Skip to main content

Cardiac Microstructure Estimation from Multi-photon Confocal Microscopy Images

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7945))

Abstract

Construction of realistic models of the muscle fibers in myocardium is relevant for simulating the electro-mechanical behavior of the heart. Advances in microscopy imaging have improved the potential for visualization of the 3D distribution of myocytes. In this paper, we propose an approach to identify cardiac fibers structures, in multi-photon confocal microscopy images. Our method is based on contrast invariant features such as the multi-scale local phase image, to obtain a tensor representation of the local structure. We show here some results obtained from multi-photon microscopy images acquired in a fetal rabbit heart, where the cardiac microstructure can be extracted from the image in terms of fiber direction as well as fiber compactness. Experiments from phantom data also show a successful application of the proposed methodology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, M.J., Plank, G., Burton, R.A.B., Schneider, J.E., Gavaghan, D.J., Grau, V., Kohl, P.: Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. American Journal of Physiology. Heart and Circulatory Physiology 298(2), H699–H718 (2010)

    Google Scholar 

  2. Punske, B.B., Taccardi, B., Steadman, B., Ershler, P.R., England, A., Valencik, M.L., McDonald, J.A., Litwin, S.E.: Effect of fiber orientation on propagation: electrical mapping of genetically altered mouse hearts. Journal of Electrocardiology 38(4), 40–44 (2005)

    Article  Google Scholar 

  3. Weiss, D., Seemann, G., Keller, D., Farina, D., Sachse, F., Dossel, O.: Modeling of heterogeneous electrophysiology in the human heart with respect to ECG genesis. In: Computers in Cardiology, pp. 49–52. IEEE (2007)

    Google Scholar 

  4. Billet, F., Sermesant, M., Delingette, H., Ayache, N.: Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 376–385. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Chang, H.H., Moura, J.M., Wu, Y.L., Sato, K., Ho, C.: Reconstruction of 3d dense cardiac motion from tagged MR sequences. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 880–883. IEEE (2004)

    Google Scholar 

  6. Arts, T., Prinzen, F.W., Snoeckx, L., Rijcken, J.M., Reneman, R.S.: Adaptation of cardiac structure by mechanical feedback in the environment of the cell: a model study. Biophysical Journal 66(4), 953–961 (1994)

    Article  Google Scholar 

  7. Arts, T., Reneman, R.S., Veenstra, P.C.: A model of the mechanics of the left ventricle. Annals of Biomedical Engineering 7(3), 299–318 (1979)

    Article  Google Scholar 

  8. Bovendeerd, P., Arts, T., Huyghe, J., Van Campen, D., Reneman, R.: Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. Journal of Biomechanics 25(10), 1129–1140 (1992)

    Article  Google Scholar 

  9. Chadwick, R.: Mechanics of the left ventricle. Biophysical Journal 39(3), 279–288 (1982)

    Article  Google Scholar 

  10. Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber Orientation in the Canine Left Ventricle during Diastole and Systole. Circulation Research 24(3), 339–347 (1969)

    Article  Google Scholar 

  11. Lekadir, K., Ghafaryasl, B., Muñoz-Moreno, E., Butakoff, C., Hoogendoorn, C., Frangi, A.F.: Predictive modeling of cardiac fiber orientation using the knutsson mapping. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 50–57. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Kovesi, P.: Image features from phase congruency. Videre: Journal of Computer Vision Research 1(3), 1–26 (1999)

    Google Scholar 

  13. Field, D.J., et al.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4(12), 2379–2394 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghafaryasl, B., Bijnens, B.H., van Vliet, E., Crispi, F., Cárdenes, R. (2013). Cardiac Microstructure Estimation from Multi-photon Confocal Microscopy Images. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics