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Abstract

This article proposes a methodology to model and simulate complex systems, based
on IRM4MLS, a generic agent-based meta-model able to deal with multi-level systems.
This methodology permits the engineering of dynamic multi-level agent-based models,
to represent complex systems over several scales and domains of interest. Its goal is to
simulate a phenomenon using dynamically the lightest representation to save computer
resources without loss of information. This methodology is based on two mechanisms:
(1) the activation or deactivation of agents representing different domain parts of the same
phenomenon and (2) the aggregation or disaggregation of agents representing the same
phenomenon at different scales.

1 Introduction
Today, more and more engineering projects try to cope with complex systems. Complexity
can come from the number of represented entities, their structure, or the fact that informa-
tion is coming from difference sources and is incomplete.

Agent-based modeling is a very powerful and intuitive framework to study such systems.
However, the limitations of this approach lead to the development of multi-level agent-based
modeling (ML-ABM). It is defined by Morvan (2012, p. 1) as: “Integrating heterogenous ABMs,
representing complementary points of view, so called levels (of organization, observation, analysis,
granularity, ... ), of the same system. Integration means, of course, these ABMs interact but also
they can share entities such as environments and agents”. From an engineering point of view,
ML-ABM reduces the complexity of the problem, so it becomes easier to implement.

In complex systems simulations, it is generally necessary to find a compromise between
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the quality of simulations (amount of information or realism) and their resource consumption
(used CPU and memory).

A way to deal with this compromise is to use different models, more or less detailed or
treating different aspects of the same phenomenon and that are (dis)activated at run-time,
according to the context. This article proposes a methodology to engineer and validate such
simulations, based on IRM4MLS, a ML-ABM meta-model proposed by Morvan and Jolly
(2012); Morvan et al. (2011).

The next section presents recent works in the domain of multi-resolution or multi-level
modeling. Section 3 introduces a generic agent-based meta-model IRM4MLS. Then, section
4 shows some possibilities offered by IR4MLS to model complex systems in which different
domains interact. Section 5 explains how to construct models with dynamic change of level
of detail (LOD), i.e., switching scales or domains of interest. Section 6 gives a tool to measure
the quality of multi-level models endowed with dynamic changes of resolution. Finally, we
expose the conclusions and perspectives of our work in section 7.

2 Related Works
In this section, multi-modeling approaches, dealing with models at different scales in an engi-
neering context, are presented.

Multi-Resolution modeling (Davis and Hillestad, 1993) is the joint execution of different
models of the same phenomenon within the same simulation or across several heterogeneous
systems. It can inspire our approach if different models can be considered as different lev-
els. Consistency represents the amount of essential information lost when crossing different
models and it is an adapted tool to test the quality of this approach.

The High Level Architecture (Simulation Interoperability Standards Comittee (SISC),
2000) (HLA) is a general purpose architecture for distributed computer simulation systems.
Using HLA, computer simulations can interact (communicate data and synchronize actions)
with other computer simulations regardless of the computing platforms. The interaction be-
tween simulations is managed by a Run-Time Infrastructure (RTI). Scerri et al. (2010) devel-
oped HLA-Repast, a unified agent-based simulation framework, in which concurrent modules
with their own temporality can use global variables through centralized services.

Holonic multi-agent systems (HMAS) can be viewed as a specific case of multi-level
multi-agent systems (MAS). The most obvious aspect being the hierarchical organization of
levels. However, from a methodological perspective, differences remain. Most of holonic
meta-models focus on organizational and methodological aspects while ML-ABM is process-
oriented. HMAS meta-models have been proposed in various domains, e.g., ASPECTS (Gaud
et al., 2008) or PROSA(Van Brussel et al., 1998). Even if ML-ABM and HMAS structures are
close, the latter is too constrained for the target application of this work.

Navarro et al. (2011) present a framework to dynamically change the level of detail in
agent-based simulation. That is to say, represent only what is needed during simulation, to
save CPU resources and keep the consistency of the simulation. But this framework is lim-
ited because levels form a merged hierarchy, without the possibility of having two levels at
the same scale and communication between levels is not explicitly defined.

The possibility for agents to exist in several levels simultaneously is a way to make simu-
lations benefit of a higher power of representation. It permits to 1) simulate nested entities, 2)
create agents with concurrent psychological trends and 3) model complex systems implying
various domains.

It is possible to model the coexistence of nested entities at different scales. Agents present
in different levels can be seen as “gate” between these levels. For example, Picault and Mathieu
(2011), give the example of cell membrane elements that are the “gates” between the inside and
the outside of the cell, i.e., between two scales and exposed to the influences of two different
environments.
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Figure 1: Central Concepts of IRM4MLS (cardinalities are specifed the UML way)

An agent existing at different levels simultaneously can fulfill a global objective while
following its own goals. In Stratulat et al. (2009), authors decompose, with the MASQ model,
agents into two bodies: a physical one (individual) and a social one (collective) to do this.

Levels can have different temporal dynamics, independently of other levels. It allows to
optimize the execution of complex agents by (dis)activating their bodies at run-time to use
the lightest representation (Soyez et al., 2011).

Readers interested in a more comprehensive presentation of ML-ABM should refer to Gil-
Quijano et al. (2012); Morvan (2012).

3 IRM4MLS
IRM4MLS is a ML-ABM meta-model proposed by Morvan and Jolly (2012); Morvan et al.
(2011). It relies on the influence/reaction model (Ferber and Müller, 1996) and its extension
to temporal systems, IRM4S (Michel, 2007). An interesting aspect of IRM4MLS is that any
valid instance can be simulated by a generic algorithm. The main aspects of this meta-model
are presented in this section.

A IRM4MLS model is characterized by a set of levels, L, and relations between levels. Two
types of relations are considered: influence (agents in a level l are able to produce influences in
a level l ′ 6= l ) and perception (agents in a level l are able to perceive the state of a level l ′ 6= l ).
These relations are respectively formalized by two digraphs, 〈L, EI 〉 and 〈L, EP 〉 where EI and
EP are sets of edges, i.e., ordered pairs of elements of L. The dynamic set of agents at time t
is denoted A(t ). ∀l ∈ L, the set of agents in l at t is Al (t ) ⊆ A(t ). An agent acts in a level if
a subset of its external state belongs the state of this level. An agent can act in multiple levels
at the same time. Environment is also a top-class abstraction. It can be viewed as a tropistic
agent with no internal state that produces “natural” influences in the level (Fig. 2).

The scheduling of each level is independent: models with different temporalities can be
simulated without temporal bias. On an other hand, only the relevant processes are permitted
to execute during a time-step. A major application of IRM4MLS is to allow microscopic
agents (members) to aggregate and form-up lower granularity agents (organizations). It can
be useful to create multiple levels at the same scale to represent different domain parts of the
same phenomenon. In the following, we consider that two levels are at the same scale if they
have the same spatial and temporal extents.

4 Multi-level, Single Scale Simulation
In this section we give a framework to improve the integration of agents located in different
levels (not necessary at different scales) simultaneously. Then, we show how to take advantage
of this concept to simulate complex systems while optimizing the use of computer resources.

4.1 “One Mind, Several Bodies”
In our approach, inspired by Picault and Mathieu (2011), agents can be present in several lev-
els at the same time. We propose to decompose agents in a “central” unsituated part and a set
of n “peripheral” parts, each situated in a given level. Thus, we call spiritAgent the unsituated
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Figure 2: Class diagram of central Concepts of IRM4MLS with separation of situated-or-not
agent parts

part of the agent which contains its internal state, its decision processes and that cannot act in
a level. BodyAgents in levels l ∈ L are the situated part of the agent which contains its external
state and the possible actions in its level, like perception of the environment.

ConceptualAgents stand for common agents in classical simulation. SpiritAgents only
contain the internal state of the agent and its decision module. BodyAgents have to be situated
in one and only one level. They contain the external state of the agent specific to a level,
and an action module that indicates: 1) what are the available actions at a given time and 2)
what are their results in term of produced influences. The perception process must be in this
action module. Levels contain inactive objects that support agent actions. The only use of
Environments is to produce the natural influences of the level (like the gravity force in a
physical level).

To obtain valid simulations with such models, a spiritAgent has to be able to access the
external state of its conceptualAgent contained in its bodyAgent when it is active (during the
execution of its level). Thus, we can consider the several steps of the life cycle of agents. Each
time a bodyAgent is active, 1) it perceives its level (and others perceptible from this one), 2) it
sends a part of these perceptions and the possible actions to the spiritAgent, 3) the spiritAgent
modifies its internal state and 4) indicates the most appropriate action to be accomplished by
the bodyAgent, 5) the bodyAgent accomplishes this action which produces influences in di-
rection of its levels and others possibly influenced by this one.

4.2 Level Temporality
In this section we explain the possibility to attribute a different temporality to each level and
how to adapt it to our models. IRM4MLS uses the framework of timed event systems (Zeigler
et al., 2000). The scheduling is distributed between levels with no constraint on the scheduling
mode (step wise or discrete events). This approach seems more adapted to our problems than
the agent one (Weyns and Holvoet, 2003) or the system one (Michel et al., 2003).

Our goal to give to agents the longest possible life cycle which stay coherent with the rest
of the simulation. This is done to minimize the computer resources allocated to the agents
updating process. Morvan et al. (2011) propose an algorithm adapted to IRM4MLS which
manage the coupling between levels with different temporal dynamics. This is made to apply
easily the proposed methods above.

The Figure 3 illustrates different constraints which fix the life cycle of agents in a same
level. The frequency of a level is expressed in Hertz, indicating how many times a second,
it is necessary to execute the updating process of the dynamic state of a level. Let imagine
that all functions of an agent possess a minimal frequency beyond which their simulation is
not realistic anymore. If a level permits to its agents to dispose of functions with different
frequencies, it adopts the higher one, to keep a correct simulation of the functions with this
frequency. Therefore, in the example of Fig. 3, the frequency of the level N1 is equal to 60H z
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Figure 3: Example of Multi-Level ML-ABM with different temporalities

because the diagnostic function of the modeled vehicles needs this minimal frequency.
The other constraint comes from the interactions between levels. If we continue with

the previous example, let say that N2 level needs a minimal frequency equal to 20H z, this
frequency could be allocated to N2. However if the N1 level is influenced by N2 and has to
calculate the reaction induced by these influences at a frequency higher than 20H z (logically
less or equal to 60 Hz), it can be necessary to allocate a higher frequency to N2. Thus, it
is necessary to dynamically modify the frequency of a level N and adapt it to the chang-
ing needs of the simulation and return it back to its minimal frequency, defined during the
implementation phase.

5 Dynamic Change of Level of Detail (LOD)
In this section we give a methodology to apply dynamic changes of LOD in a simulation.
First we present the hierarchical level graph, which indicates the links between levels and
the dis/aggregation functions attached to change the LOD of simulated entities. Finally, we
specify when and in which conditions dis/aggregation functions can be applied. In the next
part, we give a method to test the quality of the dis/aggregation mechanisms exposed here by
measuring the whole consistency of simulations.

5.1 Hierachical Level Graph
Relations between levels are respectively formalized by a digraph, 〈L, EH 〉 where EH are sets
of edges, i.e., ordered pairs of elements of L. This digraph whose vertices are levels, is called
the hierarchical level graph. This graph indicates how levels are nested and which couple of
levels treats different domain of interest of the same phenomenon.

A simple edge represents an inclusion link between two levels. For example, an (l1, l2) edge
signifies that l2 has higher spatial or temporal extents than l1. Then the bodyAgents situated
in l1 can be aggregated and the resulting aggregate can be instantiated in l2. We note that
l1 ≺ l2.

A pair of symmetric edges means there is a complementarity link between two levels. For
example, the (l1, l3) and (l3, l1) edges mean that l1 and l3 are at the same scale. Thus a spiritA-
gent can control several bodyAgents simultaneously present and activated in l1 and l3. We
note that l1 ≡ l3

A loop on a vertex indicates levels whose bodyAgents can adopt a similar behaviour. For
example, a (l1, l1) edge means that the spiritAgent, of some bodyAgents situated in l1, can be
aggregated to form a single spiritAgent which will control these unchanged bodyAgents in l1.
These bodyAgents will have the same behaviour when confronted to similar situations, but
will keep their autonomy.

The following rules have to be applied if we want to obtain a coherent model.

Rule 1 Inclusion and Complementarity links are transitive.
l1 ≺ l2 ∧ l2 ≺ l3→ l1 ≺ l3, l1 ≡ l2 ∧ l2 ≡ l3→ l1 ≡ l3.

Rule 2 A level cannot be included in itself by a direct or transitive way. This rule is translated
by the fact that if we delete all pairs of symmetric edges, there should not be directed cycles in the

5



l1 l2l3
FAg2, FAg3

FAg1

Figure 4: An example of Hierarchical Level Graph

hierarchical level graph.
@l1 ∈ L∧ l1 ≺ l1

Rule 3 Two distinct levels cannot share simultaneously an inclusion and a complementarity link,
directly or by a transitive way.
l1 ≺ l2→ l1 6≡ l2, l1 ≡ l2→ l1 6≺ l2.

Each edge which is not part of a symmetric pair of edges is labelled with one or more
aggregation function names. An aggregation function name can be placed on several edges.

The (l1, l1) edge, labelled FAg1, indicates that the spiritAgents controlling some bodyA-
gents present in l1 can aggregate themselves to form a single spiritAgent controlling all these
bodyAgents, through the FAg1 function. The (l1, l2) edge, labelled FAg2, FAg3, means that
the spiritAgents controlling some bodyAgents present in l1 can aggregate themselves to form
a single spriritAgent controlling a single aggregated bodyAgent situated in l2, through the
FAg2 or FAg3 function. These two functions concerns different combination of bodies. And
the symmetric pair of edges between l1 and l3, with no label, represents the fact that some
spiritAgents can control simultaneously bodyAgents situated in these two levels.

5.2 Dis/Aggregation Functions
5.2.1 Content

As shown before, there are two types of aggregation. The first one deals with the aggregation
of spiritAgents and the second one with the aggregation of spiritAgents and their associated
bodyAgents. The first type of aggregation is used to represent a set of agents with the same
internal state, that leads to agents which act similarly in the same situation but which can be
place in several situations. The aggregation of several bodyAgents without the aggregation of
their spiritAgent is impossible because a body cannot be controlled simultaneously by several
concurrent spirits.

Once the hierarchical level graph is fixed, the modeler has to indicate every class of bodyA-
gent that he decides to place in levels and which class of spiritAgent control these bodyAgents.
For each aggregation function the modeler has to precise how many agents have to be merged,
the class of aggregated and aggregate agents and how to generate internal and/or external state
of the aggregate agent.

In this article we don’t give any indication to set the decision module or the action mod-
ule of aggregate agents or not but we focus on how to aggreagte internal and external states
of agents, respectively contained in spiritAgents and bodyAgents. Each aggregation function
can be divided into several subfunctions. These subfunctions can be of two types. First type:
a subfunction takes the same variable in each agents concerned (spiritAgents or bodyAgents)
and aggregates them to obtain a single value to place it in the aggregated agent state. For ex-
ample, a agent representing a platoon of vehicles has the mean position of all vehicle agents.
Second type: a subfunction similar to the first does an aggregation on several variables con-
tained in the agents to aggregated but produces only one value. This can be illustrated by the
platoon agent described above. It only possesses one variable in its internal state called “pri-
ority” whose value is generated with the compound of the “stamina” and “speed” variables
of each vehicle agents in the platoon. Some variables of the agents to be aggregated can be
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ignored to construct an aggregate.

5.2.2 Notation

An aggregation function consists in creating a composite agent from several agents. Here
is the general form of an aggregation function FAg using for argument n conceptualAgent
class, c t a (class to aggregate), endowed of an interval, [mi ni , maxi], indicating how many
instances of these classes are necessary to accomplish this aggregation. For each conceptualA-
gent class it is precised if the aggregation implies bodyAgents in addition of spiritAgent with
the indication of a level li where the bodyAgents are situated. The class of the agent produced
by the aggregation, AAC (Aggregate Agent Class), is the output of FAg with its level l if the
aggregation concerns bodyAgents. If the aggregation only concerns spiritAgents l = li =∅.

FAg (
∏

i∈n
〈[mi ni ; maxi]c t ai , li 〉) = (AAC , l ) (1)

For example, let consider the FAg2 function described in the hierarchical graph below. Let
FAg2 aggregates one bodyAgent of class Leader and at least 4 to 9 bodyAgents of class Follower
all situated in l1 level and their linked spiritAgents to create a bodyAgent of class Platoon
situated in l2 level and its linked spiritAgent. Then:

FAg2(〈[1;1], Lead e r, l1〉, 〈[4;9], F ol l owe r, l1〉) = (P l at oon, l2) (2)

Aggregation subfunctions have quite the same notation than aggregation functions. It is
not necessary to precise the number of concerned agents anymore. But variables, in con-
cerned agents, which will be mixed together have to be known. For example the subfunction
described in the previous subsection can be noted like this:

fAg2,1
�

(Lead e r.s t ami na, Lead e r.s peed , l1),
(F ol l owe r.s t ami na, F ol l owe r.s peed , l1)

�

= (C r owd . p r i o r i t y, l2)
(3)

5.2.3 Disaggregation and Memorization Functions

Each aggregation function possesses its disaggregation function and eventually a memoriza-
tion function. A disaggregation function permits to create several instances of the aggregated
agents from the aggregate agent. A memorization function can be used to store some infor-
mation. Each memorization function is associated to a disaggregation one to generate several
agents representing the initial aggregated agents taking into account the last state of the aggre-
gated agents and the system evolution since the aggregation. Here, nbi indicates the number
of agents of each class involved in the aggregation.

FDi sa g (AAC , l , FM e mo r i zat i on(
∏

i∈n〈nbi , c t ai , li 〉)) = (
∏

i∈n〈nbi , c t ai , li 〉) (4)

These two functions are divided in subfunctions in a similar way than the aggregation
function. Let take a platoon endowed of the two position variables, X and Y , representing
the position variable x and y of all the vehicles constituting it. The memorization function
store positions of all these vehicles. Memorization is not active during the execution of the
platoon agent. After the platoon agent have moved in (X ′,Y ′) position, it can be disaggregated
by recreating the vehicles agents, calculating the value of their x and y variables with X ′ and
Y ′ and applying the memorized repartition.
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Figure 5: Weak consistency, according to Davis and Hillestad (1993)

5.3 Dis/Aggregation Tests
Navarro et al. (2011) explains how to decide when agents should be aggregated. He uses an
affinity function which measure the similarity of internal and external states of agents. When
the similarity is more important than a given threshold he links the two agents. Linked agents
with the higher similarity value are aggregated together.

We can use a similar mechanism to decide when to use an aggregation function, but in
our case we need one utility function Af f by aggregation function FAg . If there are several
aggregation functions which concern the same spiritAgents or bodyAgents in the same levels,
it is necessary to decide when apply one instead of another. There are three possibilities. 1)
The choice of FAg is done after measuring the affinity of agent groups with all Af f and the
aggregate are instantiated each time, choosing the group with the higher affinity, until there
is no group. 2) It is also possible to impose an order to test different FAg . All groups with a
high affinity for one FAg are aggregated, then the next FAg is tested until there is no more FAg .
3) The choice of FAg can be done by a mix of the two previous methods. An partial order is
defined on FAg s space. And if there is no precedence link between different FAg , we apply the
first method to aggregate agents considering that the model FAg only contains these FAg after
that we continue following the established order.

6 Measuring Consistency
Davis and Hillestad (1993) uses the notion of consistency to measure the quality of simula-
tions dealing with models of different resolution. “Consistency between a high-resolution
model M and a low-resolution model M’ is the comparison between the projected state of an
aggregate of high-resolution entities which evolved in M, and the projected state of the same
aggregate initially controlled by M’ ”.

It is more intuitive to base the comparison on the evolution of the more detailed model
instead of the aggregate model because it has a higher resolution and possesses more significant
information.

Before modeling the system, it is necessary to locate the significant simulation elements.
These elements can be in the internal (spiritAgent) or external (bodyAgent) states of agents
or in their environment. Once these elements are identified, several simulations are launched
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Figure 6: Strong consistency, according to Davis and Hillestad (1993)

with the same parameters (initial state and execution time) using only the most detailed levels,
carrying the more information but the most expensive one. At the end of the simulations
execution a mean state of the identified elements is recorded. The same process is done with
the model using dynamic change of LOD. Then the dissimilarity is measure between these
two recording to calculate the consistency.

7 Conclusion and Perspectives
This article introduces a methodology and theoretical tools to engineer and validate multi-
level agent based simulations with dynamic change of LOD.

It is applied in the european project InTrade1. This project deals with logistic in european
container ports endowed with Autonomous Intelligent Vehicles (AIV). Partners involved in
this project work at different scales and use simulation tools adapted to it (SCANeRstudio or
Flexsim Container Terminal 2). The agent-based platform MadKit3 is used to make models
coexist in a single simulation. Results are visualized with SCANeRstudio or Flexsim CT.

An interesting perspective of this work would be to find better ways (cheaper or more
realistic) to decide when simulated entities should be (dis)aggregated. It is closely related
to the emergence detection and reification problem (David and Courdier, 2009). Two main
approaches have been proposed to tackle this issue: a statistical one (e.g., (Caillou and Gil-
Quijano, 2012; Caillou et al., 2013; Moncion et al., 2010; Vo et al., 2012)) and a symbolic
one (Chen et al., 2010, 2009). It would be interesting to integrate them.

Another perspective is the integration of organizational concepts, such as Systems of Sys-
tems (SoS), in our methodology. It would allow to explicitly represent system or group level
properties such as goals or missions.
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