
Predicate Abstraction for Relaxed Memory Models

Andrei Dan1, Yuri Meshman2, Martin Vechev1, and Eran Yahav2

1 ETH Zurich
{andrei.dan, martin.vechev}@inf.ethz.ch

2 Technion
{yurime, yahave}@cs.technion.ac.il

Abstract. We present a novel approach for predicate abstraction of programs
running on relaxed memory models. Our approach consists of two steps.
First, we reduce the problem of verifying a program P running on a memory
model M to the problem of verifying a program PM that captures an abstraction
of M as part of the program.
Second, we present a new technique for discovering predicates that enable veri-
fication of PM . The core idea is to extrapolate from the predicates used to verify
P under sequential consistency. A key new concept is that of cube extrapolation:
it successfully avoids exponential state explosion when abstracting PM .
We implemented our approach for the x86 TSO and PSO memory models and
showed that predicates discovered via extrapolation are powerful enough to ver-
ify several challenging concurrent programs. This is the first time some of these
programs have been verified for a model as relaxed as PSO.

1 Introduction

One approach for efficiently utilizing multi-core architectures, used by major CPU
designs (e.g., [27, 28, 20]), is to define architectural relaxed (weak) memory models
(RMMs) [14]. Some of those relaxations can be modeled using one or more per-processor
FIFO buffers, where a store operation adds values to the buffer and a flush operation
propagates the stored value to main memory. Programs running under those models
exhibit unique caveats and verifying their correctness is challenging.

The Problem Given a program P , a specification S and a memory model M , we would
like to answer whether P satisfies S under M , denoted as P |=M S.

Unfortunately, even for finite-state programs, automatic verification under relaxed
memory models is a hard problem. The problem is either undecidable or has a non-
primitive recursive complexity for stronger models such as x86 TSO and PSO (see [4]
for details). It is therefore natural to explore the use of abstraction for verification of
such programs.

Predicate abstraction [16] is a widely used approach for abstract interpretation [9].
Since predicate abstraction has been successfully applied to verify a wide range of
sequential and concurrent programs (e.g., [6, 13, 15]), we are interested in the question:

how to apply predicate abstraction to programs running on relaxed models?

Given a program P and a vocabulary (set of predicates) V = {p1, . . . , pn} with
corresponding boolean variables V̂ = {b1, . . . , bn}, standard predicate abstraction
(e.g. [16, 6]) constructs a boolean program BP(P, V) that conservatively represents
the behaviors of P using only boolean variables from V̂ . When considering predicate
abstraction in the context of relaxed memory models, two key challenges need to be
addressed: (i) soundness: the boolean program must faithfully abstract the behaviors of
P running on model M ; (ii) predicate discovery: there should be a mechanism for au-
tomatically discovering predicates that enable successful verification of P running on
memory model M .

Soundness Under sequential consistency (SC), predicate abstraction is sound and we
know that BP(P, V) |=SC S implies P |=SC S. Unfortunately, we observed this does
not hold for relaxed memory models (see Section 2.2).

Intuitively, the problem is as follows: under sequential consistency, a shared variable
has only one value — the value stored in main memory. Predicates used for predicate
abstraction can therefore refer to that shared value and relate it to the values of other
shared variables or thread-local variables. In contrast, for a program running on a re-
laxed model, threads may observe different values for the same shared variable as they
have their own local buffered copies. This means that in a relaxed model, one cannot
directly apply classic predicate abstraction, as the variables used in predicates are as-
sumed to refer to a single value at a time.

Predicate Discovery A key challenge with predicate abstraction is to discover a set of
predicates that enable verification. Following classic abstraction refinement, one would
start with a program that is to be verified on a particular relaxed model together with an
initial set of predicates. Then, proceed to iteratively apply refinement until we find a set
of predicates under which the program verifies (or the process times out).

We take a different approach to predicate discovery for programs running on RMMs.
In our approach, we first obtain the predicates that enable verification of the program on
sequential consistency (SC). Then, we automatically extrapolate from these SC predi-
cates to produce a new set of predicates that can be used as a basis for verification on
the relaxed model.

Our Approach Given a program P , a specification S and a memory model M , our
approach consists of the following steps:

1. verify under SC: find a set of predicates V , sufficient to verify P under sequential
consistency, i.e., a set V such that BP(P, V) |=SC S.

2. reduce to SC: automatically construct a new program PM such that if PM |=SC S
then P |=M S. The program PM contains an abstraction of the store buffers used
in M .

3. discover new predicates: automatically compute a new set of predicates VM that are
used for predicate abstraction of PM . This is a challenging step and the key idea is
to leverage the verification of P under SC. We present two approaches: predicate
extrapolation which discovers new predicates based on the predicates in V and cube
extrapolation which discovers new predicates based on both V and BP(P, V).

4. construct a new boolean program: given the new program PM and the new pred-
icates VM , automatically construct a boolean program BP(PM , VM) such that
BP(PM , VM) |=SC S ensures that PM |=SC S, which in turn guarantees that
P |=M S. Here, cube extrapolation enables us to build BP(PM , VM) without suf-
fering from the usual problem of exponential search.

5. check: whether BP(PM , VM) |=SC S.

Main Contributions

– We provide a novel approach for predicate abstraction of programs running on re-
laxed memory models, extrapolating from the predicate abstraction proof of the
same program for sequential consistency.

– One of our insights is that the predicates used to verify P under SC can be automat-
ically extrapolated to discover new predicates for verification of the program with
M encoded in it, PM . We present two approaches for discovering new predicates
called predicate extrapolation and cube extrapolation.

– We instantiated our approach for the x86 TSO and PSO memory models. We im-
plemented our approach and applied it to verify several challenging concurrent
algorithms (both finite and infinite-state) under these models. We show that ex-
trapolation is powerful enough to verify these algorithms and in particular, cube
extrapolation enables verification of Lamport’s Bakery algorithm, which otherwise
(without cube extrapolation) times out when building the boolean program.

2 Overview

In this section, we give an informal overview of our approach using simple examples.

2.1 Motivating Example

Fig. 1 shows an implementation of an infinite state alternating bit protocol (ABP) with
two concurrent threads. We use capitalized variable names to denote global shared vari-
ables, and variable names in lowercase to denote local variables. In this program, global
shared variables Msg and Ack have an initial value 0. We use this algorithm as our il-
lustrative example, additional examples are discussed in Section 6.
Specification When executing on a sequentially consistent memory model, this program
satisfies the invariant:

((lRCnt = lSCnt) ∨ ((lRCnt+ 1) = lSCnt))

Here, the local variable lRCnt is the local counter for the receiver thread containing
the number of received messages. Similarly, local variable lSCnt is the local counter
for the sender thread containing the number of sent messages.
Predicate Abstraction under Sequential Consistency A traditional approach to predi-
cate abstraction is shown in Fig. 2(a). To verify that ABP satisfies its specification under
SC, we instantiate predicate abstraction with the following predicates:

(Msg = 0), (Ack = 0), (lSSt = 0), (lAck = 0)
(lMsg = 0), (lRSt = 0), (lRCnt = lSCnt), ((lRCnt+ 1) = lSCnt)

initially: Msg = Ack = 0
Sender (thread 0):

1 lAck = Ack;
2 if ((lAck = 0 & lSSt = 0)

| (lAck != 0 & lSSt != 0))
3
4 if (lSSt != 0) lSSt = 0;
5 else lSSt = 1;
6 lSCnt++;
7 Msg = lSSt;
8 goto 1;

Receiver (thread 1):

1 lMsg = Msg;
2 if ((lMsg = 0 & lRSt != 0)

| (lMsg = 0 & lRSt != 0))
3
4 lRSt = lMsg;
5 lRCnt++;
6 Ack = lRSt;
7
8 goto 1;

Fig. 1. An alternating bit protocol example with two threads.

The result of predicate abstraction using these predicates is a concurrent boolean
program that conservatively represents all behaviors of the original ABP program. In
Fig. 2(a), this boolean program is denoted as the oval named Boolean Program B.

In the worst case, the construction of the concurrent boolean program, follow-
ing standard predicate abstraction techniques (e.g., [16, 6, 15]) involves an exponential
number of calls to an underlying theorem prover. A critical part of the construction
of the boolean program is searching the “cubes” — conjunctions of predicates — that
imply a certain condition. This search is exponential in the number of predicates.
An Informal Overview of PSO In the partial-store-order (PSO) memory model, each
thread maintains a private buffer (a sequence) for each global variable. When the thread
writes to a global variable, the value is enqueued into the buffer for that variable. Non-
deterministically, the values can be dequeued from the buffer and written to main mem-
ory. When the thread reads from a global variable, it first checks if the buffer is empty
and if so, it reads as usual from main memory. Otherwise, it reads the last value writ-
ten in the buffer. The model is further equipped with a special fence instruction which
can be executed by a thread to empty all buffers for that thread and write the most re-
cent value in each buffer to the corresponding shared location. In our example, thread
0 maintains one buffer, the buffer for global variable Msg and thread 1 also maintains
one buffer, the buffer for global variableAck. For instance, the store Msg = lSST leads
to the value of lSST being enqueued into the private buffer for thread 0. This value can
be flushed to main memory at any point in the execution, non-deterministically.
An Informal Overview of TSO In the total-store-order (TSO) memory model, each
thread maintains a single private buffer for all global variables. Similarly to PSO, values
stored to global variables are first written to the buffer, and then are non-deterministically
flushed to main memory. A fence instruction empties the thread’s private buffer.

The challenges we address are: (i) how to verify programs such as ABP under re-
laxed memory models such as x86 TSO and PSO, and (ii) how to deal with the expo-
nential complexity of standard predicate abstraction in our setting of RMM.

(a) (b)

Fig. 2. Predicate abstraction: (a) classic algorithm, (b) with predicate extrapolation and cube ex-
trapolation. Here, a rectangle shape represents an algorithm, while an oval shape represents input-
output information (data).
2.2 Standard (Naive) Predicate Abstraction under RMM is Unsound

initial: X=Y=0
Thread 0:

1 X = Y+1
2 fence(X)

Thread 1:

1 Y = X+1
2 fence(Y)

assert(X 6=Y)

Fig. 3. unsoundness example.

We now consider the following scheme for predicate
abstraction: (i) construct a boolean program directly
from the program of Fig. 3 using standard predicate
abstraction; (ii) execute the boolean program using
PSO semantics. This scheme is simple, but unfortu-
nately, it is unsound. We now show that following this
scheme, we can produce a boolean program that suc-
cessfully verifies our assertion. This is unsound be-
cause we know the existence of an assertion violation,
namely the one shown in Fig. 4(a).

To capture the assertion breach, we need to keep track of the relationship between
X and Y . Consider the predicates:

P1 : X = Y, P2 : X = 1, P3 : Y = 1, P4 : X = 0, P5 : Y = 0

Each Pi has been assigned a boolean variable Bi (with a buffer for each thread)
where the effect of a thread writing to X or Y will write to a local buffer of X = Y of
that thread, and the effect of flushing X or Y will also flush the buffer associated with
X = Y . Unfortunately this approach is insufficient. The problem is shown in Fig. 4(b).
When thread 0 updates X to 1, and thread 1 updates Y to 1, the predicate X = Y will
be updated to false in both (denoted as F) and stored in the store buffer of each thread
(since neither of the two threads can see the update of the other). When the value ofX is

(a) Concrete (b) Predicate Abstraction
Thread 0 Thread 1 Global Thread 0 Thread 1 Global
(X,Y) (X,Y) (X,Y) (X=Y,X=1,Y=1,X=0,Y=0) (X=Y,X=1,Y=1,X=0,Y=0) (X=Y,X=1,Y=1,X=0,Y=0)

(0,0) (0,0) (0,0) (T, F, F, T, T) (T, F, F, T, T) (T, F, F, T, T)
T0: X = Y+1 (1,0) (0,0) (0,0) (F, T, F, F, T) (T, F, F, T, T) (T, F, F, T, T)
T1: Y = X+1 (1,0) (0,1) (0,0) (F, T, F, F, T) (F, F, T, T, F) (T, F, F, T, T)
T0: flush(X) (1,0) (1,1) (1,0) (F, T, F, F, T) (F, T, T, F, F) (F, T, F, F, T)
T1: flush(Y) (1,1) (1,1) (1,1) (F, T, F, F, T) (F, T, T, F, F) (F, T, T, F,F)

Fig. 4. (a) an error trace for Fig. 3 under PSO. Thread i are values observed by thread i, Global
are the values in global memory. (b) Values of predicates in a boolean program corresponding to
the program of Fig. 3 under PSO semantics.

flushed from the buffer of thread 0, our setting flushes the value of the predicate X = Y

(F) to main memory. Similarly, when Y is flushed in thread 1, the value of X = Y (F) is
flushed. The main memory state after these two flushes is inconsistent, as it has X = 1

set to T, Y = 1 set to T and X = Y set to F.

2.3 Predicate Abstraction for Relaxed Memory Models

In Fig. 2(b), we illustrate the ingredients and flow of our approach for solving the verifi-
cation problem under relaxed memory models. The figure contains two approaches for
adapting predicate abstraction to our setting called Predicate Extrapolation and Cube
Extrapolation (which includes Predicate Extrapolation). Next, we discuss the steps of
our approach.
Step 1: Verify P under SC The first step is to verify the program P under sequential
consistency using standard predicate abstraction as outlined earlier in Fig. 2(a). Once
the program is verified, we can leverage its set of predicates as well as its boolean
program in the following steps.
Step 2: Construct the reduced programPM This step is named “Reduction” in Fig. 2(b).
To enable sound predicate abstraction of a program P under a relaxed memory model
M , we first reduce the problem into predicate abstraction of a sequentially consistent
program. We do so, by constructing a program PM that conservatively represents the
memory model M effects as part of the program.

The key idea in constructing PM is to represent an abstraction of the store buffers
of M as additional variables in PM . Since the constructed program PM represents
(an abstraction of) the details of the underlying memory model, we can soundly apply
predicate abstraction to PM . The formal details of the reduction for x86 TSO and PSO
are discussed later in the paper. Here, we give an informal description.

For PSO, it is sufficient to consider a program PPSO where every global vari-
able X in P is also associated with: (i) additional k local variables for each thread
t: x1 t, . . . , xk t, representing the content of a local store buffer for this variable in each
thread t, (ii) a buffer counter variable xcnt t that records the current position in the store
buffer of X in thread t.

The x86 TSO model maintains a single local buffer per process. This buffer is up-
dated with stores to any of the global variables. However, we need additional vari-

ables to capture information about which global variable is stored in the buffer. The
lhs variables contain the index of which global variable is addressed for each buffer
element. The other variables are similar to PSO: (i) k local variables for each thread t:
lhs1 t, . . . , lhsk t, representing the index of the global variable stored at a local store
buffer in each thread t, (ii) k local variables for each thread t: rhs1 t, . . . , rhsk t, rep-
resenting the value content of a local store buffer in each thread t, (iii) a buffer counter
variable cnt t that records the current position in the store buffer of thread t.

Step 3: Discover new predicates for PM After verifying P under SC and constructing
PM , the remaining challenge is to discover a sufficient set of predicates for verifying
that PM satisfies a given specification. One of our main insights is that for buffered
memory models such as x86 TSO and PSO, the predicates (and boolean program) used
for verifying P under SC can be automatically leveraged to enable verification of PM .
This step corresponds to the “Extrapolate” box. This step takes as input the set of pred-
icates V that were successful for verifying P under SC and outputs a new set VM .

Predicates for the motivating example Next, we illustrate via our running example how
to generate new predicates under PSO (the process under x86 TSO is similar).

Consider again the ABP algorithm of Fig. 1 and the 8 predicates listed earlier in
Section 2.1. Following the structure of the additional variables in PM , we can intro-
duce additional predicates by cloning each predicate over a global variable X into new
predicates over store-buffer variables x1 t, . . . , xk t. For example, assuming k = 1, in
addition to Msg = 0, we introduce Msg 1 t0 = 0.

To keep track of the buffer size for each buffered variable, we introduce addi-
tional predicates. For instance, for a global variableMsg, to register possible values for
Msg cnt t0, assuming k = 1, we introduce Msg cnt t0 = 0 and Msg cnt t0 = 1.
Note that we do not introduce predicates such as Msg cnt t1 = 0 and Msg 1 t1 = 0
as thread 1 always accesses Msg via main memory. Another predicate we could have
added is Msg 1 t0 = Msg. This predicate is not needed for the verification of ABP,
however, we observe that such predicates can greatly reduce the state space of the model
checker. In Section 5, we discuss rules and optimizations for generating new predicates
for the PSO memory model and in [10] we present the details for the x86 TSO model
(which are similar).

Finally, to ensure soundness, we add a designated flag overflow to track when the
buffer size grows beyond our predetermined bound k. Overall, with a bound of k = 1,
from 8 predicates used for sequential consistency we generate 15 predicates for PSO:

(Msg = 0), (Ack = 0), (lSSt = 0), (lAck = 0), (lMsg = 0), (lRSt = 0), (lRCnt = lSCnt),
((lRCnt+ 1) = lSCnt), (Msg cnt t0 = 0), (Msg cnt t0 = 1), (Ack cnt t1 = 0),
(Ack cnt t1 = 1), (Msg 1 t0 = 0), (Ack 1 t1 = 0), (overflow = 0)

Cube Search Space A critical part of the predicate abstraction algorithm is finding the
weakest disjunction of cubes that implies a given formula (see [13, 6] for details). This
is done by exploring the cube search space, typically ordered by cube size. Because
the search is exponential in the number of predicates, most previous work on predicate
abstraction has bounded the cube space by limiting the maximal cube size to 3.

The translation of SC predicates to PSO predicates implies a polynomial (in the
buffer limit k, number of threads and number of shared variables) growth in the number

of predicates. Unfortunately, since cube search space is exponential in the number of
predicates, exploration of the PSO cube space can sometimes be prohibitively expensive
in practice.

For example, for ABP running on sequential consistency, the total number of cubes
is 38 = 6561. Here, 8 is the maximal sized cube which is the same as the number
of predicates. And 3 means that we can use the predicate directly, its negation or the
predicate can be absent. However, for PSO, the total number of cubes is 315 exceeding
14 million cubes! If we limit cube size to 4, the SC cube search space becomes bounded
by Σ4

i=12
i
(
8
i

)
= 288, and the PSO cube space to be explored becomes bounded by

Σ4
i=12

i
(
15
i

)
= 25630.

The situation is worsened as the cube space is explored for every abstract trans-
former computation. Further, while in previous work, which mostly targets sequential
programs, limiting the cube size to 3 seemed to work, with concurrency, where one
needs to capture correlations between different threads, it is possible that we need a
cube size of 4 or greater. As the number of predicates increases, directly exploring
cubes of size 4 or more, even with standard optimizations, becomes infeasible (our
experiments confirm that).

Reducing the PSO Cube Space using SC Cubes One of our main insights is that we
can leverage the boolean program (the proof) under sequential consistency to simplify
reasoning under relaxed memory models. Technically, we realize this insight by using
the cubes from the boolean program under SC in order to guide the search in the cube
space under the weak memory model.

In Fig. 2(b), this step is denoted under Cube Extrapolation where in addition to the
steps in Predicate Extrapolation, we also extract the cubes that appear in the boolean
program of P under SC.

For example, for ABP, we examine the boolean program BP(ABP, V) where V
are the eight predicates listed earlier in Section 2.1, and observe the following cubes:

c1 = (lSSt = 0) ∧ (lAck = 0)
c2 = (lSSt = 0) ∧ ¬(lAck = 0)
c3 = (lMsg = 0) ∧ ¬(lRSt = 0)
c4 = ¬(lSSt = 0) ∧ ¬(lAck = 0)
c5 = ¬(lSSt = 0) ∧ (lAck = 0)

Since these cubes do not use the two global variables Msg and Ack, it stands to
reason that the same cubes would be obtained from the PSO cube space exploration,
which is indeed the case.

In this simple example, the above cubes from the predicate abstraction under SC
could be used directly for the predicate abstraction under PSO, without needing to
search for these cubes. Of course, there are cases where SC cubes do contain buffered
variables (such as Msg or Ack) and in that case we need to extrapolate from these
cubes in order to obtain useful cubes under PSO (see Section 5).

Building the Boolean Program An enabling factor with cube extrapolation is that it
changes the way we build the boolean program. We no longer require exponential search
over the cube search space. In Section 4, we show how to use the cubes under SC as
constraints over the cube space to reduce the size of the cube space to be explored under

[[X = r]]tk [[r = X]]tk [[fence]]tk [[flush]]tk

if xcnt t = k then
abort(“overflow”)

xcnt t = xcnt t + 1

if xcnt t = 1 then
x1 t = r

...
if xcnt t = k then
xk t = r

if xcnt t = 0 then
r = X

if xcnt t = 1 then
r = x1 t

...
if xcnt t = k then
r = xk t

. for each
X ∈ Gvar
generate:

assume (xcnt t = 0)

. end of generation

while * do
. for each X ∈ Gvar generate:
if xcnt t > 0 then

if * then
X = x1 t

if xcnt t > 1 then
x1 t = x2 t

...
if xcnt t = k then
x(k−1) t = xk t

xcnt t = xcnt t − 1

. end of generation

Fig. 5. PSO Translation Rules: each sequence of statements is atomic

the weak memory model. Technically, the idea is to lift the cubes under SC to buffered
counterparts by a translation similar to the way in which we extrapolated predicates
under SC (described above).

We can then pack the extrapolated cubes as new predicates provided to the predicate
abstraction procedure for the weak memory model, and limit cube size to 1. Limiting
the maximal cube size to 1 turns the process of cube search from exponential to linear
(in the number of predicates and cubes obtained from extrapolation). This is key to
making predicate abstraction tractable for relaxed memory models.

In Fig. 2(b), to reduce clutter, both Predicate Extrapolation and Cube Extrapolation
lead to the same Predicate Abstraction box. However, it is important to note that the
process of predicate abstraction for Cube Extrapolation does not perform exponential
search while the process for predicate extrapolation does. As we will see in the exper-
imental results, Predicate Extrapolation is sufficient for simpler programs, while Cube
Extrapolation is necessary for more complex programs.

Step 4: Model checking Once the boolean program is built (either via Predicate or
Cube Extrapolation), the final step is to model check the program. This step is exactly
the same as in the standard case of traditional predicate abstraction shown in Fig. 2(a).

3 Reduction

In this section, we describe a translation that transforms a program running on a relaxed
memory model into a program with no weak memory model effects. The basic idea
is to translate the store buffers in the semantics into variables that are part of the pro-
gram. This translation enables us to leverage classic program analysis techniques such
as predicate abstraction. Further, because the translation is parametric on the size of the
buffer, it allows us to tailor the abstraction to the buffer size required by the particular
concurrent algorithm. We show the process for the PSO memory model, the process for
x86 TSO is similar and is shown in [10].

Reduction: PSO to SC The reduction takes as input a thread identifier (whose state-
ments are to be handled), as well as a bound on the maximum buffer size k for the
per-variable buffer. Here, k denotes the maximum number of writes to global variables
without a fence in-between the writes. While the translation presented here uses a fixed
k for all global variables, we can easily use different k’s for different variables.

The translation considers in turn every statement that involves global variables. We
introduce a translation function, which takes as input a statement, a thread identifier,
and a bound on the maximum buffer size and produces a new statement as output:

[[]] ∈ Stmt× Thread× N→ Stmt

As a shorthand we write [[S]]tk for [[S, t, k]]. [[S]]tk denotes the statement obtained from
translating statement S in thread t with buffer bound k.

To perform the translation, the entries of the per-variable buffer are translated into
thread-local variables and a local counter is introduced to maintain its depth. That is,
for each global variable X and thread t, we introduce the following local variables:

– buffer content variables: x1 t,...,xk t, where k is the maximum size of the buffer.
– a buffer counter variable: xcnt t.

Fig. 5 presents the translation of the three program code statements and the mem-
ory subsystem statement (flush). In the translation, the newly generated sequence of
statements is atomic.
Store to a global variable [[X = r]]tk: The store to a global variable X first checks if we
are about to exceed the buffer bound k and if so, the program aborts. Otherwise, the
counter is increased. The rest of the logic checks the value of the counter and updates
the corresponding local variable. The global variable X is not updated and only local
variables are involved.
Load from a global variable [[r = X]]tk: The load from a global variable X checks the
current depth of the buffer and then loads from the corresponding local variable. When
the buffer is empty (i.e., xcnt t = 0), the load is performed directly from the global
store. We do not need to check whether the buffer limit k is exceeded as that is ensured
by the global store.
Fence statement [[fence]]tk: For each shared variable X , the fence statement waits for
the buffer of X to be empty (flush instructions to be executed). The fence has no effect
on X .
Flush action [[flush]]tk: The flush action is translated into a loop with a non-deterministic
exit condition (we use ∗). New statements are introduced for each global variable X .
If the buffer counter for the variable is positive, then it non-deterministically decides
whether to update the global variable X or to continue the iteration. If it has decided
to update X , the earliest write (i.e. x1 t) is stored in X . The contents of the local vari-
ables are then updated by shifting: the content of each xi t is taken from the content
of the successor x(i+1) t where 1 ≤ i < k. Finally, the buffer count is decremented.
The composite statement inside the while loop is generated for each global variable.
To ensure a faithful translation of the flush action, the whole newly generated state-
ment is placed after each statement of the resulting program. The atomic statements are
translated directly, without change (not shown in the figure).

The translation extends naturally to a sequence of statements and to programs with
n concurrent threads: [[P]]k = [[S]]1k ‖ · · · ‖ [[S]]nk , leading to the following theorem:

Theorem 1 (Soundness of Translation). For a given program, P and a safety specifi-
cation S, if P 6|=pso S then there exists a k ∈ N such that [[P]]k 6|=sc S.

From the theorem it follows that if [[P]]k |=sc S then P |=pso S. When we suc-
cessfully verify the program with a given k, it is guaranteed that no execution of the
program ever requires a buffer of size larger than k. If the program does have an ex-
ecution which exceeds k, then during verification we will encounter overflow and can
attempt a higher value of k. That is, if we verify the program for a certain bound k, then
the algorithm is correct for any size of the buffer greater or equal to k. In our experi-
ence, most concurrent algorithms exhibit low values for k as typically they use fences
after a small number of global stores.

4 Predicate Abstraction for Relaxed Memory Models

In this section we describe how predicate abstraction is used to verify concurrent pro-
grams running on relaxed memory models. The central point we address is how to dis-
cover the predicates necessary for verification under the relaxed model from the predi-
cates and the proof that was successful for verification of the program under sequential
consistency (SC).

4.1 Predicate Abstraction

Predicate abstraction [16] is a special form of abstract interpretation that employs carte-
sian abstraction over a given set of predicates. Given a program P , and vocabulary (set
of predicates) V = {p1, . . . , pn}with corresponding boolean variables V̂ = {b1, . . . , bn},
predicate abstraction constructs a boolean program BP(P, V) that conservatively repre-
sents behaviors of P using only boolean variables from V̂ (corresponding to predicates
in V). We use [bi] to denote the predicate pi corresponding to the boolean variable bi.
We similarly extend [b] to any boolean function b.

Next we explain how to construct BP(P, V). A literal is a boolean variable or its
negation. A cube is a conjunction of literals, the size of a cube is the number of literals
it contains. The concrete (symbolic) domain is defined as formulae over the predicates
p1, . . . , pn. The abstract domain is a disjunctions of cubes over the variables b1, . . . , bn.
The abstraction function α maps a formula ϕ over predicates from V to the weakest
disjunction of cubes d such that [d]⇒ ϕ.

The abstract transformer of a statement st w.r.t. a given vocabulary V can be com-
puted using weakest-precondition computation and performing implication checks us-
ing a theorem prover:

bi = choose(α(wp(st, pi)), α(wp(st,¬pi,)))

where

choose(ϕt, ϕf) =

1, ϕt evaluates to true;
0, only ϕf evaluates to true;
?, otherwise.

Different predicate abstraction techniques use different heuristics for reducing the
number of calls to the prover.

Input: Vocabulary V , Statement st, Maximum cube size k
Output: Abstract transformer for st over predicates from V

function COMPUTETRANSFORMER(V, st, k)
for each p ∈ V do
ψ+

p = ψ−
p = false

ϕ+ = wp(st, p)

ϕ− = wp(st,¬p)
for each i = 1 . . . k do
cubes+ = BUILDBOUNDEDCUBES(V, i, ψ+

p)

if cubes+ = ∅ then break
ψ+

p = COMPUTEAPPROX(cubes+, ϕ+, ψ+
p)

for each i = 1 . . . k do
cubes− = BUILDBOUNDEDCUBES(V, i, ψ−

p)

if cubes− = ∅ then break
ψ−

p = COMPUTEAPPROX(cubes−, ϕ−, ψ−
p)

ψ(p) = choose(ψ+
p , ψ

−
p)

Input: RMM predicates Vrmm, RMM cubesCrmm, Statement
st,
Output: Abstract transformer for st over predicates from
Vrmm ∪ Crmm

function COMPUTETRANSFORMER(Vrmm, Crmm, st)
for each p ∈ Vrmm do
ψ+

p = ψ−
p = false

ϕ+ = wp(st, p)

ψ+
p = COMPUTEAPPROX(Vrmm ∪ Crmm, ϕ

+, ψ+
p)

ϕ− = wp(st,¬p)
ψ−

p = COMPUTEAPPROX(Vrmm ∪ Crmm, ϕ
−, ψ−

p)

ψ(p) = choose(ψ+
p , ψ

−
p)

(a) (b)

Fig. 6. Computing abstract transformers: (a) classical predicate abstraction; (b) using extrapola-
tion. COMPUTEAPPROX is shown in Fig. 7.

function COMPUTEAPPROX(cubes, ϕ, ψ)
for each c ∈ cubes do

if c⇒ ϕ then
ψ = ψ ∨ c

return ψ

Fig. 7. Predicate abstraction - helper function.

Fig. 6 (a) shows a standard predicate abstraction algorithm in the spirit of [6]. The
algorithm takes as input a statement st and a set of predicates (vocabulary) V . It then
computes an abstract transformer for st using combinations of predicates from V . The
algorithm works by computing an update formula ψ(p) for every predicate p. The up-
date formula is constructed as a choice between two sub-formulae, ψ+

p which holds
when p should be set to true, and ψ−p which holds when p should be set to false.

The function BUILDBOUNDEDCUBES builds cubes of size i over predicates from
V , checking that cubes of size i are not subsumed by previously generated cubes in ψ+

p

or ψ−p . This function is standard, and we do not list it here due to space restrictions.
There are other algorithms that can be used here, such as the Flanagan&Qadeer’s [15],

or the one of Das et al. [11]. However, our focus is not on these optimizations, but on
leveraging information from the verification of the SC program to discover the new
predicates for verification under the relaxed memory model.

4.2 Predicate Extrapolation: from predicates under SC to predicates under
relaxed model

Given a program which successfully verified under SC, our first approach to verifying
the program under x86 TSO or PSO is to:

– Reduce the program as described in Section 3. That is, given a statement st of the
original program, obtain a new statement stpso or sttso from the translation.

– Compute Vpso = EXTRAPOLATEPSO(V) for PSO as discussed in Section 5, or for
TSO: Vtso = EXTRAPOLATETSO(V) (the TSO extrapolation is discussed in [10]
and is similar to PSO). This extrapolates from the set of input predicates under SC
and derives new predicates under x86 TSO or PSO.

– Invoke COMPUTETRANSFORMER(Vpso, stpso, k) to build the abstract transformer
under PSO. Similarly, invoke COMPUTETRANSFORMER(Vtso, sttso, k) for x86 TSO.
Here, k is the appropriate buffer bound. The function COMPUTETRANSFORMER is
shown in Fig. 6 (a).

That is, with this approach, the entire predicate abstraction tool chain remains the
same except we change the input to the function for computing abstract transformers to
be the new predicates Vpso and the new statement stpso.

4.3 Cube Extrapolation: from SC proof to PSO predicates

As we will see in our experimental results, predicate extrapolation is effective only in
some cases. The problem is that on more complex programs, the cube search space in-
creases significantly meaning the function COMPUTETRANSFORMER as described in
Fig. 6 (a) times out. Next, we discuss another approach for computing abstract trans-
formers under the relaxed memory model.
Core Idea The core idea is that cubes generated during SC predicate abstraction cap-
ture invariants that are important for correctness under SC, but the same relationships
between variables can be extrapolated to relationships between variables in the re-
laxed setting. Based on this observation, we extrapolate from these cubes similarly to
the way we extrapolated from the predicates under SC. We use the function Cpso =
EXTRAPOLATEPSO(C) where C denotes the cubes under SC. The newly generated
extrapolated cubes Cpso are then used as predicates for the verification.

The key point is that the cube search over Cpso is now limited to cubes of size 1!
The steps are as follows:

– Compute Vpso = EXTRAPOLATEPSO(V)
– Compute Cpso = EXTRAPOLATEPSO(C)
– Invoke COMPUTETRANSFORMER(Vpso, Cpso, st) as shown in Fig. 6 (b) and taking

as input extrapolated predicates and extrapolated cubes together with the statement.

The process for the x86 TSO model is identical.
Search vs. Extrapolation In contrast to the standard COMPUTETRANSFORMER of Fig. 6 (a),
the algorithm of Fig. 6 (b) does not perform exhaustive search of the cube space. In par-
ticular, it does not take as input the parameter k. That is, our new way of building
transformers is based on extrapolating from a previous (SC) proof.

5 Extrapolating Predicates: SC to PSO

In this section, we elaborate on how the function predspso = EXTRAPOLATEPSO(predssc)
operates. The operation EXTRAPOLATETSO(predssc) for TSO is similar and is dis-
cussed in [10]. The function EXTRAPOLATEPSO computes the ingredients, that is, the
new predicates predspso, using which the final abstraction is built. We discuss the core
reasons for introducing the new predicates. This reasoning is independent of predicate
abstraction and can be used with other verification approaches.

Any abstraction for store buffer based RMMs such as PSO must be precise enough
to preserve the following properties: (i) Intra-thread coherence: If a thread stores several
values to shared variable X , and then performs a load from X , it should not see any
value it has itself stored except the most recent one. (ii) Inter-thread coherence: A thread
Ti should not observe values written to shared variable X by thread Tj in an order
different from the order in which they were written. (iii) Fence semantics: If a thread Ti
executes a fence when its buffer for variable X is non-empty, the value of X visible to
other threads immediately after the fence should be the most recent value Ti wrote.

Thread 1:

1 X=0;
2 X=1;
3 l1=X;
4 fence;
5 assert (X = l1);

Fig. 8. Intra-thread
coherence example

Fig. 8 shows a simple example in which a single thread stores
two values into a shared variable X and then loads the value of X
into l1. To successfully verify this program, the abstraction we use
must be precise enough to capture intra-thread coherence.

5.1 Generic Predicates

For a shared variableX , if we use a buffer with a max size of 1, our
translation adds the predicates:X cnt t1 = 0, X cnt t1 = 1 indi-
cating the last location of the buffer for X which has been written
to by thread 1, but not yet flushed. These predicates serve mul-
tiple purposes: (i) track the store buffers size; (ii) provide knowl-
edge during store and load operations on where to write/read the
value ofX . (iii) preserve Intra-thread coherence in the abstraction.

Another predicate we generate is: overflow = 0. This predicate supplements the
previously described predicates, giving indication of when the number of subsequent
stores to a shared variableX , without a fence or a flush in between these stores, exceeds
the limit k of our abstraction. This is crucial to ensure soundness of the abstraction.

The general extrapolation rule, which is independent of the verified program and of
the input SC predicates predssc, is:

Rule 1 For a buffer size bound k, add the following predicates to predspso:

– {V cnt T = i | 1 ≤ i ≤ k,V ∈ Gvar,T ∈ Thread}
– overflow = 0

5.2 Extrapolating from predssc

We now describe how to extrapolate from the predicates in the set predssc in order to
compute new predicates that become part of predspso. The rule below ensures that the
SC executions of the new program can be verified.

Rule 2 Update the set predspso to contain the set predssc

Next, we would like properties on the values of a shared variable X captured by
predicates in predssc to also be captured for the buffered values of X . For example if
predssc contains X = 0, we add the predicate X 1 t1 = 0 for a buffer of X for thread
T1. This can be seen in the example of Fig. 8 where we need to track that the buffered
value of X is 0 at line 1. We summarize these observations in the following rule:

Rule 3 Update predspso to contain the set
⋃
psc∈predssc lift(psc)

Here, lift(psc) generates from each SC predicate a set of PSO predicates where the
original variables are replaced with buffered versions of the variables (for each buffered
version of a variable and their combination).

In addition to the above rules, adding a predicate X 1 t1 = X ensures that the
shared value of X and the buffered value of X are in agreement (when the predicate
is set to true). This reduces the time and space of model checking. Following similar
reasoning, the predicate X 1 t1 = X 2 t1 is also added.

Rule 4 For V ∈ Gvar, T ∈ Thread and k the buffer bound, update predspso to
contain the sets:

– {V (i− 1) T = V i T | 2 ≤ i ≤ k}
– {V i T = V | 1 ≤ i ≤ k}

The above rules add both: generic predicates that are independent of predssc as
well as predicates that are extrapolated from predssc. But these rules may sometimes
generate a larger set of predicates than necessary for successful verification. We now
describe several optimizations that substantially reduce that number.

Rule 5 Read-only shared variables If a thread t never writes to a shared variable X
do not extrapolate the SC predicates referencing X to their PSO counterparts for t.

Rule 6 Predicates referencing a shared variable more than once Replace all occur-
rences of the shared variable with the same buffered location.

For example, for X≤Y ∧ 0≤X , where X is referred to more than once, we gener-
ate the new predicate X 1 t1≤Y ∧ 0≤X 1 t1, but we do not generate the predicate
X 1 t1≤Y ∧ 0≤X 1 t2. The intuition is that the SC predicate captures information
regarding the value of X at some point in the execution and when extrapolating the
predicate to PSO, we need to capture that information regarding the shared value of X
or its buffered value, yet the mixture of the two is redundant. Similarly for Y 2 ≤ Y 1,
we do not necessarily need to generate the predicate Y 2 1 t2 ≤ Y 1 1 t1.

Rule 7 Predicates referencing different shared variables For a predicate referencing
more than one shared variable, if it can be guaranteed that a fence will be executed
between every two shared location writes , restrict to generating predicates that relate
to one buffered location at most.

In summary, EXTRAPOLATEPSO is computed by applying the above seven rules
for the predicates in V and C (both obtained from the verification under SC).

6 Experimental Evaluation

We implemented predicate abstraction based on predicate extrapolation (PE) and cube
extrapolation (CE) as outlined earlier in our tool called CUPEX. Then, we thoroughly
evaluated the tool on a number of challenging concurrent algorithms. All experiments
were conducted on an Intel(R) Xeon(R) 2.13GHz with 250GB RAM. The key question
we seek to answer is whether predicate extrapolation and cube extrapolation are precise
and scalable enough to verify all of our (relaxed) programs.

6.1 Prototype Implementation

CUPEX works in two phases. In the first phase, given an input program, it applies ab-
straction and produces a boolean program. In the second phase, the boolean program is
verified using a three-valued model checker for boolean programs. To reduce the cube
search space, CUPEX uses optimizations such as bounded cube size search and cone
of influence. For every assignment statement in the original program, it updates only
the boolean variables corresponding to predicates which contain the assigned variable
from the statement (subject to aliasing). The search in the cube space is performed in
increasing cube size order, thus we find the weaker (smaller) cubes first. CUPEX uses
Yices 1.0.34 as the underlying SMT solver.

The second phase relies on a three-valued model checker to verify the boolean pro-
gram. Our model checker uses 3-valued logic for compact representation, and handles
assume statements in a number of clever ways, performs partial concretization of as-
sume conditions and merges states after updates.

6.2 Results

We evaluated CUPEX on the following concurrent algorithms: Dekker’s mutual exclu-
sion algorithm [12], Peterson’s mutual exclusion algorithm [26], Szymanski mutual
exclusion algorithm [29], Alternating Bit protocol (already discussed in Section 2), an
Array-based Lock-Free Queue (here, we verified its memory safety), Lamport’s Bakery
algorithm [24] and the Ticket locking algorithm [3]. The first three algorithms are finite-
state, while the last four are infinite-state. For each algorithm, we evaluated our tool for
x86 TSO and PSO models. We ran tests with buffer bounds ranging from k ∈ 1 . . . 3.
For each k, we tested various fence configurations. We present in the result tables values
for k = 1, obtained for the minimal fence configurations which successfully verified.

Meaning of table columns Our results are summarized in Table 1 and Table 2. The
meaning of most table columns is self explanatory, but we elaborate on the following
columns of Table 1:

– Build Boolean Program (i) # input preds: number of initial input predicates. For
x86 TSO and PSO, these are obtained by extrapolating from the predicates in the
input preds column of the corresponding SC program. (ii) # SMT calls: total
number of calls (in thousands) to the SMT solver required to build the boolean
program (BP). (iii) time: time in seconds that it took to build the boolean program.
We use T/O for timed out (keeps running after 10 hours). (iv) # cubes used: total

Table 1. Results for Predicate Extrapolation.

Build Boolean Program Model check
algorithm memory # input # SMT time # cubes cube # states memory time

model preds calls (K) (sec) used size (K) (MB) (sec)

Dekker
SC 7 0.7 0.1 0

1
14 6 1

PSO 20 26 6 0 80 31 5
TSO 18 22 5 0 45 20 3

Peterson
SC 7 0.6 0.1 2

2
7 3 1

PSO 20 15 3 2 31 13 3
TSO 18 13 3 2 25 11 2

ABP
SC 8 2 0.5 5

2
0.6 1 0.6

PSO 15 20 4 5 2 3 1
TSO 17 23 5 5 2 3 1

Szymanski
SC 20 16 3.3 1

2
12 6 2

PSO 35 152 33 1 61 30 4
TSO 37 165 35 1 61 31 5

number of cubes in the boolean program whose size is greater than 1, that is, these
are cubes composed of 2 or more input predicates. (v) cube size: maximum cube
size found in the boolean program. For instance, cube size 4 means that there exist
cubes which combine 4 input predicates.

– Model check (i) # states: total number of states (thousands) explored by the under-
lying three-valued model checker.

Table 2 contains two additional columns in the Build Boolean Program column: (i) method
used to build the boolean program: PE , CE or, for SC programs where no new predi-
cates are generated, Trad (Traditional). (ii) # input cubes: These are obtained by extrap-
olating from the cubes in the # cubes used column of the corresponding SC program.
These cubes are then added to the initial # input preds and CE is performed.

6.3 Observations

Sequential Consistency We assume that the predicates for the original SC program are
provided by the programmer or inferred using existing SC verification tools such as
[17]. For our benchmarks we manually provided the SC predicates, since we focus on
the relaxed memory verification.
Predicate Extrapolation We first focus on the results of Table 1. Here, PE was quick
enough to verify all programs under x86 TSO and PSO. For example for Dekker’s algo-
rithm, even though there was a significant increase in the number of predicates (7 input
predicates required to verify the program under SC yet under PSO, 20 predicates were
needed), the newly generated predicates were precise enough to prove the program. A
similar pattern can be observed for Peterson, ABP and Szymanski. For all four algo-
rithms, a small cube size (at most 2) was sufficient for verification. Furthermore, the
number of cubes of size 2 that are used in the boolean program is fairly small. Over-
all, these four programs require a small cube size to verify, at most 2, leading to quick
building of the boolean program. For these programs, CE was unnecessary.

Table 2. Results for Predicate Extrapolation and Cube Extrapolation

Build Boolean Program Model check
algorithm memory method # input # input # SMT time # cubes cube # states memory time

model preds cubes calls (K) (sec) used size (K) (MB) (sec)

Queue

SC Trad 7 - 20 5 50

4

1 2 1

PSO
PE

15
- 5,747 1,475 412 1 4 1

CE 99 98 17 99 11 6 2

TSO
PE

16
- 11,133 2,778 412 12 4 1

CE 99 163 31 99 12 7 2

Bakery

SC Trad 15 - 1,552 355 161

4

20 8 2

PSO
PE

38
- - T/O - - - -

CE 422 9,018 1,773 381 979 375 104

TSO
PE

36
- - T/O - - - -

CE 422 7,048 1,386 383 730 285 121

Ticket

SC Trad 11 - 218 51 134

4

2 2 1

PSO
PE

56
- - T/O - - - -

CE 622 15,644 2,163 380 193 123 40

TSO
PE

48
- - T/O - - - -

CE 622 6,941 1,518 582 71 67 545

Cube Extrapolation Next, we discuss the results of Table 2. We first observe that for
Queue, under PSO, PE required around 6 million calls to the SMT solver and took a
little over 24 minutes to complete in building the boolean program. Indeed, the combi-
nation of increased cube size (4) together with 15 initial input predicates significantly
affected the running time for building the boolean program. Interestingly, we observe
that CE, was able to reduce the number of calls to the SMT solver by a factor of 60 and
reduce the running time by a factor of 80. Importantly, CE was precise enough to verify
the program. Here we see that CE generated 99 new cubes which were extrapolated
from the 50 SC cubes. The final program used exactly these 99 cubes, meaning that CE
did not generate redundant cubes.

For both Bakery and Ticket, the benefits of CE are even more startling. With PE,
building the boolean program fails under both x86 TSO and PSO due to a time out.
However, CE massively reduced the number of SMT calls enabling successful gener-
ation of the boolean program. The set of cubes CE returned was fairly close to the set
of cubes used during the boolean program verification. For instance, in Bakery under
PSO, 422 input cubes were generated out of which 381 were used in the boolean pro-
gram (fairly close to ideal).

It is worth noting that in all benchmarks we experimented on, the minimal fence
placement required was different for x86 TSO and PSO.

Discussion Next we note two observations from our approach which we encountered
experimentally and which we believe are interesting items for future work.

First, when we directly applied CE to the Ticket algorithm, it took hours to verify for
PSO. To solve this problem, we hypothesized that given a safety property, which does
not reference buffered values, we may allow inconsistent values at buffered locations,
and that inconsistency would be resolved when those values are flushed and before an

error state is reached. Therefore, to enable quicker verification, we first applied CE as
usual, and then automatically removed all predicates referencing buffered values from
the resulting cubes found in the boolean program after CE. Such a reduction preserves
soundness while abstracting the proof. We note that although this approach worked for
Ticket under PSO, when we tried it under x86 TSO this additional pass introduced too
much imprecision and the program failed to verify (the table reports results for Ticket
on PSO using this additional pass and on x86 TSO without this pass).

Second, for the Queue algorithm our initial successful SC proof was insufficient to
extrapolate from. Portions of the program where the boolean program under SC lost
precision due to abstraction were amplified by the extrapolation. For instance, where
the SC proof used a predicate Tail < Head which was unknown through parts of the
SC proof with no adverse effects, the extrapolated proof propagated this uncertainty
causing an error state to be reached. Adding Tail ≤ Head strengthened the SC proof
and enabled successful extrapolation (this is the result we report in the Table).

Summary For cubes of small size, 2 or less, with PE, CUPEX builds the boolean program
quickly and is precise enough to verify the program. For larger cube sizes, PE takes too
long to build the boolean program or times out. However, CUPEX with CE enables us to
build the boolean program in reasonable time and critically, is precise enough to verify
the program both for x86 TSO and PSO.

7 Related Work

There has been almost no work on automatically verifying infinite-state concurrent pro-
grams running on relaxed memory models. We briefly survey some of the more closely
related work.

Model Checking for Relaxed Memory Models The works of [25, 21, 22, 19] describe
explicit-state model checking under several memory models. In [7], instead of working
with operational memory models and explicit model-checking, they convert programs
into a form that can be checked against an axiomatic model specification. These ap-
proaches do not handle infinite-state programs. The work in [23] focuses on programs
that are finite-state under SC but infinite-state under x86 TSO and PSO and suggests an
abstraction to deal with the issue. Unfortunately, it also cannot handle general infinite-
state programs (i.e., the program must be finite-state under SC).

The works of [2, 5] present a code-to-code transformation which encodes the re-
laxed memory semantics into the program. Our approach goes beyond this transforma-
tion and tackles the difficulty of verifying the newly obtained relaxed program. These
new programs are more difficult to verify because of the complexity added by the en-
coded semantics. Our approach solves this problem by learning from the proof under
sequential consistency.

The work of [1] builds on [23] and handles infinite state programs (on x86 TSO) by
applying both predicate abstraction and store buffers abstraction. Their approach dis-
covers predicates via traditional abstraction refinement and does not reuse information
from the proof under SC, while in our approach we present a technique which leverages
an existing proof under SC in order to derive a new proof for a more relaxed program.

Further, we also handle a memory model (PSO) that allows for more behaviors and
complexity than x86 TSO.

Lazy abstraction The work of [18] introduces the concept of adjusting the level of
abstraction for different sections of the verified program’s state space. This is achieved
by applying on-the-fly refinement for search-tree sub-graphs. Their approach does not
construct a boolean program during verification. However, encoding the weak memory
semantics in the code and extrapolating from the SC proof are concepts applicable for
extending lazy abstraction to relaxed memory models. The backwards counter-example
analysis phase, which requires costly calls to the theorem prover, may in part be avoided
by anticipating in each branch of the search tree which predicates are required.

8 Conclusion and Future Work

We introduced a novel approach for predicate abstraction of concurrent programs run-
ning on relaxed memory models such as x86 TSO and PSO. The essence of our ap-
proach is extrapolation: learning from an existing proof of the program under sequential
consistency in order to obtain a proof for a more relaxed version of the program.

We implemented our extrapolation approach and successfully applied it to auto-
matically verify several challenging concurrent algorithms for both x86 TSO and PSO.
This is the first time some of these programs have been verified for a model as relaxed
as PSO.

As future work, we plan to investigate how these techniques apply to other relaxed
models, both hardware models such as Power, as well as software programming models
such as [8].

References

1. ABDULLA, P. A., ATIG, M. F., CHEN, Y.-F., LEONARDSSON, C., AND REZINE, A. Au-
tomatic fence insertion in integer programs via predicate abstraction. In SAS (2012).

2. ALGLAVE, J., KROENING, D., NIMAL, V., AND TAUTSCHNIG, M. Software verification
for weak memory via program transformation. In ESOP (2013).

3. ANDREWS, G. R. Concurrent programming - principles and practice. Benjamin/Cum-
mings, 1991.

4. ATIG, M. F., BOUAJJANI, A., BURCKHARDT, S., AND MUSUVATHI, M. On the verifica-
tion problem for weak memory models. In POPL (2010).

5. ATIG, M. F., BOUAJJANI, A., AND PARLATO, G. Getting rid of store-buffers in tso analysis.
In CAV (2011).

6. BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI, S. K. Automatic predicate
abstraction of C programs. In PLDI (2001).

7. BURCKHARDT, S., ALUR, R., AND MARTIN, M. M. K. CheckFence: checking consistency
of concurrent data types on relaxed memory models. In PLDI (2007).

8. BURCKHARDT, S., BALDASSIN, A., AND LEIJEN, D. Concurrent programming with revi-
sions and isolation types. In OOPSLA (2010).

9. COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In POPL (1977).

10. DAN, A., MESHMAN, Y., VECHEV M., AND YAHAV, E. Predicate abstraction for relaxed
memory models. Tech. rep.

11. DAS, S., DILL, D. L., AND PARK, S. Experience with Predicate Abstraction. In CAV
(1999).

12. DIJKSTRA, E. Cooperating sequential processes, TR EWD-123. Tech. rep., Technological
University, Eindhoven, 1965.

13. DONALDSON, A., KAISER, A., KROENING, D., AND WAHL, T. Symmetry-aware predi-
cate abstraction for shared-variable concurrent programs. In CAV (2011).

14. DUBOIS, M., SCHEURICH, C., AND BRIGGS, F. A. Memory access buffering in multipro-
cessors. In ISCA (1986).

15. FLANAGAN, C., AND QADEER, S. Predicate abstraction for software verification. In POPL
(2002).

16. GRAF, S., AND SAÏDI, H. Construction of abstract state graphs with PVS. In CAV (1997).
17. GUPTA, A., POPEEA, C., AND RYBALCHENKO, A. Threader: A constraint-based verifier

for multi-threaded programs. In CAV (2011).
18. HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G. Lazy abstraction. In

POPL (2002).
19. HUYNH, T. Q., AND ROYCHOUDHURY, A. Memory model sensitive bytecode verification.

Form. Methods Syst. Des. (2007).
20. IBM. Power ISA v.2.05. 2007.
21. JONSSON, B. State-space exploration for concurrent algorithms under weak memory order-

ings. SIGARCH Comput. Archit. News (2008).
22. KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Automatic inference of memory fences.

In FMCAD (2010).
23. KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Partial-coherence abstractions for relaxed

memory models. In PLDI (2011).
24. LAMPORT, L. A new solution of Dijkstra’s concurrent programming problem. Commun.

ACM (1974).
25. PARK, S., AND DILL, D. L. An executable specification and verifier for relaxed memory

order. IEEE Trans. on Computers 48 (1999).
26. PETERSON, G. L. Myths about the mutual exclusion problem. Inf. Process. Lett. 12, 3

(1981).
27. SARKAR, S., SEWELL, P., NARDELLI, F. Z., OWENS, S., RIDGE, T., BRAIBANT, T.,

MYREEN, M. O., AND ALGLAVE, J. The semantics of x86-cc multiprocessor machine
code. In POPL (2009).

28. SPARC INTERNATIONAL, INC. The SPARC architecture manual (version 9). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1994.

29. SZYMANSKI, B. K. A simple solution to Lamport’s concurrent programming problem with
linear wait. In ICS (1988).

