Skip to main content

Effects of Anodal Cardiac Stimulation on V m and \(Ca_i^{2+}\) Distributions: A Bidomain Study

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7945))

  • 2826 Accesses

Abstract

The aim of this work is to study make and break excitation mechanisms elicited by anodal pulses at different coupling intervals using 2D and 3D anisotropic Bidomain simulations. Two different S1-S2 stimulation protocols are considered, one with the S2 pulse delivered at the same location of the S1 pulse and the other at a distant location. Anodal strength-interval (S-I) curves are computed for both S1-S2 protocols showing results consistent with experimental S-I curves, both in terms of stimulus threshold amplitude and depth of the anodal dip during the break phase. The intracellular calcium concentration (\(Ca_i^{2+}\)) distribution presents virtual electrode patterns similar to the transmembrane potential (V m ) distribution. \(Ca_i^{2+}\) displays a weak negative change within the virtual anode area, while a strong positive change is observed within the virtual cathode areas. The results show that with both S1-S2 protocols V m and \(Ca_i^{2+}\) exhibit the same make and break excitation mechanisms, but with a delayed \(Ca_i^{2+}\) response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page (2012), http://www.mcs.anl.gov/petsc

  2. Colli Franzone, P., Guerri, L., Pennacchio, M., Taccardi, B.: Spreading of excitation in 3-D models of the anisotropic cardiac tissue. II. Effect of geometry and fiber architecture of the ventricular wall. Math. Biosci. 147, 131–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Cardiac excitation mechanisms, wavefront dynamics and strength-interval curves predicted by 3D orthotropic bidomain simulations. Math. Biosci. 235(1), 66–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dekker, E.: Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ. Res. 27, 811–823 (1970)

    Article  Google Scholar 

  5. Efimov, I.R., Gray, R.A., Roth, B.J.: Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J. Cardiovasc. Electrophysiol. 11, 339–353 (2000)

    Article  Google Scholar 

  6. Faber, G.M., Rudy, Y.: Action potential and contractility changes in [Na  + ] i overloaded cardiac myocytes: a simulation study. Biophys. J. 78, 2392–2404 (2000)

    Article  Google Scholar 

  7. Greenstein, J.L., Hinch, R., Winslow, R.L.: Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys. J. 90, 77–91 (2006)

    Article  Google Scholar 

  8. Hayashi, H., Kamanu, S.D., Ono, N., Kawase, A., Chou, C.C., Weiss, J.N., Karagueuzian, H.S., Lin, S.F., Chen, P.S.: Calcium transient dynamics and the mechanisms of ventricular vulnerability to single premature electrical stimulation in Langerdorff-perfused rabbit ventricles. Heart Rhythm 5, 116–123 (2008)

    Article  Google Scholar 

  9. Hayashi, H., Lin, S.F., Joung, B., Karagueuzian, H.S., Weiss, J.N., Chen, P.S.: Virtual electrodes and the induction of fibrillation in Langerdorff-perfused rabbit ventricles: the role of intracellular calcium. Am. J. Physiol. Heart Circ. Physiol. 295, H1422–H1428 (2008)

    Google Scholar 

  10. Helm, P.A., Tseng, H.J., Younes, L., McVeigh, E.R., Winslow, R.L.: Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn. Reson. Med. 54, 850–859 (2005)

    Article  Google Scholar 

  11. Herron, T.J., Lee, P., Jalife, J.: Optical imaging of voltage and calcium in cardiac cells and tissues. Circ. Res. 110, 609–623 (2012)

    Article  Google Scholar 

  12. Hinch, R., Greenstein, J.L., Trankanen, A.J., Xu, L., Winslow, R.L.: A simplified local control model of Calcium-Induced Calcium Release in cardiac ventricular myocytes. Biophys. J. 87, 3723–3736 (2004)

    Article  Google Scholar 

  13. Hooks, D.A., Trew, M.L., Caldwell, B.J., Sands, G.B., LeGrice, I.J., Smaill, B.H.: Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ. Res. 112, e103–e112 (2007)

    Google Scholar 

  14. Joung, B., et al.: Intracellular calcium and the mechanism of anodal supernormal excitability in langerdorff-perfused rabbit ventricles. Circ. J. 75, 834–843 (2011)

    Article  Google Scholar 

  15. Mehra, R., Furman, S.: Comparison of cathodal, anodal and bipolar strength-interval curves with temporary and permanent pacing electrodes. British Heart J. 41, 468–476 (1979)

    Article  Google Scholar 

  16. Pennacchio, M., Savarè, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2006)

    Article  MATH  Google Scholar 

  17. Roth, B.J.: Artifacts, assumptions, and ambiguity: pitfalls in comparing experimental results to numerical simulations when studying electrical stimulation of the heart. Chaos 12(3), 973–981 (2002)

    Article  Google Scholar 

  18. Roth, B.J.: Numerical simulation of cardiac tissue excitation and pacing using bidomain model. The Open Pacing, Electr. & Therapy J. 4, 1–9 (2011)

    Article  Google Scholar 

  19. Scacchi, S.: A hybrid multilevel Schwarz method for the bidomain model. Comput. Meth. Appl. Mech. Eng. 197, 4051–4061 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sidorov, V.Y., Woods, M.C., Baudenbacher, P., Baudenbacher, F.: Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 289, H2602–H2615 (2005)

    Google Scholar 

  21. Sidorov, V.Y., Holcomb, M.R., Woods, M.C., Gray, R.A., Wikswo, J.P.: Effects of unipolar stimulation on voltage and calcium distributions in the isolated rabbit heart. Basic Res. Cardiol. 103, 537–551 (2008)

    Article  Google Scholar 

  22. Wikswo, J.P., Roth, B.J.: Virtual electrode theory of pacing. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds.) Cardiac Bioelectric Therapy, ch.4.3, pp. 283–330. Springer Science+Business Media, LLc (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Colli-Franzone, P., Pavarino, L.F., Scacchi, S. (2013). Effects of Anodal Cardiac Stimulation on V m and \(Ca_i^{2+}\) Distributions: A Bidomain Study. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics