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Abstract

We present a new framework for predicting cognitive or other continuous-variable data from 

medical images. Current methods of probing the connection between medical images and other 

clinical data typically use voxel-based mass univariate approaches. These approaches do not take 

into account the multivariate, network-based interactions between the various areas of the brain 

and do not give readily interpretable metrics that describe how strongly cognitive function is 

related to neuroanatomical structure. On the other hand, high-dimensional machine learning 

techniques do not typically provide a direct method for discovering which parts of the brain are 

used for making predictions. We present a framework, based on recent work in sparse linear 

regression, that addresses both drawbacks of mass univariate approaches, while preserving the 

direct spatial interpretability that they provide. In addition, we present a novel optimization 

algorithm that adapts the conjugate gradient method for sparse regression on medical imaging 

data. This algorithm produces coefficients that are more interpretable than existing sparse 

regression techniques.

1 Introduction

The advent of large population databases that seek to establish imaging-based biomarkers 

has spurred a need for generalizable prediction models in imaging. To serve this need, we 

seek to develop new statistical standards wherein models are trained on input data, the 

parameters of the model are fixed, and the model is then evaluated on unseen test datasets. 

This system of analysis both provides a validation of its accuracy in terms of the units of the 

dependent variable, as opposed to p-values, and also mimics the realistic restrictions of 

translational applications.

Despite this need, the large majority of medical imaging research uses traditional voxel-

based morphometry (VBM) [1] which employs mass univariate testing. VBM generates 

statistical maps that display the correlation coefficient between a given voxel and an 

outcome or variable of interest and gives no indication of how these models will generalize. 

In contrast to VBM, several recent approaches [22] may be used to combine voxels across 

the brain to explicitly optimize prediction, rather than to test for an association or correlation. 

The distinction is important, as the p-value is not intended as a goodness-of-fit metric and 
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does not guarantee accurate prediction estimates. Multivariate prediction approaches instead 

seek the best combination of voxels for predicting a given outcome, rather than testing for 

associations one voxel at a time. This provides a second motivation for multivariate voxel-

driven prediction: they implement a network-like model which fits naturally with the neural 

network basis of cognition.

Toward this end, much effort has recently been invested in developing prediction-based 

methods of analyzing medical images. Such techniques have included efforts to diagnose 

Alzheimer’s Disease from medical images [8], among many other applications. One 

drawback that many of these methods share, however, is that they do not directly produce 

anatomically informative results. This drawback is inherent to the high-dimensional and 

non-linear nature of the algorithms used to analyze the data [9]. On the other hand, these 

methods do not have the drawbacks that mass-univariate methods such as VBM have.

We present here a method that combines advantages of traditional linear regression and 

high-dimensional machine learning approaches to analyzing medical image data. Our 

method leverages the inherently multivariate nature of imaging information to produce a 

sparse and anatomical prediction model for a univariate response. We demonstrate how 

careful use of cross-validation can provide assurance that results obtained from a sample 

population can be confidently applied to another population. Underlying our method is an 

adaptation of sparse linear regression. Drawing on recent advances in sparse regression and 

optimization techniques for sparsity-constrained problems, we show that sparse regression 

can both produce anatomically meaningful results and also give good prediction accuracy 

for a variety of psychometric and other clinical data. In addition, by using the framework of 

linear regression, we maintain the applicability of the mature analytical tools that have been 

developed for linear regression, including confidence intervals and significance metrics.

In sum, our contributions are: 1) An imaging-specific implementation of penalized 

regression; 2) Evaluation on a range of distinct response variables; 3) A cross-validation 

paradigm that completely separates training and testing; 4) A fully specified method of 

setting parameters; 5) Empirical demonstration that the models produced by our method are 

more accurate and generalizable than a state-of-the-art algorithm, elastic net; and 6) 

Establishing contrasting biologically plausible substrates for distinctive cognitive domains 

and aging.

2 Methods

2.1 Sparse Regression Background

Linear regression finds a linear transformation x that minimizes the error between an 

observed outcome variable b and the observed data A:

(2.1)

In the context of medical imaging as considered in this work, A is an n × p matrix of n 

vectorized images, each with p voxels; x is a p × 1 transformation matrix to be solved for; 
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and b is the known n × 1 response variable, such as a psychometric score. Because A is 

“fat”, i.e. p ≫ n, it is not invertible and some form of regularization is necessary to solve for 

x.

Recently, much effort has been invested in finding sparse solutions to linear least squares 

problems, that is, solutions that have only a few non-zero components [6]. In the context of 

predicting clinical or cognitive data from medical images, sparse solutions include only a 

few anatomical regions of interest to predict a given outcome [15,17]. Sparsity is crucial for 

generating clinically and neurobiologically meaningful predictive results for two reasons. 

First, we can validate a proposed approach by verifying that the anatomical regions 

associated with a given clinical outcome are consonant with existing neuroanatomical 

knowledge. Second, by highlighting the effect of a given anatomical region, sparse 

regression techniques can discover novel brain-behavior associations by selecting specific 

brain regions that are predictive of a given clinical result.

The most direct way of enforcing sparsity constraints on solutions to linear regression 

problems of the form 2.1 is to restrict the number of non-zero entries in x using a metric 

known as the ℓ0 “norm” which returns the number of non-zero entries in its argument. This 

modifies Equation 2.1 by restricting the number of non-zero entries in x to be less than a 

given level of sparsity s, as follows:

(2.2)

Solving this problem is known to be NP-hard, so a wide variety of approaches have been 

proposed to solve the problem [25]. One method for finding a solution to Equation 2.2 that 

has attracted much attention in recent years is replacing the ℓ0 penalty with the convex ℓ1 

penalty [22], as the two penalties give identical solutions for many problems [11].

Incorporating feasibility constraints into optimization techniques has been a subject of 

research for over 50 years, and optimization methods dealing with feasibility constraints are 

mature and perform well. One of the most widely-used methods for incorporating hard 

feasibility constraints is known as projected gradient descent [5]. In this method, the solution 

is constructed by following a gradient descent algorithm, with the modification that if the 

gradient descent takes the solution out of the feasible set, the projection operator returns the 

solution to the point in the feasible set that is closest (in Euclidean distance) to the optimal, 

but infeasible, solution. Mathematically, if xi is the estimate of the minimum of function f(x) 

at the i’th iteration, the estimate at iteration i+1 is given as

(2.3)

where PF(·) is the projection (or “proximal”) operator that finds the point within the feasible 

set F that is closest to the operand and α is the step size.
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For ℓ1 norms, the projection operator is known as a “soft-thresholding” or “shrinkage” 

operator, and has a simple closed-form expression [10]:

(2.4)

where the soft-thresholding operator S (u, γ) is evaluated entry-wise and is defined as

(2.5)

Although the shrinkage operator does not explicitly define a feasible set with a desired 

amount of sparsity, it is simple to run a search over possible values of γ to obtain the value 

of γ that will return a solution with the desired amount of sparsity, as in [27]. We denote the 

operator that finds the appropriate level of γ for achieving sparsity s as G(u, s). Requiring 

only the desired level of sparsity as an input to the algorithm as opposed to a penalty value 

avoids the well-documented [12] instability of solutions of ℓ1-constrained solutions with 

regard to choice of penalty on the ℓ1 norm. In addition to the sparsity penalty, we also 

include in the projection operator an optional minimum cluster size threshold, as is 

commonly performed in VBM-type analyses. We have found that including a (optional) 

minimum cluster threshold size generally improves robustness of results (see Figure 1) and, 

critically, helps prevent overfitting.

The fundamental difference between imaging data and other types of data is that in imaging 

data, the spatial information contained in the data is important. Because we are interested in 

obtaining neuroanatomically interpretable solutions, we wish to constrain our sparse 

solutions to be coherent and smooth, as in [4]. A few scattered non-zero voxels throughout 

the brain do not give rise to meaningful anatomical conclusions and these voxels will be 

difficult to locate in new datasets. That is, searching for individual voxels in the brain, as 

opposed to regions, is likely to give rise to spurious regression curves that cause overfitting 

on the data. Instead, we aim to recover coherent regions in the brain that are large enough 

and smooth enough to correspond to anatomically meaningful regions. To achieve 

anatomical coherence, we add a penalty to the norm of the gradient of the coefficient vector 

to our objective function:

(2.6)

λ1 is the value of the ridge penalty, commonly used to regularize least-squares solutions to 

linear equations, and λ2 is the value of the smoothing penalty applied to the coefficient 

vector x. Taking the derivative, we get

(2.7)
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which gives us our update step for projected gradient descent (Equation 2.3).

Instead of the classical gradient descent, we used a projected conjugate gradient algorithm. 

Optimization algorithms of this type have been proposed before [20], but to the best of our 

knowledge the formulation of the projected conjugate gradient algorithm in this context is 

novel. Pseudocode for the projected conjugate gradient algorithm we used is given in 

Algorithm 1. For extracting multiple areas in the brain that contribute independently to the 

outcome variable of interest, we used a variant of Orthogonal Matching Pursuit [24]. After 

using Algorithm 1 for determining the solution to the problem Ax = b, we subtracted the 

component of b that is not orthogonal to x0 (b1 = b−Ax0), and then used the component of b 

that is orthogonal to x0 for the next round of sparse predictions. In this way, we retrieve 

multiple areas of the brain that contribute to different components of cognitive ability.

Algorithm 1

Algorithm for optimizing sparse regression vector

Input: A, b, s, α. ▷ Input data A, predicted data b, sparseness level s, step size α.

x0 ← random seed. ▷ Initialize regression vector.

p0 ← AT (b − Ax) − λ1x − λ2Δx ▷ Initialize direction with negative of gradient.

r0 ← p0 ▷ Initialize residual.

k ← 0 ▷ Initialize iterator.

while not converged do

 xk+1 ← xk + αpk ▷ Update solution.

 γopt ← G(xk+1, s) ▷ Find appropriate value of γ for desired sparsity.

 xk+1 ← S(xk+1, γopt) ▷ Project solution to entry in sparse feasible set.

 rk+1 ← AT (b − Axk+1) − λ1xk+1 + λ2Δxk+1 ▷ Update residual.

  

 pk ← rk + βpk−1 ▷ Update direction.

 k ← k +1.

end while

Output: xk.

2.2 Prediction Methodology

One of the motivations for moving from a correlation-based statistical approach to a 

prediction-based approach is that a prediction-based approach provides falsifiable 

hypotheses. These can be tested using the model that is an output of the sparse regression 

algorithm within cross-validation. To provide more rigorous and generalizable results, we 

use a two-step cross-validation approach. In the first step, we use cross-validation within the 

training data to tune sparsity and cluster threshold parameters (Figure 1). Using cross-

validation in the training data also enables us to average the coefficient vector over several 

trials, which helps minimize the dependence on initialization of the algorithm. The 

coefficient vectors returned from each fold are then averaged to return a final result for use 

on the test data. Thus, the model parameters are selected and fixed via exploration of the 
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training data and applied, with set coefficients, to evaluate prediction accuracy in unseen 

datasets.

In the second step of cross-validation, stepwise forward regression using the Bayesian 

Information Criterion (BIC) [21] was used to select the coefficient vectors necessary for 

constructing an optimal linear model predicting the outcome of interest from the training 

imaging data. The optimal linear model was then trained on the training data and used to 

predict the outcome variable in the test data. Two-thirds of the data was used for training, 

and the other one-third was used for testing.

2.3 Clinical Data

Test data for the study consisted of 216 scans of patients collected in the course of the Penn 

Memory Center/Alzheimer’s Disease Center longitudinal cohort. Subjects were scanned on 

Siemens Sonata, Espree, Verio, or Trio Tim scanners using an MPRAGE T1 sequence. All 

scans were resampled to 2×2×2 mm isotropic resolution for analysis. The patient population 

had a mean age of 71.8 with standard deviation of 8.41. Of the 216 subjects, a definitive 

diagnosis was available for 191. There were 36 normal controls, 59 mild cognitive 

impairment (MCI) patients, 71 patients with Alzheimer’s Disease, and 25 with a variety of 

other conditions.

For analysis, we employed a standard pipeline wherein all images were diffeomorphically 

registered to a common template using ANTs [3] and cortical thickness measurements were 

computed using DiReCT [7].

2.4 Predictions

To evaluate the accuracy of our sparse linear prediction method for predicting a variable of 

interest, we began by predicting age because of the unambiguous ground truth measurement 

and because of the availability of comparison results. Competing methods have reported 

accuracies of mean absolute errors ranging from 5 to 6.5 years [26,13,2]. In addition to age, 

we predict a set of cognitive scans that correspond to distinct cognitive and neuroanatomical 

domans: The Boston Naming Test, which tests language ability; Consortium to Establish a 

Registry for Alzheimer’s Disease (CERAD) word list memory test (“Word List-Trial1”), 

which tests working memory; and the CERAD 5-minute delayed recall test (“Word List-

Total”), which tests memory encoding and longer-term memory [18]. Age was predicted 

using only the scans, without any clinical data, as the ages of the control and diseased 

population was matched. All subjects were used in the age prediction. To avoid group 

effects, prediction of cognitive scores was done by grouping the patients into normals and 

patients with dementia. Only subjects with a definitive diagnosis were used for prediction of 

cognitive scores.

As a comparison to state-of-the-art results, we used the popular “elastic net” model [14], 

which combines the ℓ2 ridge penalty with an ℓ1 “Lasso” penalty on the coefficient vector. 

We used the implementation in the R glmnet package. In a similar manner to our method of 

parameter tuning on training data, we used the cv.glmnet function to find optimal parameters 

in the training data and the predict.cv.glmnet function to predict the outcome variables in the 
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test data. The elastic net optimization algorithm uses a version of Least Angle Regression 

[12], which is similar to the variant of Orthogonal Matching Pursuit we used to create 

successive coefficient vectors using our sparse regression algorithm, so we did not generate 

more than one coefficient vector using elastic net.

A smoothed version of Lasso algorithm, called the “fused Lasso” algorithm [23], has been 

proposed. We were not able to run the optimization algorithm on problems of the magnitude 

considered here, as the time necessary for computing the fused Lasso increases significantly 

with the number of predictors and exponentially with the dimensionality of the problem. We 

typically deal with tens or hundreds of thousands of predictors and three-dimensional arrays, 

making the resulting optimization problem infeasible for fused Lasso.

Our algorithm implementation is open-source, and detailed instructions for replicating the 

results found here, including input data, are available from https://github.com/bkandel/

KandelSparseRegressionIPMI.git.

3 Results

We used cortical thickness measurements to predict age and three cognitive tests with 

different neurobiological substrates to demonstrate that our algorithm achieves state-of-the-

art prediction results while obtaining anatomically interpretable prediction coefficients. 

Numerical results for all trials are presented in Table 1. Our results for predicting age 

compare favorably with the errors of 5–6.5 years reported in the literature. The linear 

models produced by our method achieved higher significance (lower p-value) and higher 

correlation with test data than the model from the elastic net in every case. In addition, our 

models achieved higher generalizability (training / testing error) for every case except Word 

List 1, where the elastic net failed to discover a significant correlation at all.

In addition to achieving greater generalizability, our method produced more interpretable 

coefficient vectors than the elastic net. For predicting age, our method found that the 

precuneal, or bitofrontal, and motor strip cortical regions were important (Figure 2). For 

BNT, we found that Broca’s and Wernicke’s areas were retained, as were the lateral and 

inferior temporal lobe (Figure 3). For WordList1, the word list memory CERAD test, we 

found that lateral parietal and temporal lobe and lateral frontal lobe were returned (Figure 4). 

Word List Total, the delayed recall CERAD test, returned left medial temporal lobe and 

precuneus (figure omitted due to space restrictions). A detailed clinical explanation of these 

areas is beyond the scope of this brief paper, but the areas found to predict the cognitive 

tests show dissociation for each test and match well with each test’s known neurological 

substrate. The elastic net found scattered non-zero coefficients, but they did not form a 

recognizable anatomical pattern for each test and did not dissociate the different cognitive 

tests.

4 Discussion and Conclusion

We have presented a method that both provides neuroanatomically meaningful information 

about a population and also uses learning techniques to predict the results of psychometric 

tests. Our prediction method maintains the direct anatomical interpretability of VBM-type 
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studies, but incorporates a multivariate learning approach that incorporates the networked 

nature of neurological function. The method has prediction accuracy that is competitive with 

the state of the art. In addition, the anatomical regions associated with cognitive scores 

match closely with current understanding of neuroanatomical specificity. These results 

provide confidence that the method is capable of producing anatomically and 

neurobiologically meaningful and accurate results.
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Fig. 1. 
Heat map of errors for age prediction (lower is better), used to tune parameters. Units are in 

years. We found that for most tests, a sparsity of 0.04–0.05 and a cluster threshold of 100–

250 generally provided the most stable results.
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Fig. 2. 
Age results

Kandel et al. Page 11

Inf Process Med Imaging. Author manuscript; available in PMC 2015 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
BNT results.
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Fig. 4. 
WordList1 results
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