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Abstract

In biological studies, it is often required to track thousands of small particles in microscopic

images to analyze underlying mechanisms of cellular and subcellular processes which may lead to

better understanding of some disease processes. In this paper, we present an automatic particle

tracking method and apply it for analyzing an essential subcellular process, namely clathrin

mediated endocytosis using total internal reflection microscopy. Particles are detected by using

image filters and subsequently Gaussian mixture models are fitted to achieve sub-pixel resolution.

A multiple hypothesis based framework is designed to solve data association problems and handle

splitting/merging events. The tracking method is demonstrated on synthetic data under different

scenarios and applied to real data. We also show that, by equipping with a cell detection module,

the method can be extended straightforwardly for segmenting cell images taken by two-photon

excitation microscopy.

1 Introduction

With the rapid development in fluorescence microscopy, biologists can observe the

dynamics of individual particles and investigate the underlying mechanisms of cellular

processes which may reveal mechanisms of some disease processes. We are particularly

interested in clathrin mediated endocytosis (CME). CME [1] is an essential cellular process

that cells use to take up nutrients, to internalize plasma membrane proteins, and to recycle

lipid components on the plasma membrane. The process consists of several stages [1] as

illustrated in Fig. 1: clathrin coat assembly, clathrin coat maturation, clathrin coated pits

(CCPs) fission into clathrin coated vesicles, and finally vesicles uncoating clathrin. CCP

intensity increases as it grows up, and remains relatively stable when it matures, and

decreases when it releases its coat. CCP motion is a kind of constrained Brownian motion.

The study of this process has profound implications in neuroscience and virology. For

instance, CME is the major route for synaptic vesicle recycling in neurons critical for

synaptic transmission [1], and dysfunction of the process may be the symptom of certain

disease [1]. It is also one of the pathways through which viruses enter cells [2]. Since typical

image datasets from an experiment consist of several thousand image frames, manual
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processing is almost infeasible. In the literature, there are some particle tracking methods for

different biological applications [3,4,5]. For example, in [3], a method is presented to track

quantum dots which can rapidly switch between acceleration mode and steady speed mode

which are described by multiple motion models. Since the properties of CCPs are different

from those particles, those methods are not directly applicable for our application. Due to

the importance and complexity of CME, it is worth developing a method for CCP tracking.

Tracking frameworks are also essential for managing multiple trajectories. Most of the

particle tracking methods in literature consider tracking as a MAP (maximum a posteriori)

problem, and try to solve it in various ways. Some methods use stochastic sampling based

frameworks, e.g., particle filter [6] to explore the probability space of the trajectories

spatially and temporally when the tracking problem is nonlinear and non-Gaussian. Many

other methods are based on the classical multiple hypothesis tracking (MHT) framework [7]

and its variants [8,9,4,3]. In the MHT framework, particle tracking can be decomposed to

three sub-tasks: particle detection, particle state estimation and prediction, and linking

between established trajectories and newly detected particle locations. The known issue of

the MHT framework is the solution space will expand exponentially fast, and many methods

[10] have been proposed to overcome the issue. The results from MHT based methods are

strictly reproducible compared to the stochastic approach, and therefore we choose MHT as

the base framework.

The MHT framework has an implicit assumption that the observations of the targets are

already given by the detection module, except that it is not known which observation

corresponds to which target and vise versa. The assumption can be violated if the

observations are imperfect. splitting and merging events occur frequently in our application.

For example, some CCPs may temporarily crowd together and then move apart. As a result,

there are many suspicious observations obtained by the detection module, each of which

may correspond to several particles, and the number of the corresponding real particles and

their states are all unknowns. A method in [11] uses k-means based functions to cut the

suspicious observations to pieces, and find the best result. That concept is not applicable for

our application because the local intensity profile of the crowded particles is a mixture of

Gaussian functions, and small spatial segments of the profile are meaningless. Another

method in [12] tries to fit more than one Gaussian functions around each suspicious

observation. Since the number of the real particles is unknown, and the goodness of fitting

will increase as the number of the Gaussian functions increases, the optimal number of

Gaussian functions can not be determined.

In this paper, we present an extended version of the classical MHT framework. Since it

considers more types of hypotheses, it can handle the splitting/merging events effectively

without user intervention, and prevent independent CCP trajectories from linking together.

The models used in the paper are based on our previous works [13]. The proposed method is

quantitatively evaluated on synthetic image datasets and it is also applied to real data. The

method is not limited for CCP analysis only, and we show that by using an ellipse-shaped

cell detection module, the method can be used for cell segmentation.
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2 Tracking Framework

In this section, we describe the general framework including hypothesis generation and

optimization by integer programming. In section 3, we will show how to apply the

framework for CCP tracking.

2.1 The Extended MHT Framework

Let It be the image taken at time t (frame index). Let Xt be the joint state of all targets (i.e.,

particles) at time t, assembled from each target’s state . Let Dt be the observation set,

and  be the observation of the target k at time t. The goal is to find the target states

 that maximize the posterior probability (MAP) given the dataset , i.e.,

maximize the energy E:

(1)

Here, . Since it is difficult to find the optimal solution directly,

we try to maximize the lower bound Ê of the above energy. Assuming the targets are

statistically independent of each other, then we obtain

(2)

(3)

(4)

Each target trajectory  is a hypothesis and has an indicator α(k) ∈ {0, 1}. If α(k) =

1, the trajectory k is selected as a real trajectory, and if α(k) = 0, it is discarded as a false

trajectory. By considering different correspondences between the target tags and the

observations, multiple trajectory hypotheses can be generated. One to one correspondence is

assumed, which is the constraint of the maximization problem.

If we only use the above equations as the framework, then it will just be the classical MHT.

We further extend the framework by considering multiple observation hypotheses. In most

cases, each image It can be segmented into small regions . Each sub-image I(t,Ωm)

contains one ore more observations. In each image region, we find many observation sets,

and each set of them,  indexed by n, can describe the sub-image independently.

Therefore, we extend the Eq. (4) to
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(5)

(6)

(7)

Each observation set  is a hypothesis and has an indicator . If

, the observation set is selected as real observation, and if , then it is false.

Each single observation in the set also has an indicator equal to . If there is only one

observation in the set, then its indicator is 1. The method for generating observation sets is

not defined here, we leave it to be implemented in different applications. By generating

multiple observation hypotheses and finding the best hypothesis, the problem caused by

splitting/merging can be solved. Fig. 2 shows the observation hypotheses generated in a

simple scenario.

2.2 Solving the Optimization Problem

After obtaining the hypotheses of trajectories and observations, the only task left is to find

the set of hypotheses as a solution that is feasible and maximizes the energy in Eq. (1). In a

feasible solution, there must not exist any observation which is shared by more than one

trajectories, and there must not exist any pair of observation sets, each of which explains the

same image region. The feasibility definition is used to ensure one to one correspondences.

Eq. (2) and its constraints can be rewritten to the matrix forms, given by

(8)

(9)

(10)

After integer programming is applied, the solution is obtained as a binary vector γ defined as

γ = [α, β]′. α and β are two binary vectors assembled from every unknown α(k) and every

unknown  respectively. β̃ is a vector assembled from all the observation indicators,

and therefore its length equals to the total number of individual observations. We note that

some of the observation indicators are known as 1. E is a vector assembled from all the

corresponding  and . A is a sparse binary matrix. Only if the trajectory k has the

observation indexed by l, then A(l, k) = 1. The summation of the indicators of the

trajectories that have the same observation (e.g., the one indexed by l) is equal to the

indicator of the observation, which is the one-to-one mapping constraint described by Eq.
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(9). B is a sparse binary matrix. 1 is a vector and all its elements are equal to 1. Eq. (10) is

just the matrix form of Eq. (7).

3 Tracking Clathrin Coated Pits in 2D+t

3.1 State Space Models and Filters

We assume particle dynamics can be modeled using linear state space models [14] with a

certain probability distribution at each time. Each model is given as

(11)

(12)

Here,  is the state transition matrix.  is the external input.  is the process noise

with covariance matrix . H is a constant observation matrix.  is the observation

noise with covariance matrix . Each of these noise sources is assumed to be Gaussian

and independent. The model parameters can be estimated from training data.

We define the state of particle k at time t as .  is

its position.  is its intensity, and  is the rate of intensity change over time.  is its

relative radius. We use two linear state space models. For particle motion, the first model

describes it as free Brownian motion, and the second model describes it as confined motion

because each particle is linked to the plasma membrane through its neck and can only move

within a restricted region until the fission stage [1]. For intensity variation, both models

describe it as a linear process. The matrices are given by

 is a zero vector, and  is the force that keeps the particle staying near its neck

joint which is estimated by the time-average position . ,

and t1 is the time the particle appears. Also, let t2 be the time the particle disappears. Then

the particle lifetime is t2 − t1 + 1.

Since the process is assumed to be Markovian, we obtain
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(13)

To deal with appearing/disappearing, we set

 and

 where Δ is the maximum displacement.

We define  for t< t1 − 1 and 

for t > t2 + 1, which means the states are irrelevant before the particle is created and after it

disappears.

The computation of  is simplified. In the right side of Eq. (3), the second term can be

ignored because observation noise level is much smaller than process noise level in our

application. The element in Eq. (13) can be approximated as

(14)

Here,  is the predicted state, and  where i* is the index of the most

probable model at time t. The vector norm is defined as . We insert the H

matrix in the norm to ensure that only observable features are used to evaluate the goodness

of each trajectory.

For state estimation and prediction, we use the well known IMM filter [14,3]. In addition,

the feasible range of the observation of a particle is also calculated, which is realized by

using the gating technique [9].

3.2 Initial Detection

The fluorescence intensity in the 2D x-y plane can be well modeled using Gaussian

mixtures, which is well studied in literature [5]. Before it is captured by the EMCCD

camera, the 2D fluorescence image ft can be modeled as the sum of Gaussian mixture Gt and

background bt, given by

(15)

The Gaussian mixture Gt has multiple components, i.e., . Each component

corresponds to a feature/observation vector , given by
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(16)

The image It from the EMCCD camera is determined by the fluorescence image ft and the

noise sources [15], which can be approximated as

(17)

(18)

Nt is Gaussian noise with variance  and zero-mean. The

approximation is only used for feature estimation not for simulation.

According to the above analysis, we have developed a detection method [16]. Initial

positions of the particles are identified in each image by using matched filters. Then, image

background is estimated and Gaussian mixture models are fitted to obtain the full

observation vectors. By thresholding the filtered images, each image is segmented into

regions containing particles.

3.3 Multiple Hypothesis Generation

We use four types of trajectory hypotheses: initiation/appearing, extension, termination, and

breaking. Let’s assume that trajectories (hypotheses) up to time t−1 and observations at time

t have been obtained. The first three can be made straightforwardly. A hypothesis of

trajectory breaking is made, if the intensity curve of an established trajectory has more than

two local minima. The breaking points are at the local minima. This hypothesis will help to

prevent independent trajectories jointing together.

Since the initial detection may not be accurate, multiple observation hypotheses are

generated. Let’s suppose that trajectories up to time t − 1 have been obtained. In the image

It, each segmented region Ωm intersects the predicted observation regions of the particles

{X(k1), X(k2), …}. Then, for each subset {X(kh1), X(kh2), …} of the particles, we can find their

observation set  which maximizes the energy:

(19)

subject to (for each kh)

(20)
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The first term in Eq. (19) is just  calculated using Eq. (18) by considering the pixels

only in the region. The second term in Eq. (19) ensures that each estimated intensity 

will agree with its predicted value  to some degree controlled by λa. Eq. (20) ensures

that each estimated position ( ) is within a circle centered at its predicted position

( ) with radius Δ.

3.4 The Tracking Process

The tracking process is illustrated in Fig. 3. After the initial detection result is obtained by

processing all the images, the tracking module starts. Once it is finished, the order of the

image sequence is reversed and the tracking module performs again to provide the final

result. As the reader may notice, splitting-hypothesis is not mentioned in section 3.3.

However, by tracking in the backward time direction, the problem can be solved, because a

splitting event in the forward timeline is equivalent to a merging event in the reversed

timeline.

3.5 Evaluation on Synthetic Data

Synthetic datasets are created with different signal to noise ratios (SNRs) and particle

densities. A set of CCP trajectories are obtained from real data, and are adjusted by

smoothing and rescaling their intensity-time curves. Each simulated trajectory can be

generated by randomly sampling from that dataset and randomly putting to image plane.

After the clean images are obtained, each image is convolved with point spread function,

and then noises are added. Two types of noises are considered in simulation: the Poisson

(shot) noise of input photon and the excess noise generated in the EMCCD. The SNR of

each dataset is defined as the average SNR of individual particles. By varying the

background noise level, the SNR of each dataset can be tuned in a large range. We choose

two particle densities: 0.005/pixel2 and 0.008/pixel2 to represent the densities of different

regions.

To measure tracking performance, Jaccard similarity is calculated for the tracking result on

each dataset, given by

(21)

True (false) positive TP (FP) is the total number of correct (wrong) associations in the

recovered trajectories, and false negative FN is the sum of the lifetimes of the ground truth

trajectories minus the true positive. Before the calculations, the best match between the

recovered trajectories and the ground truth trajectories is found. The distance threshold is set

to be 3 (pixel), which means if the distance between two positions in two trajectories is

greater than the threshold, then the two positions do not match to each other, i.e., a wrong

association occurs.
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To evaluate the proposed method, we may compare it to some particle tracking methods in

the literature. However, since different parameters and detection methods are used for

different applications, direct comparisons are very difficult and unfair. Instead, we choose

two representative methods modified from two general particle tracking methods. The first

method uses Brownian motion model and linear assignment programing (LAP), which is

based on the method in [4]. We name the first method as 1M-LAP where M means model.

The second method uses the two models with IMM filter described in section 3.1 and global

greedy assignment (GGA), which is based on the method in [3]. We name the second

method as 2M-GGA. Both of the two methods use the same detection module described in

section 3.2. We name our proposed method as 2M-E-MHT where E means extended.

The performance scores are shown in Fig. 4. The method 1M-LAP has the lowest

performance because it uses the least amount of information. By using better models, the

method 2M-GGA does better than the method 1M-LAP in some scenarios. By applying the

extended MHT framework with the CCP models, the proposed method 2M-E-MHT

performs consistently better than the other two methods when SNR is greater than 4.

3.6 Evaluation on Real Data

Wild type mouse fibroblasts were transiently transfected with GFP tagged μ2 subunit of

Adaptor Protein 2 complex by electroporation, and were immediately plated at subconfluent

densities ontofibronectin-coated 35mm glass bottom culture dishes (MatTek, Ashland, MA,

USA) for 24 hours. Images were acquired using a Nikon TiEinverted microscope equipped

with 100× oil objective lens (1.49-NA). Excitation light was provided by 488nm diode-

pumped solid-state lasers coupled to the TIRF illuminator through an optical fiber. The

output from the lasers was controlled by an acousto-optic tunable filter, and fluorescence

signal was acquired with an EM-CCD camera (DU-887; Andor).

Examples of detected particles and the trajectories are shown in Fig. 5(a) and (b),

respectively. The lifetime histogram is shown in Fig. 5(c). Mixture Gaussian distribution

functions are fitted to the normalized histograms, and three populations are indentified.

Other analysis can be performed based on tracking result, and details are omitted due to

space limit.

4 Extension for Cell Segmentation

The method can be extended for 3D tracking in other applications by extending the detection

method to 3D and using relevant state models. Here, we show that the method can be indeed

extended for 3D cell segmentation.

Stem cells play a key role in hair regeneration [17], however, the underlying mechanisms

still remain unclear. For this research, we have acquired cell images in the epidermis by

using two-photon excitation microscopy which can penetrate deep tissues. By considering

the z-slices as time frames, segmentation in 3D just becomes tracking in 2D+t. Each cell is

just a ‘big particle’. The strategy of hypothesis generation is similar to that described in

section 3.3. For each pixel location on each z-slice image, we apply ellipse-shaped filters

with different sizes and orientations as shown in Fig. 6, and select the best ellipse that has

Liang et al. Page 9

Inf Process Med Imaging. Author manuscript; available in PMC 2014 August 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the highest filter output. Therefore, multiple cell observation hypotheses are generated for

each image as shown in Fig. 6. To calculate energies related to observation hypotheses, we

set λa in Eq. (19) as zero, and set  to be equal to the sum of the

corresponding filter outputs. To link the cell observations in 2D images, the same four types

of “trajectory” hypotheses are used, and we only use the second model described in section

3.1. After applying integer programming, the best set of hypotheses are selected as shown in

Fig. 6.

This method is full automatic and works for crowded cells because of the advantage of the

filter based approach, and is relatively easy to be implemented. Since cells can be generally

represented by ellipses, the method can serve as an automatic initial segmentation method.

5 Conclusions

We have proposed a tracking method and applied it for clathrin mediated endocytosis

analysis, and shown the extension for cell segmentation. The original MHT framework is

extended by considering more types of hypotheses, and the related optimization problem is

solved using integer programming. For CCP tracking, special strategies are designed for

multiple hypothesis generation. The tracking method has been demonstrated on synthetic

data and real data. By considering the z-slices as time frames, the method can be extended

for 3D cell segmentation. The method is currently being used to investigate the mechanisms

of clathrin mediated endocytosis, and we will expect more applications.
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Fig. 1.
(a) A Cell image. (b) Different stages of CME, and an image sequence (smoothed) showing

a CCP in different stages. Clathrin is fluorescently labeled. The red dots indicate the center

positions and the green lines represent the trajectories.
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Fig. 2.
(a) Two particles in time t−1. (b) Two observations at time t. (c) Three observations at time

t.
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Fig. 3.
The diagram of the tracking process.
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Fig. 4.
Top Row: the Jaccard similarity scores of the three methods in different scenarios. Botom

Row: Tow synthetic image samples (128×128 pixel, and 1 pixel=180nm): (a)

Density=0.005/pixel2 and SNR=8. (b) Density=0.008/pixel2 and SNR=5.
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Fig. 5.
(a) A sample image with circles indicating detected particles. (b) Sample trajectories over

time (vertical axis), uint in x-y plane is pixel. (c) Lifetime distributions.
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Fig. 6.
Leftmost: Samples of the ellipse-shaped filters. Top row: Cell observation hypotheses over 4

successive z-steps. Bottom row: The selected cell observations.
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