Skip to main content

Using Region Trajectories to Construct an Accurate and Efficient Polyaffine Transform Model

  • Conference paper
  • 4216 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Abstract

In this paper we propose a novel way to construct a diffeomorphic polyaffine model. Each affine transform is defined on a local region and the resulting diffeomorphism encapsulates all the local transforms by a smooth and invertible displacement field. Compared with traditional weighting schemes used in combining local transforms, our new scheme guarantees that the resulting transform precisely preserves the value of each local affine transform. By introducing the trajectory of local regions instead of using regions themselves, the new approach encodes precisely each local affine transform using a diffeomorphism with one or more stationary velocity fields. Experiments show that our new polyaffine model is both accurate and efficient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Medical Image Analysis 5(2), 143–156 (2001)

    Article  Google Scholar 

  2. Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)

    Article  Google Scholar 

  3. Beg, M.F., Miller, M.I., Trouv, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  4. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  5. Camion, V., Younes, L.: Geodesic interpolating splines. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 513–527. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Ferrant, M., Warfield, S.K., Guttmann, C.R.G., Mulkern, R.V., Jolesz, F.A., Kikinis, R.: 3D image matching using a finite element based elastic deformation model. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 202–209. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Little, J., Hill, D., Hawkes, D.: Deformations incorporating rigid structures. Computer Vision and Image Understanding 66(2), 223–232 (1997)

    Article  Google Scholar 

  8. Pitiot, A., Bardinet, E., Thompson, P.M., Malandain, G.: Piecewise affine registration of biological images for volume reconstruction. Medical Image Analysis 10(3), 465–483 (2006)

    Article  Google Scholar 

  9. Arsigny, V., Commowick, O., Ayache, N., Pennec, X.: A fast and log-euclidean polyaffine framework for locally linear registration. Journal of Mathematical Imaging and Vision 33(2), 222–238 (2009)

    Article  MathSciNet  Google Scholar 

  10. Commowick, O., Arsigny, V., Isambert, A., Costa, J., Dhermain, F., Bidault, F., Bondiau, P.Y., Ayache, N., Malandain, G.: An efficient locally affine framework for the smooth registration of anatomical structures. Medical Image Analysis 12(4), 427–441 (2008)

    Article  Google Scholar 

  11. Taquet, M., Macq, B., Warfield, S.K.: Spatially adaptive log-euclidean polyaffine registration based on sparse matches. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 590–597. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Seiler, C., Pennec, X., Reyes, M.: Geometry-aware multiscale image registration via OBBTree-based polyaffine log-demons. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 631–638. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Seiler, C., Pennec, X., Reyes, M.: Simultaneous multiscale polyaffine registration by incorporating deformation statistics. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 130–137. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, ACM 1968, pp. 517–524. ACM, New York (1968)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, G., Liu, Y., Wu, B., Avants, B., Gee, J.C. (2013). Using Region Trajectories to Construct an Accurate and Efficient Polyaffine Transform Model. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics