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Abstract

We present a method for establishing correspondences between human cortical surfaces that 

exactly matches the positions of given point landmarks, while attaining the global minimum of an 

objective function that quantifies how far the mapping deviates from conformality. On each 

surface, a conformal transformation is applied to the Euclidean distance metric, resulting in a 

hyperbolic metric with isolated cone point singularities at the landmarks. Equivalently, each 

surface is mapped to a hyperbolic orbifold: a pillow-like surface with each point landmark 

corresponding to a pillow corner. An initial surface-to-surface mapping exactly aligns the 

landmarks, and gradient descent is used to find the single, global minimum of the Dirichlet energy 

of the remainder of the mapping. Using a population of real MRI-based cortical surfaces with 

manually labeled sulcus endpoints as landmarks, we evaluate the approach by how much it distorts 

surfaces and by its biological plausibility: how well it aligns previously-unseen anatomical 

landmarks and by how well it promotes expected associations between cortical thickness and age. 

We show that, compared to a painstakingly-tuned approach that balances a tradeoff between 

minimizing landmark mismatch and Dirichlet energy, our method has similar biological 

plausibility, superior surface distortion, a better theoretical foundation, and fewer arbitrary 

parameters to tune. We also compare to conformal mapper in the spherical domain to show that 

sacrificing exact conformality of the mapping does not cause noticeable reductions in biological 

plausibility.

1 Introduction

Cortical surface matching– establishing point-wise correspondences between cerebral cortex 

surfaces– is a crucial step in MRI-based studies of brain morphology. Algorithms typically 

aim to induce a surface-to-surface mapping that minimally distorts morphological features. 

It is also desirable to use information provided by experts to guide the mapping. This 

information can consist of landmarks, labeled as points or curves on the surfaces, that are 

required to correspond to each other. Our goal is a cortical surface matching method that 

exactly matches point landmarks while insuring that the mapping minimizes distortion.
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We quantify surface distortion in terms of conformality, or angle preservation. Conformal 

maps have been studied intensely due to their ability to preserve key shape properties of 

biological specimens [9], and because conformal maps from any genus-zero surface to the 

sphere, and from any higher-genus surface to a surface of constant curvature, provably exist 

regardless of surface morphology [2] [21]. However, point landmarks are difficult to 

incorporate into conformal maps. A conformal map to the sphere, for example, is uniquely 

determined by the mapping of exactly three surface points; matching more than three 

requires sacrificing either conformality or exact landmark matching. For this reason, we 

seek maps that minimally deviate from conformality, using the Dirichlet energy of the 

mapping to quantify this deviation. Specifically, we conformally map each cortical surface 

to a hyperbolic orbifold, and find Dirichlet energy minimizing maps between the orbifolds 

that exactly align an arbitrary number of point landmarks. We show that the Dirichlet energy 

has exactly one, unique, global minimum over the relevant set of orbifold-to-orbifold maps, 

making it computationally robust.

Our approach is summarized in Figure 1. Given two triangulated cortical surfaces, we first 

alter the distance metrics on the two surfaces using conformal transformations [19]. This 

results in hyperbolic metrics on both surfaces with singularities at a finite number of isolated 

cone points, near which the metric behaves as though the surface is shaped locally like the 

vertex of a cone. One such cone point is located at each of the point landmarks. We then 

calculate an initial mapping from one surface to the other that exactly aligns the 

corresponding point landmarks. There is exactly one deformation of the initial map that 

maintains these point landmark matches while obtaining a minimum of the Dirichlet energy 

among the set of maps reachable by continuous deformation, i.e. within the homotopy class 

of the initial map. Given the uniminimal nature of the Dirichlet energy landscape, finding 

the energy minimizing mapping within the homotopy class is straightforward using gradient 

descent.

Using cortical surfaces of elderly brains from a large-scale epidemiological study of aging 

[4] with manual point landmarks, we assessed whether our insistence on exact landmark 

matching (rather than approximate as in, e.g., [15]) results in greater levels of surface 

distortion, and less usefulness in practical situations, that counterbalance the theoretical 

advantage of guaranteed globallyoptimal mapping. We also assessed whether abandoning 

truly conformal mapping for Dirichlet energy minimizing mapping results in noteworthy 

practical disadvantages. To do this we compared our method (OrbifoldExact) to two 

competing methods that minimized landmark mismatch in a least-squares sense. An orbifold 

least squares method (OrbifoldLS), inspired by earlier work [15], balanced a tradeoff 

between Dirichlet energy minimization and landmark mismatch in a least squares sense. A 

conformal least squares method (ConformalLS) found the conformal map in the spherical 

domain that minimized landmark mismatch [15]. Experiments compared the methods in 

terms of point landmark mismatch, surface distortion, mismatch of novel (i.e., not used to 

define the mapping) point landmarks, and ability to re-capitulate known population-level 

associations between cortical thickness and age [16]. Finally, experiments as sessed whether 

the behavior of OrbifoldLS is stable with respect to critical but difficult-to-set operating 

parameters.
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2 Prior work

Prior work incorporating landmark information into cortical surface matching begins by 

finding harmonic energy minimizing mappings to spherical [15] or Euclidean [1] canonical 

domains as an initial step, or finding initial conformal maps to canonical Euclidean annuli 

[24] or hyperbolic ”pairs of pants” [23]. One such canonical domain is then mapped onto the 

other in a way that encourages landmark matching. Using a Mobius transformation for this 

mapping [15] insures conformality but it is restricted to either exactly match only 3 points, 

or inexactly match a larger number. Harmonic maps are more exible, but guarantee neither 

conformality nor exact landmark matching [1]. Quasi-conformal maps have bounded angle 

distortion, but the practical utility of very recently developed methods for computing angle-

distortion-minimizing quasi-conformal maps is currently not clear [25]. Methods that cut the 

brain surface and map the cut to the boundary of a canonical domain have the additional 

limitation that conformality is lost along the cut [24], and there is an arbitrary decision about 

how exactly to map out the cut to the boundary. Note that while we specify paths between 

point landmarks that are similar to cuts, these instead constitute a marking, i.e. a landmark 

ordering convention that insures that the eventual mapping comes from a natural homotopy 

class, i.e. that the mapping can be connected to the desired optimal mapping by some 

deformation.

Building on earlier work on mapping cortical surfaces to the hyperbolic disc for 

visualization [9], we leverage an earlier observation that there is a single globally optimal 

map between hyperbolic discs that minimizes the Dirichlet energy [12], and model the 

landmarks as cone points in the hyperbolic metric to insure exact matching. Such cone point 

singularities have been considered previously to reduce area and length distortions during 

attening to the plane, for applications such as texture mapping [22]. Other discrete 

conformal mapping methods [10] [19] incorporate cone point singularities into their 

conformal transformation of the surface distance metric without cutting.

3 Method

We begin with a pair of triangulated surfaces whose topology is spherical; in our 

experiments, each of these is the outer pial surface of a human cerebral cortex hemisphere 

output by commonly available software. Each surface has been annotated by an expert with 

a set of k point landmarks that are known to be in correspondence across surfaces. There are 

four key steps to our approach. The first, orbifold mapping, calculates conformally 

equivalent hyperbolic metrics on the surfaces, or equivalently, conformally maps the surface 

to a k pointed orbifold such that landmark points map to its cone points. Next, marking 
allows us to constrain the surface-to-surface mapping to a natual homotopy class of 

mappings: those that preclude reections, complex surface folding, twisting, etc, in between 

exact point matches. For this step we define a tree that connects the landmark points 

analogously across surfaces. An initial mapping is constructed that maps the first tree to the 

second one, and extends that mapping continuously across the rest of the surfaces; this 

mapping belongs to the natural homotopy class. Finally, energy minimization is used to 

adjust this mapping so that it arrives at the unique Dirichlet energy minimizing map within 
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this homotopy class that leaves the landmark matches fixed. We outline each of these steps 

below.

3.1 Orbifold Mapping

Our method for calculating a conformal transformation of the surface distance metric is 

provided by Bobenko et al. [3]. Briey, a surface triangulation T is a set of vertices V, edges 

E, and faces F, and a discrete metric l : V → ℝ assigns lengths to each edge such that the 

triangle inequality at each face is satisfied. Two combinatorially equivalent triangulations, 

one with a Euclidean metric l and the other with hyperbolic metric l̃, are discretely 

conformally equivalent if their respective metrics l and l̃ are related by

(1)

where u : V → ℝ is an assignment of conformal factors to each vertex. This is an 

equivalence relation, and the set of discrete metrics in the same equivalence class is called a 

discrete conformal class. In this way, the conformal factors u define a conformal 

transformation of the Euclidean metric into a hyperbolic one.

Starting with a triangulation and the Euclidean metric (T, l), we seek a discretely 

conformally equivalent triangulation with hyperbolic metric, such that the metric treats the k 

provided landmark points as cone points. One way to formulate this requirement is to 

consider the angle sum of vertex υi ∈ V : this is the sum, over all mesh triangles that include 

υi, of angles with υi as the vertex. An angle sum of 2π means that the surface is locally at at 

υi, while angle sums less than 2π mean that the surface in the neighborhood of υi more 

resembles the vertex of a cone. As described previously [3], we solve for conformal factors 

u such that the above equation is satisfied and each vertex is constrained to have a certain 

angle sum: for all point landmarks, the required sum is π to treat them as cone points; for all 

other points, the required sum is 2π to treat them as locally at. For a genus zero surface to 

have a hyperbolic orbifold metric with cone point singularities, the sum of the angle defects 

(2π - angle sum) across all vertices must be greater than 4π. With an angle sum of π at the 

cone points and 2π everywhere else, this means we must have at least five cone points to 

insure that the resulting metric is hyperbolic.

The energy function that is minimized to solve for the conformal factors u, as well as its first 

and second derivatives, are given in [3].We use an implementation of a trust region version 

of Newton’s method [13] to minimize this energy and compute the conformal factors.

3.2 Marking selection

Once the hyperbolic metric is defined on both surfaces, we impose an ordering on the set of 

landmarks that constrains the surface-to-surface mapping to be simple and well-behaved, i.e. 

to map corresponding points onto each other exactly while inducing no gross foldings or 

twists to the rest of the mapping. To do so, we first draw vertex-constrained paths that 

connect one sulcal endpoint to the opposite endpoint. We then insert additional paths 

connecting endpoints across sulci curves until all sulcal endpoints are connected in a tree 

structure, called the marking tree (see Figure 2 middle). Note that individual paths must not 
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self-intersect and pairs of paths must not intersect each other, but otherwise any tree of such 

paths will suffice.

The significance of the marking tree is that it specifies the homotopy class of the mapping. 

That is, it allows us to specify an initial mapping such that one tree is mapped onto the other 

in a natural way, and the tree-to-tree mapping is extrapolated out continuously over the rest 

of the surfaces. Optimization is then constrained such that only mappings within the same 

homotopy class of this initial mapping are allowed. Thus, this step effectively allows us to 

rule out unnatural mappings. Together with the fact that under hyperbolic space, there exists 

a unique harmonic map that minimizes Dirichlet energy in each homotopy class, the 

mapping can be refined to obtain the globally unique map in the sense of minimum Dirichlet 

energy.

3.3 Initial Mapping

Because there is a single, unique global minimum of the Dirichlet energy within each 

homotopy class, the initial mapping that is subsequently optimized to minimize the Dirichlet 

energy is highly arbitrary– the only requirement is that it belong to the homotopy class of 

mappings that map one surface onto the other in a simple, reasonable way (i.e., with no 

complex folding or twisting of the surface in between landmarks). We parameterize this 

initial mapping in the Euclidean topological disc to conveniently make use of existing 

computational methods [12] that insure the mapping is in the correct homotopy class, 

although we emphasize that the optimization of the mapping itself is governed by the 

hyperbolic metric induced upon it as described above. The initial mapping is constructed by 

assigning each edge of the marking tree to a side of a regular polygon in the Euclidean disc, 

and filling in the remainder of the mapping by minimizing its harmonic energy, with the 

marking tree edges as a fixed boundary. One such harmonic energy minimization is 

performed per surfaces; the overlay of the two Euclidean polygons provides the initial 

surface-to-surface mapping. The corners of the polygon are identified with the landmark 

points in the order that they appear in a traversal around the marking tree, and thus the initial 

mapping maps one marking tree to the other in a simple way while filling in the remainder 

of the mapping in a smooth, reasonable manner. We emphasize that while this approach 

effectively cuts the spherical-topology surface open along the marking tree, resulting in a 

topological disc in 3D that is then attened into a disc contained in the plane as in prior work 

[12], this is solely for the purpose of establishing an approximate initial mapping that is then 

optimized based on the hyperbolic metrics described above; the optimized mapping does not 

contain discontinuities or other distorting artifacts along the marking tree edges. We also 

emphasize that this initial mapping is highly arbitrary: a variety of simpler alternative 

methods may be applicable and the specific method does not impact the optimality of the 

final surface-to-surface mapping.

3.4 Energy minimization

Suppose one surface contains edges eij that connect vertices υi to υj, wij are the cotangent 

weights wij = 0.5(cot α + cot β), where α and β are the two angles opposite the edge eij, and 

the other surface lies in the hyperbolic plane. The initial mapping f maps the points of this 
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surface onto the other surface such that point landmarks are kept in correspondence. The 

Dirichlet energy of f under the hyperbolic metric can be approximated as follows:

(2)

Given hyperbolic orbifold structures defined on each surface and an initial map between 

them, the theorems of Eells and Sampson [5] and of Hartman [8] imply that there is a unique 

harmonic map that minimizes Dirichlet energy in the homotopy class of maps that can be 

realized by deforming the original map.

To compute the Dirichlet energy minimizing map, we re-parameterize the the initial 2D 

polygon-to-polygon mapping in the Euclidean disc to the hyperbolic disc (Specifically the 

Poincare disc). We use steepest descent to minimize the Dirichlet energy: this amounts to 

adjusting surface vertex positions in the Poincare disc but constraining the vertices 

corresponding to landmark points to stay fixed and in correspondence. To overcome 

numerical issues, we follow a prior approach by [12] optimizing the mapping of each 

surface vertex one at a time: this point and its surrounding one-ring of mesh faces (its 

local ”chart”) is translated to the Poincare disc origin, where the hyperbolic metric is well 

approximated by a corresponding Euclidean metric. The position of that point is then 

adjusted to minimize the Dirichlet energy and translated back to its original position. See 

[20] for additional details on the construction and management of the local charts.

4 Experiments

4.1 Data

We obtained brain MRI of 50 healthy elderly subjects from a prior study [4], identified gray 

matter voxels [6], used BrainVisa to convert each hemisphere’s cortical gray matter mask 

into matching inner and outer pial surface meshes [14], from which we removed small or 

slivery mesh triangles [7]. Cortical thickness was estimated at each outer pial surface vertex 

using a “normal-average” approach [11]. A set of 16 sulcal endpoints were annotated on 

each outer pial hemisphere by an expert rater using a validated protocol [18].

4.2 Competing methods

Experiments compared the method described above, termed OrbifoldExact, to two 

competing methods that strike a different balance between landmark matching and surface 

distortion. One competitor, OrbifoldLS, is identical to OrbifoldExact except that point 

landmarks are not constrained to be fixed during energy minimization, and the energy 

function balances a tradeoff between landmark mismatch and Dirichlet energy:

(3)

where L1 is the set of landmark points on the source surface and L2(υi) is the landmark point 

on the target surface corresponding to landmark point υi on the source surface.

Tsui et al. Page 6

Inf Process Med Imaging. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The other competitor, ConformalLS, first conformally maps each triangular mesh onto the 

unit sphere [19], then solves for a Möbius transformation (i.e., a conformal mapping of the 

first sphere to the second one) that minimizes point landmark mismatch in the same least 

squares sense as in OrbifoldLS.

4.3 Performance measures

Surface distortion—OrbifoldLS and OrbifoldExact, are able to induce surface 

distortions in the form of dilatations– stretches that transform local circles to local ellipses 

under the mapping– while ConformalLS precludes such dilatations by construction. For the 

former, we compute a discrete approximation of dilatation [17] at every mesh triangle and 

report summaries of dilatation over all vertices. We also show brain surfaces color-coded by 

dilatation under various mappings.

Landmark mismatch: OrbifoldLS and ConformalLS allow imperfect matching of point 

landmarks, while OrbifoldExact requires exact landmark matches by construction. We 

report the mean Euclidean distance between corresponding landmark points under the 

mapping for the former two approaches.

Strength of expected associations: We selected one of the 50 left outer pial surfaces as a 

canonical brain surface and used each of the three techniques to map the remaining 49 

surfaces onto it. The mappings allowed us to transfer cortical thicknesses from the 49 

surfaces onto the canonical one, and interpolate the thicknesses to the positions of canonical 

mesh points. This resulted in 50 cortical thicknesses (one per subject) at each canonical 

mesh point. We calculated a linear regression model at each mesh point to assess the 

strength of association between that point’s local cortical thickness and the age of the 

corresponding subjects. The p values for these regressions were corrected for multiple 

comparisons [26], and the p values at the vertices were interpolated across intervening mesh 

faces. The surface area that had p < .05 was then calculated. Numerous studies (e.g., [16]), 

agree that the thickness of the cortical mantle reduce with age, so we seek mapping methods 

that give rise to a statistically significant relationship with age across the largest possible 

cortical area.

4.4 Experimental settings

Comparison of 3 methods—Given 16 point landmarks on a hemisphere surface, we 

consider two experimental settings. In the first, we use the full set of landmarks to define the 

mappings, and evaluate surface distortion, landmark mismatch, and strength of expected 

associations on appropriate methods. In the second, we cross-validate: we use 14 of the 16 

landmarks to define the mapping and evaluate landmark mismatch for the remaining two.

Practical limitations of OrbifoldLS: OrbifoldLS includes two operating parameters that 

are difficult for a user to know how to set optimally: the marking tree and λ. We assessed 

whether settings of these parameters impact landmark mismatch and surface distortion by 

running OrbifoldLS over a range of settings for both and assessing variability in both 

performance characteristics.
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5 Results

Landmark mismatch statistics for OrbifoldLS and ConformalLS are shown in Table 1. 

Mismatch is substantial for each method, averaging greater than 5 mm for most sulci 

(consider that the mean mesh edge length is 0.55 mm). This motivates exact landmark 

matching as in our method: the mapping problem is difficult enough that least squares 

methods do not simply happen find a solution that easily matches landmarks close to 

exactly. Dilatation statistics for OrbifoldLS and OrbifoldExact are listed in Table 2, 

and anecdotal dilatation maps are shown in Figure 3. As expected, OrbifoldExact gives 

rise to dramatic maximum dilatations, which occur at the isolated point landmarks where the 

orbifold construction has dramatically changed the surface distance metric. But large 

dilatations do not broadly infect large surface regions (see Figure 3 and mean dilatations in 

Table 2), suggesting that requiring exact landmark matches does not preclude broadly well-

behaved mappings.

Landmark mismatch statistics for the left-out landmark in the cross-validation setting are 

shown in Table 3. OrbifoldLS conferred no notable benefit over OrbifoldExact, again 

suggesting that requiring exact landmark matches draws no appreciable cost in terms of 

practical performance. ConformalLS provides superior matching of the left-out point for 

approximately half of the landmarks, but matching is similar to OrbifoldExact or worse 

for the other half. This suggests that ConformalLS offers no obvious performance 

advantage over OrbifoldLS in terms of matching previously-unseen landmarks, and the 

landmarks used to define the mapping again exhibit substantial mismatch.

Table 2 summarizes the cortical surface area significantly associated with age. 

OrbifoldExact and OrbifoldLS are highly similar in this regard, while ConformalLS 

lags far behind. This suggests that OrbifoldLS and ConformalLS holds no obvious 

practical advantage in terms of relevant applications that might compensate for their other 

theoretical or computational limitations.

Variability in landmark mismatch for OrbifoldLS with respect to marking tree and λ are 

summarized in Table 4. Landmark matching varies substantially with respect to these two 

parameters, although users have no way of gleaning that one or another setting is preferable 

a priori. These results suggest that, while the matching performance of OrbifoldLS and 

OrbifoldExact are similar, variability due to arbitrary parameter settings reduces the 

robustness of OrbifoldLS. Indeed, this demonstrates the difficulty in least squares 

approaches as optimizing an energy function with local minima is subject to initial 

conditions.

In conclusion, our method provides a surface-to-surface mapping that exactly matches point 

landmarks and arrives at the global minimum of a particular surface distortion energy. 

Experiments suggest that neither requiring exact landmark matches, nor failing to require 

conformality, reduce the practical performance of the method, suggesting usefulness in 

practice.
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Fig. 1. 
Overview of surface-to-surface mapping algorithm. Given two brain hemisphere surfaces 

(left), orbifold mapping constructs hyperbolic metrics on each surface. Then, marking 

selection identifies a natural homotopy class of mappings to optimize over. These steps 

allow us to map the surfaces to the hyperbolic plane (middle: sulci shown as colored 

boundary curves). Next, an initial curface-to-surface mapping is constructed in the 

hyperbolic plane (top right). This mapping introduces surface distortions in the form of 

dilatations (redder colors suggest greater distortion). Dirichlet energy minimization in 

hyperbolic space adjusts the mapping to obtain the global minimum of such distortions over 

the homotopy class (bottom right).
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Fig. 2. 
Identifying a cortical surface (left) with a hyperbolic orbifold (right). Landmark points 

(white dots) are selected and connected by a set of paths to form a marking tree (colored 

curves, shown on an inated cortical mesh, center). The point-to-point distance metric on the 

mesh can be conformally transformed into a hyperbolic metric by imposing an angle 

constraint at each landmark point, effectively identifying the brain with the hyperbolic 

orbifold.
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Fig. 3. 
Mesh face dilations for one example pair of surfaces (greener/redder indicates lesser/greater 

dilatation). Recall that dilatation is exactly one for ConformalLS. Left to right, columns 

show dilatation of the initial mapping, OrbifoldExact, OrbifoldLS with λ = 0.5, and 

OrbifoldLS with λ = 0.1. White dots indicate landmark points.
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Table 1

Average landmark mismatches, in mm, for sulcal endpoints across 50 subjects. Note that landmark mismatch 

for OrbifoldExact is zero by construction.

Sulcus ConformalLS OrbifoldLS, λ = 0.1 OrbifoldLS, λ = 0.5

Central 19.95 7.62 6.29

Precentral 20.01 7.80 6.33

Postcentral 21.42 9.56 7.40

Cingulate 26.61 7.16 6.11

Intraparietal 25.54 8.66 7.25

Superior Temporal 29.40 8.16 6.46

Superior Frontal 24.12 6.45 5.28

Inferior Frontal 24.31 5.90 4.90
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Table 3

Mean sulcal endpoint deviations in mm of the left-out sulcus using a map created by applying the given 

method. Numbers in parentheses indicate the landmark deviation (mm) averaged over the remaining seven 

sulci.

Sulcus ConformalLS OrbifoldLS, λ = 0.1 OrbifoldLS, λ = 0.5 OrbifoldExact

Central 12.49 (20.90) 25.59 (7.22) 25.61 (6.53) 25.18

Cingulate 28.96 (21.23) 26.65 (6.93) 26.65 (6.27) 25.20

Inferior Frontal 24.31 (21.11) 24.57 (6.87) 24.56 (6.03) 22.82

Intraparietal 30.44 (21.21) 31.37 (7.08) 31.35 (6.18) 30.39

Postcentral 21.62 (20.28) 28.92 (7.01) 28.92 (6.20) 30.93

Precentral 17.04 (21.05) 25.84 (6.83) 25.85 (6.01) 26.12

Superior Frontal 23.86 (20.77) 36.75 (5.79) 35.89 (4.95) 35.90

Superior Temporal 39.57 (23.52) 33.84 (7.69) 33.85 (6.81) 31.16
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Table 4

Mean landmark deviations with respect to marking tree and λ. Experiment was conducted with eight point 

landmarks. We set λ = 0.1 when varying the marking tree, and we fix marking tree A when varying λ. Tree A 

is the same as shown in Figure 2. Trees B and C connect the landmarks instead in a single path.

Marking tree Deviation (mm) λ Deviation (mm)

A 2.05 0.1 2.05

B 0.23 0.5 0.24

C 0.53 0.8 0.027
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