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Abstract

Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging

due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We

present a surface-detection method that is capable of extracting the atrial wall by computing an

optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from

an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-

ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned

intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which

lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column

graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut

methods that impose hard constraints on the surface properties, the proposed method follows from

a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh.

The novelty of this method also lies in the construction of proper-ordered graphs on complex

shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We

evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.
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1 Introduction

Segmentation of the heart’s left atrium (LA) is a highly relevant problem in the clinical

domain. In the context of medical imaging, delayed enhancement MRI (DE-MRI) has been

shown to produce contrast in myocardium (heart wall) and in regions subjected to fibrosis

and scarring [1]. So, these regions are associated with risk factors and treatment of atrial

fibrillation (AF). Imaging with DE-MRI is therefore useful for the evaluation of potential

effectiveness of radio-ablation therapy and for studying recovery. This AF recovery includes

analysis of scarring as well as atrial shape and structural remodeling (SRM) after treatment.

Automatic segmentation of the heart wall in this context is quite important; in a single clinic,
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hundreds of man hours are spent per month in manual segmentation. In DE-MRI images,

this becomes a challenging task, because of relatively low and inconsistent contrast, high

level of unwanted texture and noise, and high variability of atrial shape. Moreover, this

problem gets aggravated by inaccuracies in cardiac gating and the SRM in chronic AF.

Thus, this is a difficult image analysis problem, which also represents an ubiquitous

challenge in a 3D medical segmentation: segmenting in the presence of relatively poor

signal, high noise, and large variations in shape.

Several papers address the problem of segmenting the blood pool in MRI angiography

(MRI-A) images [2, 3]. These methods make use of the relatively homogeneous brightness

of the blood pool in MRI-A, which is well suited for deformable models or registration-

based approaches. However, high-quality properly-aligned blood-pool images are often not

readily available from DE-MRI protocols. Furthermore, due to thinness of the atrium wall,

algorithms based on template registration fail as they often rely on coarse anatomical

features. Figure 1 shows examples of DE-MRI images of the LA that depict its varying, low-

contrast boundaries, high level of correlated noise, and high shape variability.

A variety of conventional segmentation methods have proven to be ineffective. One strategy

to address these challenges is to introduce a prior on the segmentation problem, either in the

form of probability on specific kinds of shapes or more generally on shape properties, such

as smoothness. These priors are combined with image matching terms or simply feature

detection to find some ideal compromise between the prior and the data. Level-set methods

[4] rely on gradient-descent optimizations, which are sensitive to initializations and local

minima. We have found such local optimizations to be particularly ill suited to this problem.

Statistical models, such as active shape models [5] have been proven to be effective, but are

also limited in their ability to deal with the small and large-scale shape variability.

Generally, coarse-to-fine optimization strategies can help avoid local minima, but have

proven inadequate for this segmentation problem, mostly because the features of interest

(thin, brighter regions and small dark gaps between the atrium and nearby tissues) do not

hold up under blurring. While recent developments addressing this problem [6] are

promising, they rely on deformable models and/or image registration approaches that tend to

also get caught in local minima.

The difficulty of segmentation in this context suggests that this problem would benefit from

a global optimization strategy. Recently, Wu and Chen [7] described a scheme by which the

problem of finding an optimal function value on a discrete grid (a surface net problem) is

represented as a minimums-t cut on a proper-ordered graph. Optimal solutions to the s-t cut

are given by relatively efficient, polynomial-time algorithms. Li et al. [8] applied a version

of this surface-net formulation to simultaneously segment multiple coupled surfaces in noisy

images by including image-based costs and geometric constraints of the underlying graph.

That approach has demonstrated some success in several challenging image segmentation

problems [8–10]. This surface-net relies on the construction of a properly-ordered graph,

which also defines the topology of the resulting segmentation. The construction of such

graphs is challenging for complex and irregular anatomical structures, such as LA. Using

naive offsets from a base mesh results in “tangling” between columns, and resulting cuts are
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not guaranteed to be valid surfaces or regions. Thus, these proper ordered graph-cut methods

require a careful construction of the underlying graph.

The contributions of this paper are as follows. We show that a Bayesian formulation with a

Markov random field prior can give rise to a certain type of surface-net problem, namely, a

VCE-Net, which is solvable by the algorithm of Wu and Chen [7]. This formulation gives

rise to soft penalties on surface smoothing and surface coupling, which, as we will show, is

superior to the hard contraints described by Li et al.. The Bayesian formulation also gives

rise to a set of learned feature detectors, so that the method does not rely on user-defined

methods for characterizing edges or regions. We also propose a new method for the graph

construction on irregular surfaces that avoids tangling. To address the variability in shapes,

we process training examples into clusters to form multiple shape templates, that compete in

our optimization scheme for the best segmentation. We evaluate the method on a set of

synthetic examples and LA DE-MRI images with hand segmentations as the ground truth.

2 Methods

2.1 A Bayesian Formulation of Graph-Cut Segmentation

We treat the problem of segmentation as a maximum a-posteriori estimation. The proposed

work differs from many previous Bayesian methods in two important aspects. First, we

formulate the segmentation as estimation problem on a graph structure, rather than the

image directly. Secondly, we obtain a global optimum to this problem by means of a graph-

cut algorithm. The data for this formulation is the image data sampled at locations that are

associated with the model. The prior is expressed as a Markov random field (MRF) on the

location of the cut in the graph which is related to the formulation introduced by Ishikawa

[11]. The graph, which forms a 3D mesh, must approximately adhere the shape to be

segmented. It introduces a topological structure on the problem over which the Markov

property is introduced.

We begin with a description of the graph structure and associated notation. The graph G is a

proper-ordered graph with a set of columns, a neighborhood structure on those columns, and

a consistent topological structure as one moves up and down the columns. We define the

base graph G0 = (V0, E0), as a set of vertices , and edges, .

For a proper-ordered graph, the vertices are arranged logically as a collection of

(conceptually) parallel columns that have the same number of vertices. The entire graph G

consists of an ordered set of copies of the base graph, and each vertex can be referenced by

its column i and the position within that column l, e.g. . The collection Gl = (Vl, El) of

vertices and edges at the same position l across all columns is called a layer. For ease of

notation, an edge or vertex without a superscript, υi or eij, is considered with respect to the

base layer, which defines the topology of all columns. We let N be the number of columns

and L be the number of vertices in each column (number of layers). The neighboring

columns of the ith column are denoted as the set i.

Above is the topological structure of the graph; here we describe its geometry. Each node in

the graph has an associated position in the 3D volume/image, which we denote as
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. Associated with each , there is a set of image coordinates, which form an

image patch for that vertex, which we call . Associated with each patch is a probabilistic

model of the intensity patterns one would find in the image at those locations, which is like

the formulation of [5].

We now model a set of image measurements associated with a segmentation on the graph.

We introduce a probabilistic model with respect to a single segmentation and extend that to

coupled surfaces subsequently. We define the surface segmentation as a subset of nodes in

the graph  ⊂ V. Because we restrict the optimal cut to have only one vertex per column,

we can parametrize the cut with respect to the base mesh, thus  can be represented as the

function S : V0 ↦ [0,… L − 1]. Furthermore, S(i), combined with the topology introduced by

the base mesh and the 3D coordinates of the vertices describes a surface in 3D. Thus, we are

describing a surface estimation problem.

For any given vertex in the graph, , we can sample the image I as prescribed by the patch

. We call the set of image patches for all vertices in the graph as IV and the set of patches

associated with segmentation to be IS. For a particular segmentation, there is an associated

patch  for each column i.

Now we introduce the probabilistic model, the posterior probability of a segmentation

conditioned on image data as follows. Using Bayes rule and considering only terms in the

optimization we have:

(1)

Next we introduce specific models. For the image intensity model we assume independence

of image patches and use an isotropic Gaussian, with a mean for each column that is learned

from a set of training examples. That is,

(2)

where μi is an average patch template learned for surface with physical locations of column i

in training examples, and σ is a standard-deviation parameter associated with this data.

For the surface prior, we use a MRF on the function S(i). Let  ⊂ V0 × V0 be the set of

cliques in the base graph, defined by the neighborhood structure, and C(S(j), S(k)) is the

pairwise clique potential. We use a Gibbs potential on these cliques for the MRF prior,

which gives:

(3)

where the clique potential C(·) typically takes the form f(|S(j)−S(k)|). Here f is monotonic

and convex (for optimization to be feasible). In this paper, we use f(d) = αd1+γ;γ > 0.
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We minimize the negative log posterior to get the optimal segmentation as:

(4)

Segmentation of LA wall requires extraction of epicardial and endocardial surfaces. So, we

extend the model to two surfaces/segmentations, 1, 2:

(5)

We use the same independence assumption with different mean patches for the different

surfaces. As we use the MRF for intra-surface smoothness, we propose an inter-surface

probability to model interactions between surfaces.

(6)

where Δj is the ideal inter-surface distance, which may vary with column and learned from

training examples, and  must meet the same conditions of f() in the clique

penalty, but must also enforce . For this work we use

(7)

The optimization problem for coupled surfaces is therefore:

(8)

2.2 Graph Cut Formulation

From the objective functions in the previous section, we now construct a revised graph and

define an optimal graph cut that is equivalent to the above optimization. The construction of

the derived graph follows, generally, the method proposed by [7] for converting this

optimization into an s-t cut. Wu et al. [7] detail general strategies for solving surface-net

problems of the type described by Eq. 8. They describe both the Vnet problem, which

imposes hard constraints on inter-column behavior and the VCEnet problem, which allows

for soft penalties. Previous work including [9, 10] shows the use of the Vnet solution for

image segmentation. The Bayesian formulation in the previous section leads to a VCEnet

problem, which we also extend to coupled surfaces.

We now briefly review the conversion to the graph-cut problem. The weights on vertices

and edges on the extended graph are denoted by w(υ) and c(e), respectively. Every vertex in

the base layer is connected by a directed edge with a cost+∞ to every other base vertex in

its adjacent (neighboring) columns. This makes the base layer strongly connected. For each
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vertex in layer l ∈ [1, L − 1], a weight of  is assigned. A directed edge 

with a cost +∞ is let from that vertex to the one below it.

The MRF property is incorporated as follows. For every pair of adjacent columns in G, a

sequence of directed edges, , d = {l, …, 0} go from a vertex  in i-column to vertices

 for all j ∈ i, as shown in Figure 2(a). For notational convenience we first define an

intermediate function to edge weights

(9)

where f(d) is the penalty, which derives from the clique potential, on the difference in the

“height” of adjacent cuts. The weights on these edges are defined through a finite-difference

scheme for second derivatives (along columns) of q:

(10)

(11)

For the penalty on inter-surface distance, we extend the method of [8] to the VCEnet

construction We construct two identical disjoint subgraphs, using the procedure above, one

for each surface. In addition, a set of directed arcs are added between a pair of subgraphs

such that the consistency is maintained between a pair of mutually interacting surfaces. To

achieve this interaction, we include a set of arcs between corresponding columns of two

subgraphs which are penalized by soft constraints. The formulation resembles the one

above; however, all edges are between corresponding columns in the two subgraphs. For

ease of notation, all references to vertices associated with the second/inner surface will have

a hat (i.e., ·̂). So,  and  are corresponding vertices on the two subgraphs. We denote

edges between the two surface graphs with a ·̃.

Part of our design for this segmentation problem is that one surface should always lie inside

the other surface (or “below”, if we imagine all columns standing vertically). To achieve

this, we include a directed edge between graphs,  with weight

. Similarly, we construct a set of weighted edges that capture the second

derivative of the inter-surface penalty when the inner/outer constraint is met as shown in

Figure 2b.

(12)

(13)
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Subsequently, we obtain optimal segmentation of coupled surfaces by finding a minimum s-

excess set in the derived graph, as described in Wu et al. [7]. This minimum s-excess set is

computed by applying a minimum s-t cut in the transformed graph, Gst.

2.3 Building a Valid 3D Mesh

In the previous section, we described topology of the underlying graph based on a triangle

structure per each layer. Here we describe the assignment of 3D positions to mesh vertices

and triangulation of each layer so that these layers form a nested set of watertight meshes in

3D. This complete collection including a set of vertices, their 3D positions, and the prismatic

topology of the nested meshes form a proper-ordered (PO) mesh.

For constructing the PO-mesh, we use an extension of the dynamic-particle-system method

proposed by Meyer et al. [12]. This method computes thin-layers of triangular prisms that

conform to shapes. A mesh is built using a template shape (described in the next section),

which approximates the LA that we intend to segment. This template shape is represented as

the zero level-set of a signed distance transform in the volume. So the following paragraph

describes how to generate layers of high-quality meshes on top of this template.

The meshing strategy uses a cluster of points called particles. These particles are distributed

on an implicit surface by interactively minimizing a potential function. The potential

function based on pairwise distances defines a repulsive interaction between particles as,

. We denote the sum of this collection of repulsive potentials within each

layer as ℛ. These particle systems have been shown to form consistent, nearly regular

packings on complex surface [12]. Once points have been distributed on an implicit surface

(with sufficient density), a Delaunay tetrahedralization scheme can be used to build a water-

tight triangle mesh of the surface [13].

To build a nested set of surface meshes, we require a collection of offset surfaces, both

inside and out, that not only inherit the topology of the base surface, but also represent valid,

watertight 3D triangle meshes. This is crucial, because the cuts, which pass through vertices

from different layers, must also form watertight triangle meshes. Thus, it results to bend the

columns in order to avoid tangling of columns/triangles as the layers extend outward from

the mean shape. For this, we introduce a collection of particle systems, one for each layer in

the graph/mesh, and we couple these particles by an attractive force (Hooks law) between

layers. Thus, there is an additional set of potentials of the form , and we

denote the sum of the attractive forces of neighboring particles between layers as .

To optimize an ensemble of particle systems for L layers, we perform gradient descent,

using asynchronous updates, as in [12], on the total potential ℛ + β . Figure 3a illustrates a

nested 3-layered mesh for one of the LA templates. The parameter β controls the

relationship between attraction across layers and repulsion within layers and is tuned to

prevent tangling. For this paper, we have used β = 10. The optimization requires an initial

collection of particles. So, we place a particle at each point where the adjacent voxels have

values on either side of the level set. This gives an average density of approximately one

particle per unit surface area (in voxel units). The physical distance between layers must be
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inversely proportional to the particle density within layers. This is a compromise between

the tangling that results from large offsets and the extra computation associated with many

thin layers. Since a good mesh constraints the topology and the set of possible

segmentations, we try different meshes based on the assumption that all good segmentations

can be represented as spatially varying offsets of a mean. This corresponds to around 14,000

particles per each mesh layer for heart images and 2000 particles for simulated images. We

have used a total of 30 layers, spaced at 0.5 pixels each, which gives each template a capture

range of approximately 15 pixels.

2.4 Learning Template Meshes and Feature Detectors

Here we describe the construction of template shapes and the mechanism for computing

costs on nodes from input images. The shapes of LA in the context of AF are highly

variable. To address this, we rely on a training set of presegmented images. For this paper,

the training set consisted of 32 segmented DE-MRI images of the LA. The work in this

paper represents a prototype, and we anticipate a production-scale system that relies on

hundreds of training images. These training images enable two things. First, training images

give us a way of constructing a collection of PO-graphs, so that new images can be

segmented as cuts through one of these graphs. Second, training images give us examples of

patch profiles for the features that define epi- and endocardial surfaces, which leads to the

costs at each node in the PO-graph.

We begin by clustering the examples based on their shapes. For this, we compute distance

transforms of each endocardial surface. Training images are aligned via translation to ensure

common center of mass for the blood pool (region bounded by the endocardium). This

demands careful manual initialization of a template which will be handled in our future

work by inducing other transformations. We then compute clusters using k-means using

mean-squared distance metric between volumes. Based on the cluster residual curve, 5

clusters are chosen. However, one of the clusters has been removed from the test, because it

contained only two (high distorted) examples. Surface meshes associated with the distance-

transform means of these four clusters are shown in Figure 3b.

The cost associated with each vertex reflects the degree to which that vertex is a good

candidate for a boundary, which will be found via a graph cut. At each vertex, the training

data is used to derive a patch profile along a line segment, or stick perpendicular to the

surface. We sample the stick at a spacing of one voxel. In our case, a patch size of 11 is

considered along the normal direction of the surface. The intensity along each stick on each

vertex of each template is computed by a weighted average of intensities of sticks for each

feature point in each training image. Thus, for a particular vertex in a particular cluster, the

intensities along a stick would correspond to an average of several hundreds of neighboring

sticks from different images (that share the same blood-pool center). Thus the average stick

at a vertex would be an isotropic Gaussian weighted average of all the nearby sticks (within

the cluster) with standard deviation of 2 pixels. Figure 3c shows a diagram of the stick

configuration and several stick intensity profiles for parts of a particular template.
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3 Experiments and Results

For validation, we apply Bayesian framework based graph cut method on 100 simulated

images of size 64 × 64 × 96 voxels, and 30 DE-MRI images of the left atrium of size 400 ×

400 × 107 voxels. In all of our experiments, 30 mesh layers were generated, spaced at 0.5

voxels each, which gives each template a capture range of approximately 15 voxels. The

scaling and exponential parameters, α and γ, for the convex function f of the graph’s

smoothness penalties are fixed as 300 and 2, respectively. The corresponding values for the

function g of the graph’s inter-surface penalties are set to 2 and 2, respectively. The values

of these parameters reflect the complexity of surfaces and the inter-surface coupling

between them.

To segment a given test image, we depend on the user input to position the template. The

algorithm is robust to this position, as long as the nested mesh, corresponding to the

template, does not lie outside or inside the desired surface (e.g. ±5 voxels). We sample the

input image along all of the sticks at all nodes. Then, we compute a posterior probability on

each test stick with the corresponding template stick. This results in the assignment of costs,

weights, edge capacities, and then an optimal cut. Likewise, we employ all of the learned

templates to the input image, choosing the segmentation that produces the best average

probability with the local intensity models for the optimal cut. A pair of optimal mesh

surfaces are then recovered from the computed minimum s-t cut. Based on the extracted

topological mesh structure, defined by the cut, it is scan converted to reproduce segmented

volume(s).

In case of the simulated data, 30 training datasets and 100 test sets were considered for

analysis. All these images include two oblong non-crossing surfaces with the inner surface

translated randomly (Gaussian distribution) in 3D to mimic variations in heart-wall

thickness; each image was corrupted with Rician noise (σ = 30 for the underlying Gaussian

model) and a smoothly-varying bias field. Figure 4 illustrates the effectiveness of the

proposed method in extracting smoother boundaries for outer and inner surfaces as

compared to hard penalties.

We evaluated the segmentation accuracy for LA based on leave-one out strategy for a test

dataset, against templates from the training data. We compared the segmented boundaries of

epicardial and endocardial surfaces using our method to that of hard constraints. Since the

geometric constraints and soft penalties in the proposed graph cut formulation are analogous

to the energy based formulation in deformable models [4], we compared our results with

level set based methods. Figure 5a presents segmentation boundaries for epicardial and

endocardial surfaces obtained by the proposed algorithm along with others. The cost

function image, derived from a-posterior probability, creates a platform on which graph cuts

work. Figure 5b illustrates our segmentation result on cost function image corresponding to

the epicardial surface. The rationale behind presenting this result is to show how the

algorithm is able to extract smoother and accurate boundaries in some areas of the image

where even the costs, which are derived from the sophisticated feature detector, could not be

defined properly.
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The qualitative comparison between the proposed method with others clearly indicates that

our method surmounts other techniques in not only extracting correct surfaces, but also in

maintaining smoothness along the surfaces and consistency in between them. The

irregularity in the surfaces that we notice due to the hard constraints were greatly eliminated.

To evaluate the segmentation accuracy quantitatively, we used distance metric. The distance

metric is based on the aggregate of pairwise distances between corresponding points on the

ground truth and our segmentation. For each point on our segmented surface, we measure

the distance to the nearest point on the ground truth; and vice-versa. For a perfect

delineation of the boundary, all these distances would be zero. In the case of simulated

examples, this distance metric which was computed over all the images came out to be

0.1879 voxels for the outer surface and 0.2639 voxels for the inner surface. For LA data, we

obtained this metric value of 2.5068 voxels for epicardium and 2.6321 voxels for the

endocardium. This indicates that the segmentations acquired by the proposed method lie

very close to the ground truth.

For quantitative comparison, we studied Dice measures on heart wall using soft against hard

constraints. The Dice metric provides the percent overlap between the ground truth and

segmented regions. Figure 6 shows the histogram of Dice measures. In both simulated as

well as LA cases, the metric values by inducing soft penalties on geometric constraints

overpowered hard penalties. For synthetic data, the Dice values indicate excellent matches.

However, in the case of myocardium, the dice values are little lower due to its varying

thinness (2–6 mm) and undefined ground truth. The ground truth is a single hand

segmentation from an expert. Therefore, much of the observed error is near the veins, which

are subject to inter-rater variability, as the cutoff between atrium and vessel is not well

defined. Also the ground truths for the wall do not form a complete boundary around the

blood pool (even ignoring the vessels). Furthermore, we expect the improvement in results

by increasing the number of training images so that more templates are formed in order to

better match a given input image.
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Fig. 1.
Slices of left atrium DE-MRI images showing the challenges in segmentation
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Fig. 2.
(a) Inter-column arcs. (b) Inter-surface arcs. Blue arrows from column i1 to i2 represent arcs

subjected to ideal inter-surface distance, Δi.
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Fig. 3.
(a) An example of several layers of PO-meshes for the LA.(b) Examples of average shapes,

derived from k-means clustering on distance transforms of training images, around which

the PO-meshes are constructed. (c) A mock up of a simplified PO-mesh in 2D with

examples of feature detectors learned from the training data— actually P0-meshes for the

LA have over 400,000 vertices.
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Fig. 4.
Segmentation boundaries for outer and inner surfaces on synthetic data corresponding to

ground truth, graph cuts with hard constraints and the proposed algorithm
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Fig. 5.
(a) Surface boundaries of epi and endocardial surfaces corresponding to ground truth, level

sets, graph cuts with hard constraints and proposed method. (b) Segmentation result of

epicardial surface using the proposed algorithm (red) and ground truth boundary (green)

overlaid on corresponding cost function image.
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Fig. 6.
Histogram of dice coefficients for the (a) middle region, graph cuts with hard constraints, (b)

middle region, soft constraints, (c) heart wall, graph cuts with hard constraints, (d) heart

wall, soft constraints
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