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Abstract. Statistical analysis of anatomical trees is hard to perform due
to differences in the topological structure of the trees. In this paper we
define statistical properties of leaf-labeled anatomical trees with geomet-
ric edge attributes by considering the anatomical trees as points in the
geometric space of leaf-labeled trees. This tree-space is a geodesic metric
space where any two trees are connected by a unique shortest path, which
corresponds to a tree deformation. However, tree-space is not a manifold,
and the usual strategy of performing statistical analysis in a tangent
space and projecting onto tree-space is not available. Using tree-space
and its shortest paths, a variety of statistical properties, such as mean,
principal component, hypothesis testing and linear discriminant analysis
can be defined. For some of these properties it is still an open problem
how to compute them; others (like the mean) can be computed, but ef-
ficient alternatives are helpful in speeding up algorithms that use means
iteratively, like hypothesis testing. In this paper, we take advantage of a
very large dataset (N = 8016) to obtain computable approximations, un-
der the assumption that the data trees parametrize the relevant parts of
tree-space well. Using the developed approximate statistics, we illustrate
how the structure and geometry of airway trees vary across a population
and show that airway trees with Chronic Obstructive Pulmonary Dis-
ease come from a different distribution in tree-space than healthy ones.
Software is available from http://image.diku.dk/aasa/software.php.

1 Introduction

Anatomical trees, such as vessels, airways or dendrites, are transportation net-
works that play an important role in the development of diseases. In order to
better understand disease and its interaction with the anatomical tree geome-
try and structure, one needs to be able to perform statistical analysis of sets of
anatomical trees, including both the topological structure of the trees and the
shape of the branches. In particular, detection of disease or disease phenotype
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Fig. 1. Left: Tree-space is path connected space,i.e., any two trees can be joined by
a path in tree-space. Moving along such a path corresponds to a deformation of trees.
Right: Tree edges are defined by partitions of the leaf label set.

based on anatomical tree structure and geometry could improve computer-aided
tools for diagnosis and prognosis of disease. However, since anatomical trees have
different topological structures, it is not obvious how they should be compared.
In particular, two trees can have different topologies but be geometrically and
functionally similar, like the trees along the tree-space path in Fig. 1.
Background and related work. There are several tree-space constructions
that treat trees as a continuous family of objects where tree topology changes
as part of a continuous deformation of the tree [4, 9]. However, the geometry
of these tree-spaces does not allow for an easy transfer of standard statistical
properties. For instance, tree-spaces have corners and branching points, and so
manifold statistics do not apply. For this reason, most statistical measurements
are still not available for tree-structured data, although the statistical analysis
of tree- and graph-structured data is increasingly studied in mathematical and
applied statistics [10,13,23]. Recent results include the existence, uniqueness and
computation of Fréchet means [2, 7, 16, 21] and first results on principal compo-
nents analysis [17]; however, how principal components should be defined and
computed remains an open problem. Most available tools have so far only been
used to analyze small datasets [7]. Tree kernels [8] form an alternative method
for analyzing tree-structured data, which gives access to machine learning algo-
rithms for e.g., classification or regression. However, tree kernels do not operate
in a true space of trees, and cannot produce tree-valued solutions, such as an
average tree, or the variation along a principal component or between classes.
Our contributions. We choose a set of statistics that in different ways are use-
ful in understanding dataset and class variation, although at present we do not
know how to compute them all exactly: principal components (PCA), two-sample
hypothesis testing, linear discriminant analysis. Hypothesis tests can already be
computed to a high precision using available algorithms for means [16], whereas
the others cannot. Using automatic airway branch labeling [10] on a database
of airway trees, we obtain a large set of leaf-labeled airway trees. Treating the
large dataset as a discretization of the relevant parts of tree-space, we define ap-
proximations of the listed statistics, which can be computed for large datasets in
very limited time. Using the developed methods, we perform a large-scale study
on a real dataset consisting of 8016 airway trees from 1692 individuals, of which
842 are diagnosed with Chronic Obstructive Pulmonary Disease (COPD). With



our newly developed tools, we can quantify and visualize statistical properties
of the airway population such as means and variance, show that the airway tree-
shape differs significantly between COPD patients and healthy individuals, and
visualize this difference.
Organization. The paper is organized as follows: In Sec. 2 we briefly intro-
duce the tree-space used in this paper. In Sec. 3 we review known methods for
computing mean trees, and then define and compute or approximate geodesic
PCA, hypothesis tests for means and variances, and geodesic linear discriminant
analysis. A detailed description of the airway dataset is given in Sec. 4, and the
presented methods and results are discussed in detail in Sec. 5.

2 Tree-space

The tree-space T used here is a straight-forward generalization of the space of
phylogenetic trees originally defined in [4], where scalar edge length attributes
have been generalized to multi-dimensional edge shape vectors in (R3)d, consist-
ing of d equidistantly sampled points along the edge (in this paper d = 5, giving
an edge shape space R15). The space T is path connected, i.e., any two trees
can be joined by a path in tree-space, corresponding to a tree deformation, see
Fig. 1. Any two trees in tree-space have a unique shortest path joining them [4],
whose length defines a distance between the two trees, giving a metric d on T .

Each point in T is a leaf-labeled tree with root r and 20 leaves labeled by the
20 airway segmental branch labels L = {L1, ..., L10, R1, ..., R10}. Each edge in
the tree is combinatorially represented as a partition of L ∪ {r} into the leaves
descending from the edge, and the remaining leaves (including r), see Fig. 1. If S
is the set of possible partitions of L∪{r}, then each tree uniquely corresponds to
a vector in (R15)S , where each consecutive set of 15 coordinates corresponding
to a possible edge (identified with a partition of L∪ {r}). If the edge associated
with that partition appears in the tree, then those 15 coordinates will be its
branch vector; otherwise they are all 0. Certain edges can never appear in a tree
together (e.g., an edge that splits {R1, R2} off from the rest of the tree and an
edge that splits {R1, R3} off), so not all vectors are possible trees. Tree-space T
is precisely those vectors in (R15)S that correspond to trees; thus, T is a proper
subset of Euclidean space. The shortest-path distance between two trees is the
length of the shortest path between them which stays within T , measured in the
ambient Euclidean space. There is no analytic formula for this distance, but it
can be computed recursively in polynomial time [18].

Figure 3 shows portions of the spaces of leaf-labeled trees with 3 and 4
leaves and edge length attributes. Tree-space is not a manifold, because it has a
branching structure and corners: it can be decomposed into orthants where tree
structure is constant, and where the orthants are glued together along subspaces
containing contracted versions of the orthant trees, see Fig. 2. This geometric
structure complicates statistical analysis. First, while the concept of ”direction”
makes sense locally within an orthant, where the space locally looks Euclidean,
it does not make sense on a global level. In linear spaces, directions are defined
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Fig. 2. Tree-space is a union of orthants, where each orthant is the non-negative part of
a Euclidean space, corresponding to a specific leaf-labeled tree topology. Left: Within
orthants the leaf-labeled tree topology is constant. Middle: In trees at the boundary
of an orthant, at least one edge is contracted and described by a zero vector. Right:
Orthant boundaries correspond to intermediate tree topologies. For simplicity, tree-
space is illustrated using trees with edge length attributes rather than 3D shape. The
same behavior carries over to edges with shape-vector attributes.
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Fig. 3. Portions of tree-space T for trees with 3 and 4 leaves. At orthant boundaries,
a large number of orthants may meet, creating self-intersections or corners.

by lines, and on manifolds, lines and directions are defined by geodesics and
their tangent vectors. In tree-space, whenever a geodesic curve hits a corner or a
branching point, there will be multiple geodesic extensions of the curve beyond
the corner or branching point. This makes the extension of notions like PCA
difficult, as we will return to below. A second difficulty occurs with optimization
problems – iterative procedures like gradient descent become computationally
intractable when they step close to the orthant boundaries, which can have many
neighboring orthants in which the gradient has to be evaluated. In the worst case,
if an iterative algorithm goes near the zero tree, the number of gradients that
need to be evaluated is exponential in the number of leaves.

While the understanding of tree-space geometry is important, it is not a
contribution of this paper, and we refer to [4, 16,18] for a detailed description.

3 Tree-space statistics: theory and results

We will formulate statistical properties as solutions to optimization problems in
the tree-space T [4]. Whereas optimization in tree-space is a very hard problem,
we make the assumption that our finite dataset X ⊂ T is large enough to give



a good approximate parametrization of the regions of tree-space in which our
solutions will be found. More precisely, given the optimization problem

S = argminx∈T f(x),

where f : T → R is an objective function whose minimizer is a statistic that we
would like to compute, we shall instead solve the optimization problem

S = argminx∈X f(x),

where we only consider solutions that are themselves part of the dataset X . The
resulting statistics are called set statistics.

We define a set of tree-space statistics covering the most basic types of data
analysis, along with computable approximations. We demonstrate the usefulness
of our algorithms by analyzing a set of 8016 airway trees extracted from repeated
CT scans of 1692 subjects. For a detailed description of the dataset, see Sec. 4.

3.1 The mean airway tree

Given a subset X = {xi}Ni=1 ⊂ X , an iterative optimization scheme, Sturm’s
algorithm [2, 16, 21], already exists for computing the Frèchet mean of X in
tree-space, defined as the minimizer

µ = argminx∈T

N∑
i=1

d2(x, xi).

Sometimes a faster approximation may be useful, and we define the set mean:

µ = argminx∈X

N∑
i=1

d2(x, xi)

Experiments. We compute set and Sturm means for our entire dataset X =
X with ]X = 8016. Plotting the Sturm mean and set mean together (Fig. 4)
supports our basic hypothesis (set statistics are good approximations) since the
set mean is visually a close approximation to the Sturm mean.

3.2 Analysis of variance: Tree-space PCA

Principal component analysis (PCA) is a basic tool for dimensionality reduction
and analysis of variance in Euclidean spaces. In Euclidean and manifold PCA,
the first principal component is often defined as the line, or more generally the
geodesic curve γ, that minimizes the squared projection error [11,12]:

PC1 = argminγ

N∑
i=1

d2(xi,prγ(xi)), (1)



−0.1

0

0.1

0.2

−0.05
0

0.05

−0.25

−0.2

−0.15

−0.1

−0.05

0

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25−0.0500.05

−0.25

−0.2

−0.15

−0.1

−0.05

0

Fig. 4. Left and middle: The similarity of Sturm’s Fréchet mean [16] (blue) to the
approximate set mean (red) for 8016 airway trees supports the hypothesis that the
dataset approximates the relevant parts of tree-space well near the population center.

where projection1 is defined as prγ(xi) = argminx∈γd(x, xi), which is computed
in tree-space using a golden ratio search along the geodesic, as done by Nye [17].

On manifolds the best-fit geodesic line is found by optimizing over all geodesic
lines passing through the Fréchet mean, parameterized by their tangent direc-
tions. However, since the concept of direction is not well defined in tree-space,
this approach does not carry over. Nye [17] computes a version of the first prin-
cipal component by requiring it to pass through the majority consensus tree
(a summary tree used in phylogenetics [3]), and considering only a subset of
geodesics that have unique extensions beyond corners. Even this is computation-
ally infeasible, and MCMC simulation methods are used to find the geodesic.

We choose to find the first principal component for X = {xi}Ni=1 ⊂ X by
optimizing over geodesic segments connecting pairs of trees, parametrized by
the endpoint trees:

PC1 = argminx,x′∈T

N∑
i=1

d2(xi,prγx,x′ (xi)), (2)

where γx,x′ is the (unique) geodesic joining x to x′. However, since tree-space
optimization is hard, finding the optimal line segment is also an open problem.

Proposition 3 PC1 exists, but is not unique.

Proof. Let B̄(0̄, r) = {x ∈ T |d(x, 0̄) ≤ r} be the smallest closed ball about
the tree-space origin which contains all data points. It is enough to optimize
over geodesics whose endpoints lie in the compact ball B̄(0̄, r), and a minimizer
of (2) exists by compactness. The minimizing solution can be extended to a
longer geodesic segment which is also a PC1; thus, the PC1 is not unique. �

Even though PC1 is not unique, it will usually contain a unique minimal
segment containing all projected data points. In order to achieve a computable
solution, we randomly sample endpoint pairs from our dataset and select the
optimal geodesic segment, see Algorithm 1.

1 The projection of a point onto a geodesic is unique in any CAT (0) space (T is
CAT (0) [4]), as follows directly from the CAT (0) property. This is also noted in [17].



Algorithm 1 Computing set PCA in tree-space

1: Input: Dataset X ⊂ T , subset X = {xi}Ni=1 ⊂ X for which PC1 is computed;
number M of random endpoint samples.

2: m = 1
3: while m ≤M do
4: Select random x, x′ ∈ X ; endpoints(m) = (x, x′);
5: Compute geodesic γx,x′ .
6: Compute projected dataset prγx,x′ (X).

7: score(m) =
∑N
i=1 d

2(xi, prγx,x(xi)).
8: m = m+ 1
9: end while

10: (x0, x
′
0) = endpoints(argminm{score(m)}); PC1 = γx0,x′0 .

Note that in Rd, PCA serves many purposes: visualization of variance along
PCs, dataset visualization (like multidimensional scaling), and dimensionality
reduction. Our version of tree-space PC1 primarily serves the first purpose.

Experiments. Fig. 5 show PC1 computed from X = X consisting of 8016
airway trees belonging to 1692 subjects (M = 18286). Note that along PC1 the
shape changes both in terms of vertical scale and angle of the lungs, which is
consistent with deformation due to differences in inspiration level. In addition,
there are topological changes arising from topological variance in the data.

3.3 Hypothesis testing in tree-space

We define one hypothesis test for the sample means and two for sample variance.

Hypothesis test for the mean. Let A = {ai}N1
i=1 and B = {bj}N2

j=1 be two
samples from tree-space. To test for difference in means we use the univariate
approach of Terriberry et al [22], with test statistic T (A,B) = d(µ̂A, µ̂B), where
µ̂A, µ̂B are the Sturm or set means from Sec. 3.1. Under the null hypothesis the
samples A and B are drawn from the same distribution on T , and randomly
permuting the elements of A and B should not affect the value of T .

Form the two-class data set X = A ∪ B ⊂ X and consider partitions of X
into datasets of size N1 and N2. Due to the size of X we cannot check all possible
permutations, but compute the test statistics Tm = d(µ̂Am , µ̂Bm), m = 1, . . . ,M ,
for M random partitions X = Am ∪ Bm, with |Am| = N1 and |Bm| = N2.
Comparing the Tm to the original statistic value T0 = d(µ̂A, µ̂B) we obtain a
p-value approximating the probability of observing T0 under the null hypothesis:

p =
1 +

∑
Tm≥T0,m∈{1,...,M} 1

M + 1
,

where the additional 1 is added to avoid p = 0, which is impossible in the limit
where all permutations are tested [14].



Hypothesis test for the variance. Again, let A and B be two tree-space
samples. Testing the equality of the variances σA and σB is formulated as a per-
mutation test based on tree-space distances and means, using the test statistics

S1(A,B) = ‖ 1
N1

∑N1

i=1 d(xi, µ̂A)2 − 1
N2

∑N2

j=1 d(yi, µ̂B)2‖,
S2(A,B) = ‖ 1

N2
1

∑N1

i=1

∑N1

j=1 d(xi, xj)
2 − 1

N2
2

∑N2

i=1

∑N2

j=1 d(yi, yj)
2‖,

where S1 tests variance about the mean, and S2 tests the dataset spread.

Experiments. The defined test statistics were applied to samples from COPD
patients and healthy subjects (]Z = 1692, 842 with COPD and 850 healthy),
one scan from each subject. There were 732 women and 960 men. The pairs of
classes females/males and COPD/healthy were shown to come from tree-space
distributions with different means and variances (Table 1). The tests used three
different mean computations: The set mean optimized over the set X = A ∪ B
with one airway tree per subject (]X = 1692); the set mean optimized over the
set X of all available airway trees (]X = 8016) and the Sturm mean. Only the
latter two detected significant differences for means (5% significance level). Note
that the set X of 8016 airway trees was only used as a tree-space discretization,
while the samples X = A ∪B were the same in all tests.

Gender class separation COPD class separation

Test Set mean Set mean Sturm mean Set mean Set mean Sturm mean
statistic (N = 1692) (N = 8016) (N = 1692) (N = 8016)

m = 10 000 m = 10 000 m = 1 000 m = 10 000 m = 10 000 m = 1 000

T 0.12 0.0011 0.00099 0.49 1.0 0.00099

S1 0.0034 0.045 0.00099 0.00099 0.000099 0.00099

S2 0.0084 0.000099

Table 1. Computed p-values for class separation for tests on mean (T ) and variance
(S1 and S2). Recall that S2 does not use the mean value. The p = 1 appears because
the two set means coincide in this case.

Fig. 5. Left: Trees sampled along PC1. Note the changing tree topology. Right: The
LDA geodesic segment γLDA shows trees with long branches in the COPD cluster,
most likely due to missed branches in the segmentation.



3.4 Classification: Linear Discriminant Analysis in tree-space

A basic classification method in Euclidean space Rd is Fisher’s linear discrimi-
nant analysis (LDA) [1,5], which searches for a linear codimension 1 classification
boundary. The classification boundary is determined by any line which is orthog-
onal to it, up to a translation along the line, and by visualizing the data objects
found along such a perpendicular line one can visualize how between-class vari-
ation affects the data objects. Whereas the concept of a linear classification
boundary is not well-defined in tree-space, we can use our well-defined geodesic
lines and projections onto them to formulate a version of tree-space LDA. One
of the advantages of working in tree-space as opposed to analyzing trees using
tree kernels is that every point in tree-space corresponds to a tree. Thus, with a
version of Fisher’s LDA in tree-space, the change in the geometric trees between
the extremes of the classes can be visualized.

In Euclidean space Rd, optimizing over LDA classification boundaries is
equivalent to optimizing over lines L ∈ L orthogonal to the classification bound-
ary, where L is the set of all lines in Rd. The translation of the classification
boundary is equivalent to a classification threshold for projected datapoints onto
the line. When N > d for dataset size N , given a training set X = A∪B consist-
ing of two classes A and B, the optimal LDA line is defined as maximizing the
distance between projected class means, normalized by projected class scatter
ŝ2(prl(A)) =

∑
x∈A(prl(x)− µprl(A))

2, etc. [5]:

L = argmaxl∈L

d2 (µ̂(prl(A)), µ̂(prl(B)))

ŝ2(prl(A)) + ŝ2(prl(B))
. (4)

We define a version of tree-space LDA analogous to (4):

argmaxx,x′∈T
d2(µ̂(prγx,x′ (A), µ̂(prγx,x′ (B))

ŝ2(prγx,x′ (A)) + ŝ2(prγx,x′ (B))
, (5)

which we approximate, as with PCA, by only considering geodesic segments that
pass between elements of a dataset X (often bigger than the training set X):

γLDA = argmaxx,x′∈X
d2(µ̂(prγx,x′ (A), µ̂(prγx,x′ (B))

ŝ2(prγx,x′ (A)) + ŝ2(prγx,x′ (B))
. (6)

Projected means and scatters on the geodesic segment can be reformulated as
computing means and scatters on the real line, which is fast. Searching over all
possible point pairs is not feasible, so as with PCA, we only use a set of randomly
selected pairs of geodesic endpoints from the dataset. Given the LDA geodesic
segment γLDA, we classify new points x0 by assigning the class whose projected
class mean is closer to the projection prγLDA(x0). Note, however, that more
refined methods for classification on the 1-dimensional geodesic line segment
can easily be incorporated.

Note: In the Euclidean setting, when d > N , there will exist a line in Rd,
called the maximal data piling direction (MDP) [1], such that the classes A and



Algorithm 2 Computing set LDA in tree-space

1: Input: Classes A, B; number M of geodesic endpoint permutations.
2: m = 1
3: while m ≤M do
4: Select random x, x′ ∈ X , endpoints(m) = (x, x′)
5: Compute geodesic γx,x′

6: Compute projected samples prγx,x′ (A), prγx,x′ (B)

7: Compute projected sample means µ̂(prγx,x′ (A)), µ̂(prγx,x′ (B)) and scatters

ŝ(prγx,x′ (A)) and ŝ(prγx,x′ (B))

8: score(m) =
d2(µ̂(prγ

x,x′
(A),µ̂(prγ

x,x′
(B))

ŝ2(prγ
x,x′

(A))+ŝ2(prγ
x,x′

(B))

9: m = m+ 1
10: end while
11: (x0, x

′
0) = endpoints(argminm{score(m)}); γLDA = γx0,x′0

B project onto two separate, single points. The MDP direction will coincide with
the line L defined by (4) (as opposed to Fisher’s LDA [1]), since this line gives
zero denominators in (4). For N ≥ d, LDA = MDP [1]. Thus, our version of LDA
is really a generalization of MDP, and a generalization of LDA when N > d.

Experiments. We apply LDA by dividing the set of 1692 airway trees (one from
each of 1692 subjects, 842 with COPD) into a training set (846, 421 with COPD)
and a test set (846 individuals, 421 with COPD). Note that the dimension of
tree-space is d = 585, so we have d < N . The LDA algorithm was ran with
M = 11829, and a classification accuracy of 55.3% was obtained. Since LDA
does not just give a binary classification, but in fact a whole geodesic segment,
it is also useful for visualizing the differences between classes. The LDA geodesic
segment γLDA is shown in Fig. 5.

4 Data

The developed techniques were applied to the analysis of the shape of airway
trees classified by gender and COPD diagnosis. The airway trees were segmented
[20] from 8016 CT-scans of 1692 subjects from a national lung cancer screen-
ing trial. Centerlines were extracted from the interior surface using the front
propagation method of [15]. As the resulting centerlines are disconnected at bi-
furcation points, the end points were connected using a shortest path search
within an inverted distance map of the interior surface. All images of the same
subject were registered and the resulting deformation fields were used to remove
centerline errors, such as spurious branches, following the approach of [19]. Based
on the centerline shape, 20 segmental leaf labels (R1−R10, L1−L10) were au-
tomatically assigned to each airway tree using a geodesic labeling scheme [10],
and branches below the segment level were discarded, producing a set of leaf-
labeled airway trees with a fixed leaf label set. Airways for which not all leaf
labels could be assigned were left out. For classification and hypothesis testing



experiments, a set of 1692 trees were selected, one from each subject, of which
842 were diagnosed with COPD and 732 were women.

5 Discussion and conclusion

We have defined a series of new tree-space statistics along with computable
approximations of them. The main advantage of our approach is the ability to
perform large-scale statistical analysis of real-world datasets and learn about
connections between illness and anatomical tree geometry and structure in new
ways. We show that the distribution of airway tree-shape is different in patients
with COPD compared to healthy individuals. We provide a visual demonstration
of mean tree-shape and tree-shape variability along the principal component.
We perform LDA both for classification and visualization of the classification
mechanism, and visualize the variation along the LDA component, which is
consistent with increased difficulty of segmentation in COPD patients. There
are no exact algorithms for computing some of our defined statistics, such as
PCA or LDA, but the approximations give a rough estimate of the expected
behavior of the optimal solutions. This may help in further developing how tree-
space statistics should ideally be defined.

There are several disadvantages to our approach. Set statistics require a large
dataset, which is not always available, and even when such a dataset is available
it does not always give a good discretization of tree-space. Furthermore, due to
the computational complexity of computing distances between large, unordered
trees [6], we work with airway trees which have been labeled and cut off at
the segmental level, reducing trees with 100 − 500 branches to trees with ∼ 40
branches, most likely discarding relevant information.

These disadvantages have potential solutions, which will be topics of future
work. Small sample sizes can be helped using sampling methods in tree-space,
e.g. similar to those used by Nye [17], ideally initialized by the original data set.
Methods should be developed to take advantage of larger parts of the tree, either
by developing heuristics for computing distances between unordered trees, or by
using alternative distance measures.

In summary: We propose a set of tree statistics along with computable
approximations and show that they work on a real medical dataset. Software
will be made available online upon publication of the paper.
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