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Abstract. Quantitative information-flow analysis (QIF) is an emerging tech-
nique for establishing information-theoretic confidentiality properties. Automa-
tion of QIF is an important step towards ensuring its practical applicability, since
manual reasoning about program security has been shown to be a tedious and
expensive task. In this chapter we describe a approximation and randomization
techniques to bear on the challenge of sufficiently precise, yet efficient computa-
tion of quantitative information flow properties.

1 Introduction

The goal of an information-flow analysis is to keep track of sensitive information during
computation. If a program does not expose any information about its secret inputs to
unauthorized parties, it has secure information flow, a property that is often formalized
as noninterference. In many cases, achieving noninterference is expensive, impossible,
or simply unnecessary: Many systems remain secure as long as the amount of exposed
secret information is sufficiently small. Consider for example a password checker. A
failed login attempt reveals some information about the secret password. However, for
well-chosen passwords, the amount of leaked information is so small that a failed login-
attempt will not compromise the security of the system.

Quantitative information-flow analysis (QIF) is a technique for establishing bounds
on the information that is leaked by a program. The insights that QIF provides go be-
yond the binary output of Boolean approaches, such as non-interference analyzers. This
makes QIF an attractive tool to support gradual development processes, even without
explicitly specified policies. Furthermore, because information-theory forms the foun-
dation of QIF, the quantities that QIF delivers can be directly associated with operational
security guarantees, such as lower bounds for the expected effort of uncovering secrets
by exhaustive search.

Automation of QIF is an important step towards ensuring its practical applicability,
since manual reasoning about program security has been shown to be a tedious and
expensive task [45]. Technically, successful automation of QIF must determine tight,
yet efficiently computable bounds on the information-theoretic characteristics of the
program. For deterministic programs with uniformly distributed inputs, these charac-
teristics can be expressed by a partition of the secret program inputs. In this partition,
each block is defined by the preimage of some program output. The computation of
some information-theoretic characteristics, e.g., Shannon entropy, from this partition



requires the enumeration of all blocks and the estimation of their respective sizes. Other
measures, e.g., min-entropy, only depend on the number of blocks in the partition. Ex-
act computation for both kinds of characteristics is prohibitively hard, thus suggesting
the exploration of approximation-based approaches. In the presence of approximation,
characterizing the deviation from the exact result becomes an important question.

In this chapter, we describe approximation and randomization techniques to tackle
the challenge of automating QIF for deterministic programs. The presented approach
avoids the trap of block enumeration by a sampling method that uses the program it-
self to randomly choose blocks with probabilities corresponding to their relative sizes.
Each sample amounts to a program execution and indexes a block by the corresponding
program output. We obtain an under-approximation for each block using symbolic ex-
ecution and symbolic backward propagation along the sequence of program statements
traversed during a sample run. We obtain an over-approximation of each block in two
steps. First, we transform the given program such that the input state becomes explicitly
available in the set of reachable program states by memorizing it in an auxiliary vari-
able. Second, an over-approximation of the reachable states of the transformed program
that we obtain by applying abstract interpretation [24] delivers an over-approximation
of blocks indexed by program outputs. Finally, we use the indexing by program outputs
to put together under- and over-approximations for each sampled block. Thus, we ob-
tain the necessary ingredients for the computation of information-theoretic guarantees,
namely, lower and upper bounds for the remaining uncertainty about the program input.

The distinguishing feature of the presented technique is that it ensures fast conver-
gence of the sampling process and provides formal guarantees for the quality of the
obtained bounds. The proof builds upon a result by Batu et al. [9] stating that the en-
tropy of a random variable can be estimated accurately and with a high confidence level
using only a small number of random samples. Since Batu et al. [9] require an oracle
revealing the probability of each sample of the random variable, in the first step to-
wards the QIF setting we identify a correspondence between the sampling oracle and
the preimage computation for the program whose QIF properties are analyzed. In the
second step, we prove that the confidence levels and convergence speed of the exact
setting, which relies on the actual preimages, can also be obtained in the approximative
setting where only over- and under-approximations of preimages are known. This re-
sult allows our approach to replace the exhaustive analysis of all, say n-many, possible
preimages with the treatment of a randomly chosen set of O((log n)?) preimage samples.

This chapter extends and generalizes the results from [41]. In particular, the chap-
ter contains a discussion of non-uniformly distributed secrets and adversarially chosen
inputs.

Outline In the next section, we illustrate our approach on example programs. Then,
we give basic definitions in Section 3. In Section 4, we present over- and under-
approximation techniques. Section 5 describes how randomization combines over- and
under-approximations to deliver a quantitative information flow analysis. Finally, we
discuss related work in Section 6.



2 Illustration

We illustrate our method on two example programs whose quantitative information-
flow analysis is currently out of reach for the existing automatic approaches. The ex-
amples present the computation of Shannon entropy and min-entropy, respectively, and
require dealing with loops and data structures, which our method handles automatically
using approximation and randomization techniques. We computed certain intermedi-
ate assertions for the following examples using BounpGen, an automatic tool for the
discovery of resource usage bounds [23].

2.1 Estimating Shannon entropy

As a first example we consider the electronic purse program from [2] as shown below.

1 1=0;

2 // assume(h < 20);
3 while(h>=5){

4 h = h-5;

5 1 =1+1;

6

}

The program receives as input the nonnegative balance of a bank account in the inte-
ger variable h and debits a fixed amount of 5 from this account until the balance is
insufficient for this transaction, i.e., untilh < 5.

Our goal is to determine the remaining uncertainty about the initial value of h after
learning the final value of 1, where we use Shannon entropy as a measure of uncertainty.
A high remaining uncertainty implies a large lower bound on the expected number of
steps that are required for determining the initial value of h by brute-force search [47],
which corresponds to a formal, quantitative confidentiality guarantee.

For uniformly distributed inputs, one can express the remaining Shannon entropy as
a weighted sum of the logarithms of the sizes of the preimages of the program [38]. A
large average preimage size corresponds to a large remaining uncertainty about the input
and implies a large expected effort for determining the program’s input after observing
the output.

One way to precisely compute the remaining Shannon entropy is to compute the
partition induced by the preimages of the program, which may require the enumeration
of all pairs of program paths. Moreover, it requires the enumeration of all blocks in
the computed partition [2]. Both enumeration problems severely limit the size of the
systems that can be analyzed using this precise approach.

For the purse program and nonnegative h, the partition induced by the preimages of
the program is

{{0,1,2,3,4},{5,6,7,8,9},...}

and is represented by the following formula that states that two initial values, say & and
h, are in the same block.

Fk>0:5k<h<5k+4A5k<h<5k+4



The quantified variable k corresponds to the number of loop iterations that the program
executes when started on 4 and . Such existentially quantified assertions are out of
reach for the existing automatic tools for reasoning about programs. The current ap-
proaches simplify the problem by (implicitly) bounding the number of loop iterations
and replacing the existential quantification with finite disjunction.

For example, the algorithm from [2] bounds the number of loop iterations by mak-
ing finite the set of possible valuations of h, which is achieved by introducing the as-
sumption in line 2. With this restriction, we obtain the following characterization of the
partition.

O<h<4A0<h<4)V
(5<h<9AS<h<9)V
(10<h<14A10<h<14)V
(I5<h<19A15<h<19)

As mentioned above, such solutions are only partial and overly restrictive, since the
program properties derived for values below the loop bound do not necessarily carry
over beyond this limit.

In this chapter, we show that the precise computation of each preimage can be re-
placed by the computation of the under- and over-approximation of the preimage. We
also show that, by running the program on randomly chosen inputs and approximat-
ing only the preimages of the corresponding outputs, one can derive upper and lower
bounds for the remaining uncertainty about the program’s secret input. These bounds
are valid with a provably high level of confidence, for a number of samples that is
poly-logarithmic in the size of the input domain.

Approximation To compute over-approximations of preimages, we augment the pro-
gram by declaring copies of input variables (so-called ghost variables) and adding an
assignment from inputs into these copies as the first program statement. In our program,
we declare a new variable _h and insert the initialization statement _h = h; before line
1. Let F 0o be the set of reachable final states of the augmented program. Freach keeps
track of the relation between the ghost variables and the output of the original pro-
gram. As the ghost variables are not modified during computation, this set corresponds
to the input-output relation p;p of the original program, i.e., Froaeh = pro. While the
exact computation of Freaen is a difficult task, we can rely on abstract interpretation
techniques for computing its over-approximation [24]. In particular, we can bias the
over-approximation towards the discovery of the relation between the ghost variables
and low outputs by using constraints and borrow existing implementations originally
targeted for resource bound estimation, e.g. [23, 32]. We apply the bound generator
BounpGen [23] and obtain
Frah = —5+51<h<-1+51.

The predicate I?mwhﬁ represents an over-approximation of the input-output relation pjo.
(Here, the outcome happens to be a precise description.) Hence for each low output

value 1, the set of ghost input values _h, such that 1 and _h are related by frmhﬁ, over-
approximates the preimage of 1 with respect to the original program. The size of these



approximated preimages can be determined using tools for counting models, e.g., we
use LartE [43] for dealing with linear arithmetic assertions. In our example, we obtain
5 as an upper bound for the size of the preimage of each value of 1.

To compute under-approximations of preimages, we symbolically execute the pro-
gram on a randomly chosen input and determine the preimage with respect to the ob-
tained path through the program. This computation relies on the relation between pro-
gram inputs and outputs along the path that the execution takes. We establish this re-
lation by combining the transition relations of individual steps. This technique can be
efficiently automated using existing symbolic execution engines both at the source code
level, e.g., KLEE [14] and DART [29], and at the binary level, e.g., BitScopE [12].

For example, for an input of h = 37, this relation is determined to be

35<h<39A1=8.

(Again, the result happens to be a precise description.) Hence, the preimage size of
1 =8 is atleast 5.

Randomization The direct approximation of the leak as described above requires the
computation of bounds for the size of each preimage. Note that the number of preimages
can be as large as the input domain (e.g. when the program’s output fully determines the
input), which severely limits scalability. We overcome this limitation using a random-
ized approach, where we run the program on randomly chosen inputs and approximate
only the preimages of the corresponding outputs. Leveraging a result from [9], we show
how this set of preimages can be used for deriving bounds on the information-theoretic
characteristics of the entire program. These bounds are valid with a provably high level
of confidence, for a number of samples that is logarithmic in the size of the input do-
main.

Technically, we show that, for an arbitrary ¢ > 0, the remaining uncertainty H about
the secret input is bounded by the following expression

1 & 1<
N1 s < H< -)1 fis,
n;()gzml H;ngml

where n is the number of samples and m? and m? are the upper and lower bounds for the
size of the preimage corresponding to the ith sample. If the secret input is chosen from
a set 1, these bounds hold with a probability of more than p for a number of samples n
such that

_ (log #())

- (1-pe

For our example and 7 = {0, ..., 204 _ 1}, our analysis delivers coinciding lower and
upper bounds of 5 for the sizes of the preimages (except for the preimage containing
2%% _ 1, which is smaller). As a consequence, we obtain entropy bounds of

log,5-0.1 <H <log,5+0.1

that hold with a probability of more than 0.99 when considering 10® samples.



2.2 Estimating min-entropy

The following program implements an algorithm for the bit-serial modular exponen-
tiation of integers. More precisely, the program computes xX mod n, where n is the
constant modulus and k is maintained by the program in a binary array of constant
length len.

1 int m = 1;

2 for (int i = 0; i<len; i++) {
3 m = m*m mod n;

4 if (k[i]l ==1) {

5 m = m*x mod n;

6 }

7 }

Due to the conditional execution of the multiplication operation m=m*x mod n in line
5, the running time of this program reveals information about the entries of the array k.
Such variations have been exploited to recover secret keys from RSA decryption algo-
rithms based on structurally similar modular exponentiation algorithms [37]. We ana-
lyze an abstract model of the timing behavior of this program, where we assume that
each multiplication operation consumes one time unit. We make this model explicit in
the program semantics by introducing a counter time that is initialized with 0 and is
incremented each time a multiplication operation takes place.

Our goal is to quantify the remaining min-entropy about the content of k after ob-
serving the program’s execution time, i.e., given the final value of time. The min-
entropy captures the probability of correctly guessing a secret at the first attempt. In
contrast to Shannon entropy, computation of min-entropy does not require the enumer-
ation of blocks and estimation of their sizes. For min-entropy, we only need to estimate
how many blocks (or alternatively how many possible outputs) the program can pro-
duce [59].

This simplification can be exploited when dealing with programs that manipulate
data structures. As the example shows, applications often keep secret the content of
data structures, while some of their properties, e.g., list length or even number of ele-
ments satisfying a Boolean query, are revealed as outputs. In such cases, our method
can estimate the input’s remaining min-entropy despite the difficulties of automatic
reasoning about data structures. To succeed, our method applies the over- and under-
approximation techniques presented in Section 2.1, however without the addition of
ghost variables. No ghost variables are needed, since the actual block content given by
the secret data structure elements is irrelevant for the min-entropy computation.

We extend a result from [59] to show that under-approximations of the remain-
ing min-entropy can be computed from over-approximations of the size of the set of
reachable states F.,.;, which in our example is the set of possible values of the vari-
able time. By applying the bound generator BounoGeN [23], we obtain the following
over-approximation F reach Of Freachs

Freach’ = len < time < 2len,



which shows that #(F ,m.h#) < len + 1. We use this bound to infer that, after observing
time, the remaining uncertainty about the exponent k is still larger than

len
10g2 m =len- logz(len + l) s
given that k is drawn uniformly from {0, ..., 2% — 1}. An alternative interpretation is

that the expected reduction in uncertainty about the exponent k is at most log,(len + 1)
bits.

3 Preliminaries

In this section, we give the necessary definitions for dealing with programs and
information-flow analysis.

3.1 Programs and computations

Following [46] we treat programs as transition systems, and rely on existing translation
procedures from programs written in particular programming languages to transition
systems, e.g., [36]. A program P = (S, 1,7") consists of the following components.

— § - aset of states.

— 1 C S -asetof initial states.

— 7 - a finite set of fransitions such that each transition 7 € 7 is given a binary
transition relation over states, i.e., p €S X §.

For a program represented as source code, states are determined by the valuation of
the declared program variables and the program counter, and transition correspond to
program statements.

Let F be the set of final program states that do not have any successors, i.e.,

F = {seS|VseSVYTeT :(s,5)¢p:}.

A computation of P is a sequence of program states s, ..., s, such that s; is an initial
state, i.e., s; € I, s, is a final state, i.e., s, € F, and each pair s and s’ of consecutive
states follows a program transition, i.e., (s, s") € p, for some 7 € 7. We assume that
final states do not have any successors, i.e., there is no pair of states s and s’ such that
s € Fand (s,s") € p, forsome 7€ 7.

A program is deterministic if for each state s there is at most one transition that
assigns a successor to s and there is at most one such successor. Formally,

Vs Vs Vs" NTYT 1 ((s,5) €Ep: A(s,5")Epr) > (s =s" AT=1).

In this chapter we only consider deterministic programs.

A path is a sequence of transitions. We write € for the empty path, i.e., the path of
length zero. Let o be the relational composition function for binary relations, i.e., for
binary relations X and Y wehave X oY = {(x,y)|dz:(x,2) € X A(z,y) € Y}. Then,



a path relation is a relational composition of transition relations along the path, i.e., for
T=T1,...,T, we have p, = p;, o...0p. . A path x is feasible if its path relation is not
empty, i.e., p, # 0.

Let p be the program transition relation defined as follows.

P:UPT

TeT”

We write p* for the transitive closure of p. The input-output relation p;o of the program
relates each initial state s with the corresponding final states, i.e.,

pro = PPNUXF).

A final state s’ is reachable from an initial state s if (s, s") € p;o. We write F e, for the
set of reachable final states, i.e.

Fraen = {s€F|3Asel: (s,5) € po}

Given a final state s’ € F, we define its preimage P~'(s") to be the set of all initial states
from which s’ is reachable, i.e.,

PUs) = {s]|(s,5)€pio}.

The preimage of an unreachable state is the empty set.

3.2 Qualitative information flow: what leaks?

We characterize partial knowledge about the elements of a set A in terms of partitions
of A, i.e., in terms of a family {By,..., B,} of pairwise disjoint blocks such that B &
---WB, = A. A partition of A models that each a € A is known up to its enclosing block
B; such that @ € B;. We compare partitions using the imprecision order E defined by

{By,....B,}E{B]|,....B.,} = Vie{l,...,r} HjE{l,...,r’}:BiQB}.

With the imprecision order, larger elements correspond to less knowledge about the
elements of A. Let C be the irreflexive part of C.

Knowledge about initial states We consider a deterministic program P that imple-
ments a total function, i.e., for each input state s there is one final state s’ such that
(s, s") € pjpo. We assume that the initial state of each computation is secret. Further-
more, we assume an attacker that knows the program, in particular its transition rela-
tion, and the final state of each computation. In our model, the attacker does not know
any intermediate states of the computation.

The knowledge gained by the attacker about initial states of computations of the
program P by observing their final states is given by the partition /7 that consists of the
preimages of reachable final states, i.e.,

1l = {Pil(s/) | s’ e Freacn} - (D



There are two extreme cases. The partition I7 = {I} consisting of a single block captures
that P reveals no information about its input. In contrast, the partition I7 = {{s} | s € I}
where each block consists of a single element captures the case that P fully discloses
its input. For the remaining, intermediate cases such that {{s} | s € I} C IT C {[}, the
partition /7 captures that P leaks partial information about its input.

Knowledge refinement by interaction More generally, a program P may receive and
produce both secret (high) and public (low) inputs, where the low inputs may be read
or modified by an attacker. If the high input remains fixed over several runs of the
program, the attacker can use the low inputs to influence the computation and thereby
refine his knowledge about the high input. A restricted version of the above scenario
can be reduced to the setting of programs with only high inputs and can be analyzed
using the methods presented in this chapter.

Specifically, we consider the case where the attacker runs the program using a fixed
finite set of low inputs /i, ..., [,. We model this scenario using a finite set of programs
Pi,..., P, where each P; corresponds to the program P with the low input set to the
value /;. An attacker running the program P with two low inputs /; and /; and observing
the final states s; and s;, respectively, can hence narrow down the set of possible secrets
to Pi’1 (spHN P;l (s;). More generally, the partition

o = (P{'Gs)n--NP sy | s1,...,8, € F) (2)

characterizes what an attacker can learn about a fixed secret input after running P with
the low inputs [y, ..., /, and observing the corresponding outputs, see e.g. [38].

Notice that the partition 77 corresponds to the set of preimages of the function
f: I = F" where each component f; is defined by the input-output behavior of program
P;. This function f can be computed by the independent composition of the programs
Pi,..., P, seee.g. [7]. For example, for the case n = 2 we obtain an independent com-
position by creating a copy P’ of P and replacing every program variable x that occurs
in P by a fresh variable x’. An analysis of the following program with input 4’ and out-
put (/,1’) then corresponds to an analysis of P with respect to two runs with high input
h and low inputs /; and ,, respectively.

I=1;Ul =W =h
P(h, 1)

P,

return (/,1')

This construction easily generalizes to n > 2, however at the expense of an exponen-
tially growing state-space. In this way, analyzing a deterministic program with respect
to a fixed finite set [y, ..., 1, of low inputs can be reduced to the analysis of a program
without low inputs. For simplicity of exposition we will focus on programs without low
inputs in the remainder of the chapter.
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3.3 Quantitative information flow: how much leaks?

In the following, we use information theory to characterize the information that P re-
veals about its input. This characterization has the advantage of being compact and easy
to compare. Moreover, it yields concise interpretations in terms of the effort needed to
determine P’s input from the revealed information.

We assume that the program’s initial state is drawn according to a probability dis-
tribution p on I and we suppose that p is known to the attacker. For a random variable
X: I — X withrange X, we define px: X — R as px(x) = 3 jex-1(x) P($), which we will
also denote by Pr(X = x). For analyzing the program P, there are two random variables
of particular interest. The first random variable U: I — I models the random choice
of an input in /, i.e., U(s) = s. The second random variable V: I — F captures the
input-output behavior of P, i.e., V(s) = s’ where (s, s") € pjo.

Shannon entropy The (Shannon) entropy [58] of a random variable X: I — X is
defined as

H(X) == " px(x)log, px(x) .
xeX

The entropy is a lower bound for the average number of bits required for representing
the results of independent repetitions of the experiment associated with X. Thus, in
terms of guessing, H(X) is a lower bound for the average number of questions with
binary outcome that need to be asked to determine X’s value [13]. Given another random
variable Y: I — Y, we write H(X|Y = y) for the entropy of X given that the value of ¥
is y. The conditional entropy H(X|Y) of X given Y is defined as the expected value of
H(X|Y = y) over all y € M, namely

HXIY) = > pyHXIY =),

yey

and it captures the remaining entropy about X when Y is observed.

Consider now a program P and the corresponding random variables U and V, as
defined above. Then H(U) is the observer’s initial uncertainty about the secret input
and H(U|V) is the observer’s expected uncertainty about the input after running the
program. We will use H(U|V) as a measure of information flow because it is associated
with operational security guarantees: The expected effort for determining the secret
input by exhaustive search is bounded from below by 2#(UIV)=2 see [47] and [11,39].

Min-entropy The min-entropy of a random variable X captures the probability of cor-
rectly determining the value of X in a single guess using an optimal strategy, i.e., by
choosing the most likely value. From this probability, it is straightforward to derive
bounds on the probability for correctly determining the value of X in an arbitrary num-
ber of guesses. Formally, the min-entropy H, is defined as

H(X) = —log, (r?g(x px(x)) .
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The conditional min-entropy H.(X|Y) quantifies the expected probability of correctly
determining the secret in one guess after having observed the outcome of Y [59] and is
defined by

Heo(X[Y) = = logy | > pr(y) max pxyy—(x) | -
yeY

As before, H.,(U|V) quantifies the expected probability of correctly determining the
value of U in one guess after observing the output V of the program P.

Note that the success probability of a single guess can also be estimated using
the conditional Shannon entropy, e.g. using Fano’s inequality. However, as pointed out
in [59], this estimation is not always accurate. Hence, it is preferable to use min-entropy
to compute the success probability of single guesses.

Leakage vs. security The information leaked by P is the reduction in uncertainty
about the input U when the output V is observed. For the case of Shannon entropy, the
leakage L is given by

L=HU)-HU|V), 3)

and it can be defined analogously using alternative measures of uncertainty. Many ap-
proaches in the literature focus on computing the leakage rather than the remaining
uncertainty. If the initial uncertainty H(U) is known, Equation (3) gives a direct cor-
respondence between the leakage L and the remaining uncertainty H(U|V). In the fol-
lowing, we focus on the remaining uncertainty rather than on the leakage, because the
remaining uncertainty enjoys a more direct interpretation in terms of an attacker’s diffi-
culty for recovering secrets and, hence, security.

(Non-)Uniform Input distributions For the important case where p is the uniform

distribution, we have

#P'(5")
#(I)

i.e., one can characterize the distribution of V in terms of the sizes of the preimages
of P. Moreover, one can give formulas for remaining uncertainty about the input of P
in terms of the number and the sizes of the partition /7 induced by the preimages of
P, see [38, 59]. These formulas provide the interface between the qualitative and the
quantitative viewpoints.

Pr(V=ys")= , “)

Proposition 1. If the input of P is uniformly distributed, we obtain the following ex-
pressions for the remaining uncertainty about the input after observing the output of P
in terms conditional Shannon and min-entropies, respectively.

1

HUV) = %Z#(B)Ing#(B) )
Bell

#()
0og, %

Ho(U|V) (6)
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In scenarios where the input is distributed non-uniformly, Proposition 1 cannot be
directly applied. However, a recent result shows that for Shannon entropy, the case
of non-uniform input distributions can be reduced to the case of uniform input distri-
butions [1]. The key idea behind the reduction is to consider the non-uniform input
distribution p as being generated by a deterministic program D that receives uniformly
distributed input.

The key requirement for this generator program is that, for each s € I, the size
of D™!(s) be proportional to p(s). The following program satisfies this requirement by
construction. Here, we assume that / = {sy, ..., s4} and that the variable r is initialized
by values drawn uniformly from [0, 1]. For rational distributions, the program can be
easily adapted to one that receives uniformly distributed input from an integer range.

J = 1 ¢ = p(s1)
while j <#()Ar>c

Jj=j+1
¢ = c+p(sj)
return s;

While the above construction is obviously not practical for large /I, efficient gener-
ator programs often occur in practice. E.g., the Personal Identification Numbers (PINs)
used in electronic banking are often not uniformly distributed, but derived from uni-
form bitstrings using decimalization techniques [21]. Another example are the keys
of a public-key cryptosystem, which are typically not uniformly distributed bitstrings.
However, they are produced by a key generation algorithm that operates on uniformly
distributed input. More generally, a large number of randomized algorithms expect uni-
formly distributed randomness. For a language-based perspective on distribution gen-
erators, see [54].

Given a generator program D, the remaining uncertainty about the inputs of a pro-
gram P can be expressed as the difference in the remaining uncertainty about the inputs
of P ;D and D. Modeling the uniformly distributed input by a random variable U and
interpreting program D as a random variable, one obtains the following connection [1].

Proposition 2.
H(D|V) = H(U|V o D) - H(U|D)

Notice that (5) applies to both terms on the right hand side of Proposition 2 and com-
pletes the reduction to the uniform case. In the remainder of the chapter we hence focus
on the uniform case. For a more detailed treatment of the non-uniform case, refer to [1].
Furthermore, we will only consider logarithms with base two, and will omit the base
from the formulas to simplify notation.

3.4 Towards automation

Proposition 1 immediately suggests the following approach for automatically determin-
ing the remaining uncertainty about the inputs of a program P.
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1. For computing H(U|V), first enumerate the elements of /7 and then determine their
sizes.
2. For computing H.,(U|V), determine the number of elements in I7.

In [2] it was shown how the partition /7 can be obtained by computing relational
weakest preconditions, how its blocks can be enumerated using SAT solvers, and how
the sizes of the blocks can be determined using model counting [30]. Unfortunately, the
exact computation of these properties can be prohibitively expensive (see also [15,60]).

4 Bounding information leaks

In this section, we present a method for the automatic derivation of upper and lower
bounds on the remaining uncertainty about a program’s inputs.

We consider bounds that over- and under-approximate the remaining uncertainty
both qualitatively and quantitatively. On the qualitative side, we show how to compute
over- and under-approximations of the set of blocks in /7. Moreover, we show how to
compute over- and under-approximations for each block in /7. On the quantitative side,
we show how these over- and under-approximations can be used for computing bounds
on the remaining uncertainty in terms of min-entropy and Shannon entropy.

4.1 Bounding block count

Computation of min-entropy requires estimation of the number of blocks in the par-
tition 77, which is equal to the cardinality of the set of reachable final states Feqcn,
see (1) and (6). The set F .4, can be over-approximated by applying abstract interpre-
tation techniques [24] on the program P. Abstract interpretation allows one to incre-
mentally compute an approximation of the set of reachable program states by relying
on the approximation of individual program transitions. The set F,.. can be under-
approximated by symbolic execution and backward propagation along the sequence of
program statements traversed during the execution.

Over-approximation of F,,. For the computation of the over-approximation
F ,mh” 2 Feuen We will use an abstraction function @ : 25 — 25 that over-approximates
a given set of states, i.e., for each X € § we have X C a(X). For simplicity of expo-
sition we assume that the abstract values are sets of program states, which leads to the
concretization function that is the identity function and hence is omitted. The presented
approach can use more sophisticated abstract domains without any modifications.

In theory, the set of reachable final states F'.,;, can be computed by iterating the
one-step reachability function post: 255 x 25 — 25 defined below. Note that we put
the first parameter in the subscript position to simplify notation.

post,(X) = {s'|Ase X : (s, s") € p}

The iteration process applies post, on the set / zero, one, two, ..., many times, takes the
union of the results and restricts it to the final states. The resulting set is the intersection
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of the final states with the least fixpoint of posz, containing I by the Kleene fixpoint
theorem. Formally, we have

Freacn = F N (1 U post,(I) U post,(post,(I) U ....)
= F N lfp(post,, 1) .

Unfortunately, it is not practical to compute the result of iterating post, arbitrarily many
times, i.e., the iteration may diverge for programs over unbounded (infinite) sets of
states.

Abstract interpretation overcomes the above fundamental problem of computing
Flreaen by resorting to an approximation of post, using the abstraction function @. That
is, instead of iterating posz,, we will iterate its composition with a, i.e., we will compute
the restriction of the abstract least fixpoint to the final states. Let e be a binary function
composition operator such that f e g = Ax.f(g(x)). Then

Freaen® = F 0 (D) U (a e posty)(a(l)) U (@ -postp)z(oz(l)) U...)
=Fnlifplae post,, a(l)) .

Instead of computing the exact set F,.;, We compute its over-approximation, i.e.,
F reach F reachIj .

By choosing an adequate abstraction function @ we can enforce termination of the iter-
ation process after a finite number of steps, as no new states will be discovered. In other
words, after some k > 0 steps we obtain

k
(a @ post,) " (a(1)) € |_J(a o post, ) (1),
i=0

while maintaining the desired precision of the over-approximation. Here, we can rely
on an extensive body of research in abstract interpretation and efficient implementations
of abstract domains, including octagons and polyhedra [3,25,35,50].

Under-approximation of F,.,., When computing the under-approximation F’ reach” C
Freach we follow an approach that is different from its over-approximating counterpart,
since we cannot rely on abstract interpretation for computing an under-approximation.
Despite the established theoretical foundation, abstract interpretation does not yet pro-
vide practical under-approximating abstractions.

Instead, we can resort to a practical approach for computing under-approximations
by symbolic execution of the program along a selected set of program paths. This ap-
proach has been successful for efficient exploration of state spaces (for finding runtime
safety violations), e.g., VErisort, KLEE, DART, and BirScorE [12, 14,28,29].

Let 7y,...,m, € 7 be a finite set of non-empty program paths, which can be
chosen randomly or according to particular program coverage criteria. This set of paths
determines a subset of reachable finite states in the following way.

Frea' = | 15135€8:(5,5)€pan(UxF))



procedure MxPatH
input
s € I - initial state
begin
T =€
while s ¢ F do
(t,8") = choose T € 7 such that (s, s") € p,
s =
=0T
done
return (7, 5)
end.

~N N R W =

Fig. 1. Function MkPatH computes the program path and the final state for a given initial state.

In Figure 1 we describe a possible implementation of a symbolic execution function
MkxkPartH that creates a program path for a given initial state. The termination of MkPATH
follows from the requirement that P implements a total function.

Given the over- and under-approximations F’ ,m.h# and F ,mhb, we can bound the
number of blocks in the partition /7 as formalized in the following theorem.

Theorem 1. The over- and under-approximations of the set of reachable final states
yield over- and under-approximations of the number of blocks in the partition I1. For-
mally,

#(Freacn’) < #UT) < #(Freaan®)

Proof. The theorem statement is a direct consequence of the bijection between Feqch
and I7 under the inclusion Freaen” € Freach S Freach'-

4.2 Bounding block sizes

Computation of block sizes in /7 requires identification of the blocks as sets of initial
states. Our technique approaches the computation of /7 through an intermediate step
that relies on the input-output relation p;o. We formulate the computation of the input-
output relation as the problem of computing sets of reachable states, which immediately
allows one to use tools and techniques of abstract interpretation and symbolic execution
as presented above. Then, given p;p, we compute /7 following (1).

In order to compute the input-output relation p;o we augment the program P such
that the set of reachable states keeps track of the initial states. We construct an aug-
mented program P = (S,1, F,7) from the program P as follows.

- §=8xS.
-1=A{(s,5)|s€l}.
- F=S XF.
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-7 = {t | T € 7}, where for each transition 7 € T we construct the transition
relation p7 such that

pr = {((s",9), (5", 5| (s,5)ep As” €S}.

Similarly to P, we definep = ;7 pr

Our augmentation procedure is inspired by the use of ghost variables for program
verification, see e.g. [5]. Note that when constructing P we do not apply the self-
composition approach [7], and hence we avoid the introduction of additional complexity
to P. In fact, the construction of P from P can be implemented as a source-to-source
transformation by declaring copies of input variables and adding an assignment from
inputs into these copies as the first program statement.

The set of reachable states of the augmented program P corresponds to the input-
output relation of the program P, as stated by the following theorem.

Theorem 2 (Augmentation). The input-output relation of P is equal to the set of reach-
able final states of its augmented version P, i.e.,

P10 = Freach -
Proof. The augmented program manipulates pairs of states of the original program. We
observe that the augmented program does not modify the first component of its initial
state, which stays equal to the initial value. Furthermore, the second component follows
the transition relation of P. Thus, the theorem statement follows directly.

Now we apply abstract interpretation and symbolic execution techniques from Sec-
tion 4.1 to the augmented program P. We obtain the over-approximation f,wc,i by ab-
stract least fixpoint computation of post;, where a over-approximates sets of S -states,
and its restriction to the final states of ﬁ, i.e.,

F,eachﬁ = Fn Ifp(a o post, a(f)) .

. . . = b . .
The computation of the under-approximation F,.,. requires a finite set of paths
my,...,m, through the augmented program, however we could also use a set of paths
through P and adjust accordingly. Again we use the paths for performing symbolic

. . . . . . o .= b
execution and applying existential quantification over the initial states to obtain F ., -
We finally put together over- and under-approximations of preimages of P, indexed

by the corresponding final states.

Theorem 3 (Augmented approximation). Projection of the over- and under-
approximations of reachable final states of the augmented program on the initial com-
ponent over- and under-approximates respective blocks in the partition 11 for the pro-
gram P. Formally, for each s’ € F we have

’ el b — ol ﬁ
{sl(s»s)EFreach }g P l(s/)g {Sl(S,S/)E Freach }

Thus, given a reachable final state of P we can apply Theorem 3 to compute an over-
and under-approximation of the corresponding block in the partition /7.



4.3 Information-theoretic bounds

We now show how, for uniformly distributed input, bounds on the size and the number
of the elements of /7 can be used for deriving bounds on the remaining uncertainty of a
program in terms of Shannon entropy and min-entropy.

Shannon entropy For uniformly distributed inputs, one can express the probability
Pr(V = s') of the program outputting s’ in terms of the size of P~!(s’), see (4). We
define upper and lower bounds P°(s") and pf(s’) for Pr(V = s’) on the basis of the
under- and over-approximation of P~!(s") given in Theorem 3.

Formally, we assume s” € F .., and define

b(s/) — max #({S | (S7 S,) € Freuchb}) L
P #0) %)
_ #(Us | (5.5) € Freger )

B
pi(s’) #0

From Theorem 3 then follows that
P’(s") < Pr(V =5) < phs') @)

forall s’ € Fpue”. These bounds extend to all s” € Fpye, because for s” € F g \F each’s
the value p’(s”) = 1/#(I) is an under-approximation of the probability p(V = s’).

The following theorem shows that we can bound H(U|V) in terms of combinations
of upper and lower bounds for the preimage sizes.

Theorem 4. If U is uniformly distributed, the remaining uncertainty H(U|V) is
bounded as follows

D P log p(s") + log #(I)

8" €F reacn?
< H(UIV)
< Z pb(s')logpﬁ(s’) + log#(I) .

b
§"€F yeqacn”

Proof. P implements a total function. As a consequence, V is determined by U. We
obtain H(U) = H(UV) = HU|V) + H(V) and conclude H(U|V) = HU) - H(V). As U
is uniformly distributed, we have H(U) = log #(I). By definition of Shannon entropy,

H(V) = Z Pr(V = 5')(~ log Pr(V = 5')) . 8)

§"€F reach

Observe that —log is nonnegative and decreasing on (0, 1]. Together with the bounds
from (7), this monotonicity implies that replacing in (8) the occurrences of —log Pr(V =
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') by —log p(s’), replacing the remaining occurrences of Pr(V = ') by p’(s), and
dropping the summands corresponding to elements of F e \ Freaen” Will only decrease
the sum, which leads to the upper bound on H(U|V). The lower bound follows along
the same line.

Min-entropy The following theorem shows that it suffices to over- and under-
approximate the size of the range of a program P in order to obtain approximations
for the remaining uncertainty about P’s input.

Theorem 5. If U is uniformly distributed, the remaining uncertainty Ho,(U|V) of a
program P is bounded as follows

#(I) #(1)

log ———— < H(U|V) < log
#(Freachﬁ)

b
reach )

Proof. Smith [59] shows that H,(U|V) = log(#(I)/#(I1)). The assertion then follows
from Theorem 1 and the monotonicity of the logarithm.

5 Randomized quantification

In Section 4 we showed how to obtain bounds on the remaining uncertainty about a
program’s input by computing over- and under-approximations of the set of reachable
states and the corresponding preimages.

While the presented approach for computing min-entropy bounds requires deter-
mining the size of (an approximation of) the set of reachable states (see Theorem 5),
the approach for computing Shannon-entropy bounds requires enumerating this set (see
Theorem 4). This enumeration constitutes the bottleneck of our approach and inhibits
scalability to large systems.

In this section, we show that the enumeration of the set of reachable states can be re-
placed by sampling the preimages with probabilities according to their relative sizes. To
this end, we run the program on a randomly chosen input and approximate the preim-
age of the corresponding output. We combine the sizes of the approximations of the
preimage and obtain upper and lower bounds for the remaining uncertainty. Moreover,
we give confidence levels for these bounds. These confidence levels are already close
to 1 for a number of samples of as small as O((log #(I))?).

On a technical level, our result makes use of the fact that the random variable given
by the logarithm of the size of randomly chosen preimages has small variance [9]. The
Chebyshev inequality implies that the estimations obtained from sampling this random
variable are likely to be accurate.



5.1 RanT: A randomized algorithm for quantitative information flow analysis

Given a program P, our goal is to compute bounds H* and H® with quality guarantees
for the remaining uncertainty H(U|V) about the program’s input when the program’s
output is known. More precisely, given a confidence level p € [0, 1) and a desired
degree of precision ¢ > 0, we require that

H' -6 < HUIV) < H +6

with a probability of at least p.

Algorithm Our procedure RaNT computes such bounds in an incremental fashion. After
an initialization phase in lines 1 and 2, RanT randomly picks an initial state s € I, see
line 4 in Figure 2. Then, RANT runs the program P on input s to determine the final state
s’ and the corresponding execution path 7, see line 5. We use the technique described
in Section 4.2 for determining an over-approximation of the preimage of s in line 6.
Note that f,mhﬁ only needs to be computed once and can be re-used for all iterations
of the while loop. We use the techniques described in 4.2 for determining an under-
approximation of the preimage of s’ in line 7. The variables H* and H” aggregate the
logarithms of the preimage sizes. After

_ (log#(D))?
TIPS

many iterations of while loop, H* and H” are normalized by n and returned as upper
and lower bounds for H(U|V), respectively.

Counting preimage sizes The computations in lines 6 and 7 of RANT require an algo-
rithm that, given a set A, returns the number of elements #(A) in A. If A is represented
as a formula ¢, this number corresponds to the number of models for ¢. For exam-
ple, if A is represented in linear arithmetic, this task can be performed efficiently using
Barvinok’s algorithm [8]. The Lattice Point Enumeration Tool (LarTE) [43] provides an
implementation of this algorithm.

Correctness The following theorem states the correctness of the algorithm RANT.

Theorem 6. Let P be a program, 6 > 0, and p € [0, 1). Let U be uniformly distributed.
If RaNT(P, 6, p) outputs (Hﬁ, H b), then

H -5 <HWUIV)<H*+6
with a probability of more than p.

We need the following lemma for the proof of Theorem 6. The proof of the lemma is
based on a result from [9].
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function RanT
input

P : program

6 > 0 : desired precision

p € 10,1) : desired confidence level
vars

7 program path

output
HY H - upper and lower bounds for H(U|V)
begin
1 n =20
2 H =H =0
3 while 1 < log(#(1))?/((1 — p)6*) do
4 s := choose from / randomly
5 (mr,s") := MKkPatH(s)
6 H = H+log#((s” | (5", ') € Froaon'})
7 H’ = H’+log#({s” | (s",5) € ps})
8 n:=n+l
9 done
10 return (H*/n, H /n)

end.

Fig. 2. Randomized procedure RanT for computing an approximation of the remaining uncer-
tainty about the input of a program. The relation F . is computed once and re-used for all
iterations of the while loop.

Lemma 1. Let X be a random variable with range of size m and let 6 > 0. Let x1, ..., X,
be the outcomes of n independent repetitions of the experiment associated with X. Then

1 < 1 v
- Z logPr(X =x)-6 < HX) < -—- Z logPr(X = x;) + 6
n i=1 n i=1

(logm)*
no?

with a probability of more than 1 —

Proof. We define the random variable Y by Y(x) = —logPr(X = x). Then we have
E(Y) = H(X) for the expected value E(Y) of Y. By additivity of the expectation, we
also have E(Z) = H(X) for the sum Z = % >, Y; of n independent instances Y; of Y.
In [9] it is shown that the variance Var[Z] of Z is bounded from above by

2
Var[Z] < (IOng) .

The Chebyshev inequality

Var[Q]

Pr(|Q - E(Q)| 2 6) < 52

€))



21

gives upper bounds for the probability that the value of a random variable Q deviates
from its expected value E(Q) by at least 5. We apply (9) to Z with the expectation and
variance bounds derived above and obtain

(log m)
né?

Considering the complementary event and inserting the definition of Z we obtain

|

from which the assertion follows immediately.

Pr(Z-H(X)| >9) <

(log m)?
no? ’

1 n
- Z log Pr(X = x;) — H(X)| < 5) >1-
n i=1

We are now ready to give the proof of Theorem 6.

Proof (Proof of Theorem 6). Let s; be the final state of P that is computed in line 5
of the ith loop iteration of RanT, for i € {1,...,n}. For uniformly distributed U, we
have H(U) = log#(I) and Pr(V = s}) = #(P‘l(s;))/#(l). As V is determined by U,
HU|V) = H{U) — H(V). Replacing H(V) by the approximation given by Lemma 1 we
obtain

1 v ,
HW) + ~ ; log Pr(V = s])
1, #PT()
log #(7) + Z log %
i=1

1 n

— ) log#(P7'(s]

n;ow (s)

Lemma 1 now implies that
1 v I v
— ) log#(P7'(s) =6 <HUIV) < = Y log#(P™(s})) + 6
~ > log#(P(s) (UIV) < = > log#(P(s))

i=1 i=1

with a probability of more than

_ (10g #(Freach))z

] 9
no?

which is larger than

no? -’ no?

2 2
- {1 _ Qog#(D)? | _ (log#(F) } .

This statement remains valid if the preimage sizes on the left and right hand sides are
replaced by under- and over-approximations, respectively. Finally, observe that the loop
guard ensures that the returned bounds hold with probability of more than p, which
concludes this proof.
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Observe that the proof of Theorem 6 implies that in scenarios where #(Feqcr,) is known
and smaller than 7, a smaller number of samples is already sufficient for obtaining a
desired confidence level. For example, when analyzing a program with a single Boolean
output, the bounds delivered by RanT are valid with a probability of more than

1

ne?
In general, however, the computation of #(F,..;) requires an additional analysis step.
For simplicity, our presentation hence focusses on the weaker bounds in terms of #(I).

Note that, if the sizes of the preimages of P can be determined precisely, we have
H* = H’. Then Theorem 6 gives tight bounds for the value of H(U|V). In this way,
RANT can be used to replace the algorithm Quant from [2].

5.2 Complexity of approximating entropy

The algorithm RaNT relies on the approximation of the sizes of the preimages for given
sampled outputs of the program. It is natural to ask whether bounds on the entropy can
be estimated by sampling alone, i.e. without resorting to structural properties of the
program.

A result by Batu et al. [9] suggests that this cannot be done. They show that there
is no algorithm that, by sampling alone, can approximate the entropy of every random
variable X with a range of size m within given multiplicative bounds. They also show
that, for random variables with high entropy (more precisely H(X) > log(m/y?), for
some y > () any algorithm that delivers approximations H with

1
~H<HX)<yH
y

is required to take at least Q(m'/ 7) samples.

However, if in addition to the samples, the algorithm has access to an oracle that
reveals the probability Pr(X = x) with which each sample x occurs, the entropy can be
estimated within multiplicative bounds using a number of samples that is proportional
to (logm)/h, where h < H(X).

Lemma 1 extends this result to obtain additive bounds for H(X). These bounds
hold without any side-condition on H(X), which allows us to determine the number
of samples that are required for obtaining confidence levels that hold for all X with
#(ran(X)) < m. The algorithm RaNT builds on this result and employs the techniques
presented in Section 4 for approximating the probabilities of events on demand, allow-
ing us to derive bounds on the information leakage of real programs.

6 Related work

For an overview of language-based approaches to information-flow security, see the
survey by Sabelfeld and Myers [56].
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Denning is the first to quantify information flow in terms of the reduction in un-
certainty about a program variable [26]. Millen [49] and Gray [31] use information
theory to derive bounds on the transmission of information between processes in multi-
user systems. Lowe [44] shows that the channel capacity of a program can be over-
approximated by the number of possible behaviors.

The use of equivalence relations to characterize qualitative information flow was
proposed by Cohen [22] and has since then become standard, see e.g. [6,7,27,57,61].

Clark, Hunt, and Malacaria [18] connect equivalence relations to quantitative infor-
mation flow, and propose the first type system for statically deriving quantitative bounds
on the information that a program leaks [19]. The analysis assumes as input upper and
lower bounds on the entropy of the input variables and performs compositional reason-
ing on basis of those bounds. For loops with high guards, the analysis always reports
the complete leakage of the guard.

Malacaria [45] characterizes the leakage of loops in terms of the loop’s output and
the number of iterations. In our model, the information that is revealed by the number
of loop iterations can be captured by augmenting loops with observable counters, as
shown in Section 2. In this way, our method can be used to automatically determine this
information.

Mu and Clark [52] propose an automatic quantitative analysis based on probabilis-
tic semantics. Their analysis delivers precise results, but is limited to programs with
small state-spaces due to the explicit representation of distributions. An abstraction
technique [51] addresses this problem by partitioning the (totally ordered) domain into
intervals, on which a piecewise uniform distribution is assumed. Our approach is also
based on partitioning the input domain, however, without the restriction to intervals.
Furthermore, we avoid the enumeration of all blocks by the choice of a random subset.

Kopf and Basin [38] characterize the leaked information in terms of the number of
program executions, where an attacker can adaptively provide inputs. The algorithms
for computing this information for a concrete system rely on an enumeration of the
entire input space and are difficult to scale to larger systems.

Backes, Kopf, and Rybalchenko [2] show how to synthesize equivalence relations
that represent the information that a program leaks, and how to quantify them by de-
termining the sizes of equivalence classes. Our approach shows that the exact com-
putation of the sizes of the equivalence classes can be replaced by over- and under-
approximations, and that the enumeration of equivalence classes can be replaced by
sampling. This enables our approach to scale to larger programs, e.g., those with un-
bounded loops.

McCamant and Ernst [48] propose a dynamic taint analysis approach for quanti-
fying information flow. Their method provides over-approximations of the leaked in-
formation along a particular path, but does not yield guarantees for all program paths,
which is important for security analysis. For programs for which preimages can be ap-
proximated, our method can be used to derive upper and lower bounds for the leakage
of all paths without the need for complete exploration.

Newsome, McCamant, and Song [53] use the feasible outputs along single program
paths as lower bounds for channel capacity, and they apply a number of heuristics to
approximate upper bounds on the number of reachable states of a program. They assume
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a fixed upper bound on the number of loop unrollings. In contrast, our technique does
not require an upper bound on the number of loop iterations, and it comes with formal
quality guarantees for the estimated quantities.

Heusser and Malacaria [34] use model-checking to verify assertions about the num-
ber of feasible outputs of a program. A valid assertion translates to an upper bound on
the channel capacity of the program. In contrast, we apply model counting techniques
to immediately obtain upper and lower bounds on the number of feasible outputs.

Chatzikokolakis, Chothia, and Guha [16] use sampling to build up a statistical
model of a probabilistic program, which is treated as a black box. Based on this model,
they compute the maximum leakage w.r.t. all possible input distributions. In contrast,
our approach is based on the actual semantics of deterministic programs, as given by the
source code, and we use a randomized algorithm to compute the adversary’s remaining
uncertainty about the input.

A number of alternative information measures have been considered in the litera-
ture. Di Pierro, Hankin, and Wiklicky [55] measure information flow in terms of the
number of statistical tests an attacker has to perform in order to distinguish two com-
putations based on different secrets. Clarkson, Myers, and Schneider [20] propose to
measure information flow in terms of the accuracy of an attacker’s belief about a secret,
which may also be wrong. Reasoning about beliefs is out of the scope of entropy-based
measures, such as the ones used in this chapter. One advantage of entropy-based mea-
sures is the direct connection to equivalence relations, which makes them amenable to
automated reasoning techniques. Finally, we mention that information-theoretic notions
of leakage are also used for analyzing anonymity protocols, see e.g. [17].

Our approach relies on abstract interpretation and symbolic execution techniques
for the approximation of the set of program outputs. There exist efficient implemen-
tations of abstract interpreters with abstraction functions covering a wide spectrum of
efficiency/precision trade-offs, see e.g. [4, 10, 33, 42]. In particular, for bounding the
block count one could apply tools for discovery of all valid invariants captured by nu-
meric abstract domains, e.g., octagons or polyhedra [3, 50]. Similarly, we can rely on
existing dynamic engines for symbolic execution that can deal with various logical
representation of program states, including arithmetic theories combined with unin-
terpreted function symbols and propositional logic, e.g., VErisort, KLEE, DART, and
BirScork [12,14,28,29].

7 Conclusions

The exact computation of the information-theoretic properties of programs can be pro-
hibitively hard. In this chapter, we presented algorithms based on approximation and
randomization that allow for a tractable yet sufficiently precise approximation of these
properties. As ongoing work, we are putting these algorithms to work for the automatic
analysis of microarchitectural side-channels [40].
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