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Abstract
We propose a unified Bayesian framework for detecting genetic variants associated with a disease
while exploiting image-based features as an intermediate phenotype. Traditionally, imaging
genetics methods comprise two separate steps. First, image features are selected based on their
relevance to the disease phenotype. Second, a set of genetic variants are identified to explain the
selected features. In contrast, our method performs these tasks simultaneously to ultimately assign
probabilistic measures of relevance to both genetic and imaging markers. We derive an efficient
approximate inference algorithm that handles high dimensionality of imaging genetic data. We
evaluate the algorithm on synthetic data and show that it outperforms traditional models. We also
illustrate the application of the method on ADNI data.
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1 Introduction
In this paper, we propose a generative probabilistic model for genetic variants associated
with a disease using imaging data as an intermediate phenotype. The search for genetic
variants that increase the risk of a particular disorder is one of the central challenges in
medical research, and has been traditionally performed via genome-wide association studies
(GWAS). Such studies examine each genetic marker and its correlation with the incidence
of the disease independently of all other genetic markers in the study. However, some
variants may have a weak but cumulative effect that cannot be identified by traditional
GWAS analysis [12]. Imaging genetics introduces imaging-based biomarkers as a promising
intermediate phenotype (i.e., endo-phenotype) between genetic variants and diagnosis.
Imaging provides a rich quantitative characterization of disease and promises to aid in
identifying genetic variations that are correlated with the clinical variables [1, 17].
Furthermore, multivariate analysis using imaging endo-phenotypes promises to stratify the
population in more informative ways than the binary diagnosis. A commonly used approach
in imaging genetics is to isolate image-based features affected by the disease, and then
identify the relevant genetic markers that explain the observed image variations. In this
work, we jointly model image-based phenotypes and clinical indicators to identify genetic
variants associated with the disorder.

© Springer-Verlag Berlin Heidelberg 2013

kayhan@csail.mit.edu
adalca@csail.mit.edu
msabuncu@csail.mit.edu
polina@csail.mit.edu

NIH Public Access
Author Manuscript
Inf Process Med Imaging. Author manuscript; available in PMC 2014 April 08.

Published in final edited form as:
Inf Process Med Imaging. 2013 ; 23: 766–777.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Imaging genetics presents numerous challenges in clinical studies due to the relatively small
number of subjects and extremely high dimensionality of images (hundreds of thousands of
voxels) and genetic data (millions of single nucleotide polymorphisms (SNPs)). To address
the problem of high dimensionality and small sample size, earlier algorithms considered
only a few imaging candidates (voxels, regions, or other biomarkers) or only a few genetic
markers in the analysis [5, 15]. The reduced joint dataset is then analyzed in a univariate
testing framework, where each pair of a candidate genetic variant and an imaging biomarker
is tested for association via a standard statistical test. Examples include using activation
maps of the prefrontal cortex to find SNPs associated with schizophrenia [15], and searching
for changes of gray matter volume correlated with the Alzheimer's Disease risk factor APOE
gene [5].

More recently, genome-wide voxel-wise analysis has been demonstrated using univariate
methods [18]. Unfortunately, massive univariate analysis has several limitations. Due to
multiple comparisons, a corrected conservative significance level is selected to limit the
false positive rate, but this also dramatically reduces the power of the test. Moreover, the
univariate methods are unlikely to identify weaker variants that jointly create an additive
effect.

Multivariate techniques aim to overcome shortcomings of univariate analysis [9,20]. A
common approach is to use multivariate regression combined with regularization to extract a
sparse set of coefficients for correlated genetic variants and image features. For example,
low rank representations can be approximated via sparse reduced rank regression (sRRR)
[19, 20], Partial Least Squares (PLS) [9] or Canonical Correlation Analysis (CCA) [9].
Unfortunately, these unsupervised methods do not use the subject class label (e.g.,
diagnosis) directly, and thus the detected genetic markers and image features are not
immediately related to the disease of interest. The image features relevant to the disease are
identified separately from modeling the relationship between the genetic and imaging data.
For example, sRRR has been demonstrated using brain regions pre-selected for Alzheimer's
disease (AD) via Linear Discriminant Analysis [19]. In contrast, we model and estimate
relevant genetic variants in the context of a particular disease. Our method is applicable to
any set of image biomarkers, such as anatomical regions, tissue appearance, or functional
measures. We are motivated by applications to the AD and use local measures of atrophy as
image features.

Our model includes a common assumption of genetic studies that only a small set of SNPs is
associated with any particular disease. This subset of genetic markers induces variation in
certain image-based features, and a subset of these measures exhibits changes that are
discriminative with respect to the disease phenotype. Therefore, if a brain region is
irrelevant to the target disease, it is ignored even if its measures are highly correlated with
some genetic variants.

In the remainder of the paper, we define a generative model for the relationship among
genetic, imaging and disease measures, derive an efficient inference algorithm to identify
relevant brain regions and genetic loci, and demonstrate the method on synthetic data and
the ADNI study [13]. We show that our algorithm outperforms standard univariate and
regression analysis for genetic variant detection on synthetic data and yields promising
results on real data.

2 Model
Our model structure is illustrated schematically in Fig.1. We are motivated by anatomical
brain studies, but the model is general.
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Let yn be the disease phenotype (0 or 1) for subject n in the study (1 ≤ n ≤ N). Let xn and gn
be vectors of M imaging biomarkers (features) and S genetic markers (SNPs) for subject n,
respectively. We capture the overall process via two coupled regression models: a logistic
regression predicts class label yn from image features xn; a ridge regression associates
genetic variants gn with image features xn. The graphical model in Fig.2 presents the
relationships among variables of the model. All variables are summarized in Table 1. Below,
we first define the relationship between imaging features and the disease phenotype and then
specify the generative model for the relationship between SNPs and image features. Note
that we do not model a direct link between genetic variants and disease label, but it is
captured indirectly through image features.

2.1 From Imaging Features to Disease Phenotype
We adopt a Bayesian model based on logistic regression for predicting binary class label yn
from image features xn [2]:

(1)

where  is the logistic function and  are the regression coefficients that
we treat as latent random variables. Similar to prior work [3], we propose to use a spike-and-
slab prior to promote sparse solutions for the regression coefficients η [7,14]:

where δ(·) is the Delta Dirac distribution concentrated at 0, parameter β controls sparsity (0

≤ β ≤ 1), and  is a Gaussian distribution with mean μ and variance σ2. In a
deterministic regression context, one can view the spike-and-slab prior as a combination of
ℓ0 and ℓ2 norms for regularization. We find it convenient to introduce a latent Bernoulli
random variable bm that selects the regime for the regression coefficient ηm:

(2)

2.2 From Genetics Variants to Imaging Features
In modeling the relationship between genetics and imaging, we treat image features relevant
for disease prediction differently from all other image features. If feature m is relevant for
disease prediction (i.e., bm = 1), variations in the values of this feature are explained by a

sparse subset of the genetic variants . We define am ∈ {0, 1}S to be a vector of
latent Bernoulli random variables that specify a subset, or mask, of relevant genetic markers
that affect feature m, and arrive at the second regression component of our model:

(3)

where vm is the vector of regression coefficients,  is the noise in the image
feature m in subject n, and 〈·, ·〉 and ⊙ denote the denote inner and element-wise products,
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respectively. While an obvious modeling choice for regression coefficients {vsm} would be
to treat them as latent random variables with a spike-and-slab prior, the large number of
such variables (S × M) makes it computationally intractable. We therefore model regression
coefficients {vsm} as unknown but deterministic variables.

If image feature m is irrelevant for predicting disease (i.e., bm = 0), we do not model genetic
contributions, and assign the probability mass uniformly between the observed feature

values, i.e., . Furthermore, we set asm = 0 with probability 1 for all s.

Combining the two regimes, we obtain the genetic selection prior:

(4)

and the image feature likelihood:

(5)

2.3 Complete Model

We define  to be the set of latent variables,  to be the set of data

variables that we model, and  to be the set of hyper-parameters. Here y =
[y1; …; yN], and X = [x1; …; xN]. Combining the elements of the model in Eqs. (1)–(5), we
construct the joint distribution of the hidden variables  and modeled variables  given
genetic markers G = [g1; …; gN]:

3 Inference
Our goal is to compute the posterior probability  of the latent variables that
summarizes genetic and imaging influences in our model. Because of coupling of variables
in the joint model, computing the posterior distribution is intractable, necessitating
approximation via sampling or variational methods. Due to the amount of data and its
dimensionality, sampling is computationally impractical. We therefore derive a Variational
Bayes approximation [2] that estimates the lower bound for the log-likelihood 
and seeks distribution q that minimizes the cost functional:

(6)

The optimal distribution q provides an approximation to the posterior distribution
 [2]. We choose a factorization for the distribution q that captures most model

assumptions and yet is computationally tractable:
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(7)

where:

(8)

Variational parameters ρm, νm, ςm and τs of the approximating distribution q define the
optimization space. In this formulation, the estimate of τs is interpreted as relevance of the
genetic variant s. The estimate of ρm provides a measure of relevance for image feature m.
We define {τ, ρ, ν, ς} to be the set of all parameters τs, ρm, νm, ςm.

Given the parametrization above, all terms in the cost function F (q) can be optimized
analytically, except for the logistic regression term p(yn|η, xn). For this term, we employ the
variational treatment [8] that leads to improved accuracy over Laplace approximation [2]
and has been successfully used in prior work [3]. Specifically, we replace the logistic
function with its lower bound:

(9)

where ξn controls the tightness of the lower bound for subject n and should be optimized.

We define ϑ = {V, τ, ρ, ν, ς, ξ} to be the full set of parameters of distribution q, where V
and ξ are deterministic parameters of the model, and the rest are parameters of q. Using Eqs.
(7)–(9), we can maximize F (q) = F (ϑ) by updating elements of the variational parameter
vector ϑ. We omit the derivations due to space constraints, but summarize the resulting
updates in Appendix A.

Every update iteration reduces the cost function F (ϑ), which in turn brings q closer to the
posterior distribution .

Our imaging genetics regression bears resemblance to previously demonstrated sRRR
regression [20] that considers X = GV. Our update for V can be viewed as a solution of a
system of linear equations:

where † indicates a pseudo-inverse, and the second term  weighs the SNPs
based on their importance. We do not impose rank or sparsity constraints on the regression
coefficients matrix V, although they can be added in a fashion similar to [20].
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4 Results
We evaluate our model on synthetic data using univariate tests and the sRRR method [20] as
baseline algorithms. We also illustrate our method on the ADNI dataset, where we recover
several top SNPs associated with the risk of AD.

4.1 Synthetic Data
We generate synthetic data to match a realistic scenario as much as possible. In this section,
minor allele frequency (MAF) refers to the frequency of the less common allele in the
population at a particular genetic location. A genetic marker (or SNP) gns is represented by
the count of minor alleles at location s in subject n, i.e., gns ∈ {0, 1, 2}. We employ the
widely used population genetics software package PLINK [16] to simulate 1,020 SNPs with
a minor allele frequency uniformly sampled from an interval [0.05, 0.95], for 400 healthy
subjects and 400 patients. For SNPs relevant to the disease, the heterozygote odds ratio is
defined as the ratio of patients to controls with gns = 1, normalized by the same ratio for gns
= 0. Similarly, one can define the homozygote odds ratio. These ratios control the disease
risk in the patient population. The simulated SNPs are split into three sets:

• Set  includes 20 disease causative SNPs that affect selected areas of simulated
images. The odds ratio is set to 1.125 for heterozygote SNPs, with a multiplicative
homozygote risk. Other odds ratios yield similar results (we tested 1.0625 to 1.5,
not shown due to space constraints).

• Set  includes 20 SNPs that are irrelevant to the disease (i.e., odds ratio is 1) but
affect other areas in simulated images.

• Set  includes 980 null SNPs that are independent of both label and images.

Based on the class labels and the genetic variants, we generate image voxels, organized in
several sets:

• Voxels in set  are affected by causative SNPs ( ), and thus are indirectly
associated with the disease. These voxels are separated into three regions. Voxel
intensity in this set is correlated with genetics:

(10)

where  is the intensity value of voxel k in region r for subject n. The region
weights wr are drawn from a normal distribution , and  is Gaussian

noise. Our experiments explore a range of values for the noise variance .

• Voxels in set  determined by non-causative SNPs , and thus are irrelevant to
disease. We dedicate one region to this category:

(11)

• Voxels in set  are related to the disease but are not related to genetic markers,
and are therefore not helpful in causative SNP detection. In fact, such features
confuse the detector as they get selected as relevant to disease at the cost of features
in . We generate these voxels as follows:
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• Voxels in set  are not relevant to either label or genetic markers. These voxels

are sampled from .

We use the synthetic data to evaluate detection of disease causative SNPs with our method.
We observe that our algorithm is not sensitive to the hyper-parameters, which we set as

follows: , , , and  to the variance of image features. As
a first baseline, we− perform univariate Bonferroni corrected t-tests directly between SNPs
and class labels, omitting imaging. As a second baseline, which we refer to as supervised
sRRR, we perform univariate voxel filtering using class labels, followed by sRRR
multivariate regression between surviving voxels and genetic variants to recover relevant
SNPs [20]. We compare the methods in different image noise regimes by varying the

variance  in Eqs (10)– (11), and run 50 different independent simulations for each
noise regime.

Fig.3(a) reports detection rates (TP) of disease causative SNPs in . To set the detection
thresholds we fix the false positive rate to 1%. We observed similar behavior for a broad
range of low false positive rates (not shown). We focus our experiments on low false
positive rates because at higher rates false detections become comparable with, and
ultimately overwhelm true detections. We find that for a given false positive rate, our
algorithm detects significantly more disease causative SNPs in  than the baseline
algorithms, and has lower standard deviation than the supervised sRRR pipeline. The direct
univariate t-tests only detect SNPs that have a very strong independent association with
disease label. To illustrate the behavior of the methods at different false positive rates, we
report the receiver operating characteristic at two different noise levels in Fig.3(b,c). Our
approach achieves a better detection than the baseline methods.

4.2 ADNI Dataset
We apply our method on a subset of the Alzheimers Disease Neuroimaging Initiative
(ADNI) dataset that includes T1-weighted MR images and 620,000 genetic variants for 228
AD patients and 187 normal controls (NC). All images were pre-processed and non-rigidly
aligned to a common [4]. We compute the tissue density map, indicating expansion or
contraction of gray matter using the determinant of the Jacobian of the deformation field.
The map values in the template space are proportional to the volume of structures in the
original brain scan. To reduce image dimensionality, we aggregate voxels into supervoxels
using spatial k—means clustering [11] and obtain about 1700 supervoxels. We define our
image features xnm as the average value of the tissue density map in a supervoxel. We use a
SVM classifier to asses the discriminative power of the resultant features and obtain 86%
classification rate of AD versus NC, close to the state-of-the-art results [4]. We used the
ENIGMA protocol to pre-process the genotype data1. Briefly, PLINK was used to eliminate
SNPs on the basis of standard quality control criteria, e.g., low MAF (< 0.01), poor genotype
calling (call rate < 95%) and deviations from Hardy–Weinberg equilibrium (P < 1 × 106).
We then performed imputation using the Mach software2. Finally, we pre-selected 960
SNPs that have the strongest association with AD overlapped with SNPs reported in a prior
AD-GWAS study involving over 16,000 individuals [6].

We ran our algorithm with 10 initializations, and selected the run that achieved the lowest

value of the cost function. As before, we set: ,  and . We

1http://enigma.loni.ucla.edu/protocols/genetics-protocols/
2http://www.sph.umich.edu/csg/abecasis/MaCH/index.html
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set , where we sweep ω ∈ [0.1, 0.9] and  is the variance of image features. Fig.4
illustrates the posterior probabilities of SNP relevance τ, averaged over the swept
parameters. We list the top SNPs in Table 2. The top variants are APOE-∊4 and APOE-∊3,
which are strongly correlated with AD [6]. We also detect variants on APOC1, TOMM40
and PVRL among our top hits, all of which are on chromosome 19 and have been frequently
reported [6]. Similarly, several chromosome 22 variants are identified [10]. Fig.4 illustrates
the average posterior probability of feature relevance ρ. Among high probability regions are
hippocampus and temporal lobe, which have been frequently reported to undergo significant
shrinkage in AD [4], and are associated with memory.

5 Conclusion
We proposed and demonstrated a unified framework for identifying genetic variants and
image-based features associated with the disease. We capture the associations between
imaging and disease phenotype simultaneously with the correlation from genetic variants
and image features in a probabilistic model. We derive an algorithm that iteratively refines
the relevant variants using disease phenotype and imaging features. It also isolates
representative features that are discriminative with respect to the disease and are modulated
by the genetic variants. We demonstrated the benefit of simultaneously performing these
two tasks in simulations and in a context of a real clinical study.
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Appendix A
We define  to be a matrix of all image features (each row is a subject),

, and use diag(·) to transforms a vector into a
diagonal square matrix or the diagonal of a square matrix into a vector. εm = 〈·〉q|bm=1
denotes expectation with respect to q conditioned on bm = 1 of the genetics-to-image

regression. We define Q = GT G, and .

Parameters of the genetic part of the model are updated as follows:

(12a)

(12b)

(12c)

 is the Singular Value Decomposition of GD−1GT, whose complexity  is
not expensive for a modest number of subjects N. xm denotes column m of matrix X. In Eq.
(12c), the posterior log-odds ratio is updated by adding the prior log-odd ratio and a
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weighted sum of the derivatives of the regression error terms for all m with respect to τs.
Moreover, we obtain

(13a)

(13b)

(13c)

(13d)

Eq.(13b)–(13c) update the mean and standard deviations of the normal distributions in the
approximate posterior. Eq.(13d) updates posterior probability of the relevance of region m.
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Fig. 1.
A schematic illustration of the relationship between genetic, imaging and clinical measures
in our model
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Fig. 2.
Graphical representation of the generative model. Hollow circles denote random variables,
solid circles represent hyper-parameters, and shaded circles represent observed variables.
The rectangle containing vm represents deterministic variables to be estimated. The plates
indicate conditionally independent instantiations.
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Fig. 3.
Summary of results. (a) Detection rates for our algorithm (blue), the supervised sRRR
pipeline (green), and the genetic t-test (red) as a function of image noise for causative SNPs

in  at a false positive rate of 1%. (b,c) ROC curves for low  and high

 noise levels are shown up to the selected false positive threshold of 1%.
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Fig. 4.
Results on ADNI dataset. Top: Posterior probability τs (colored by chromosome), with 41
SNPs passing a τ = 0.5 threshold. Bottom: Image features (ρm > 0.6) overlayed on a
template MR image, with color intensities proportional to values of ρ.
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Table 1

Notation and variables used throughout the paper

Model Variables

xnm Image feature m in subject n.

gns Genetic variant s in subject n.

yn Disease phenotype (class label) of subject n: 0 - healthy, 1 - diseased.

η m Regression coefficient for image feature m in the imaging part of the model.

bm ∈ {0, 1} Indicator variable that selects image feature m.

asm ∈ {0,1} Indicator variable that selects SNP s for modeling image feature m.

υ sm Regression coefficient for SNP s for modeling feature m.

β Prior probability for selecting image features.

α Prior probability for selecting genetic variants.

Variance of ηm.

Variance of noise in the genetic to image regression.

Variational Variables

ρ m Probability of selecting feature m.

τ s Probability of selecting SNP s.

ξ n Tightness of lower bound for the logistic function.

νm, ςm Imaging parameters for feature m.

ϑ = {V, τ, ρ, ξ, ν, ς} Set of variational parameters that we optimize when fitting the model.
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Table 2

Summary of selected SNPs with the highest posterior probability τs

rank τ s SNP (Gene) chr

1 0.78 APOE-∊4 19

2 0.74 APOE-∊3 19

3 0.73 rs283812 (PVRL2) 19

4 0.70 rs5117(APOC1) 19

5 0.69 rs75627662 19

6 0.68 rs6857 (PVRL2) 19

7 0.68 rs75843224 22

8 0.67 rs59007384 (TOMM40) 19

9 0.66 rs66626994 (APOC1P1) 19

10 0.65 rs12721051 (APOC1) 19
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