fully Automatic and Scalable Array Content Analysis. In POPL, pages 105–118,
2011.

16. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In POPL, pages 84–96, 1978.

17. J. Feret. The Arithmetic-Geometric Progression Abstract Domain. In VMCAI,
pages 42–58, 2005.

18. R. W. Floyd. Assigning Meanings to Programs. Proceedings of Symposium on

Applied Mathematics, 19:19–32, 1967.
19. B. Jeannet. Dynamic Partitioning in Linear Relation Analysis: Application to the

Verification of Reactive Systems. Formal Methods in System Design, 23(1):5–37,
2003.

20. B. Jeannet and A. Miné. Apron: A Library of Numerical Abstract Domains for
Static Analysis. In CAV, pages 661–667, 2009.

21. A. Miné. The Octagon Abstract Domain. HOSC, 19(1):31–100, 2006.
22. A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis of Linear

Ranking Functions. In VMCAI, pages 239–251, 2004.
23. A. Podelski and A. Rybalchenko. Transition Invariants. In LICS, pages 32–41,

2004.
24. X. Rival and L. Mauborgne. The Trace Partitioning Abstract Domain. ACM

Transactions on Programming Languages and Systems, 29(5), 2007.
25. A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening. Loop Summa-

rization and Termination Analysis. In TACAS, pages 81–95, 2011.
26. A. Turing. Checking a Large Routine. In Report of a Conference on High Speed

Automatic Calculating Machines, pages 67–69, 1948.

20

	The Abstract Domain ofSegmented Ranking Functions

