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Abstract. Accurate segmentation of the whole heart from 3D image
sequences is an important step in the developement of clinical applica-
tions. As manual delineation is a tedious task that is prone to errors
and dependant on the expertise of the observer, fully automated seg-
mentation methods are highly desirable. In this work, we present a fully
automated method for the segmentation of the whole heart and the great
vessels from 3D images. The method is based on a muti-atlas propaga-
tion segmentation scheme, that has been proven to be succesful in brain
segmentation. Based on a cross correlation metric, our method selects
the best atlases for propagation allowing the refinement of the segmen-
tation at each iteration of the propagation. We show that our method
allows segmentation from multiple image modalities by validating it on
computed tomography angiography (CTA) and magnetic resonance im-
ages (MRI). Our results are comparable to state-of-the-art methods on
CTA and MRI with average Dice scores of 90.9% and 89.0% for the whole
heart when evaluated on a 23 and 8 cases, respectively.

1 Introduction

Recent advances in imaging techniques have positioned 3D CTA and MRI as
potential alternatives of conventional 2D approaches (2D x-ray angiography or
cine MR) for cardiac examination. The 3D imaging of the heart opens a wide
set of applications that range from accurate ventricular measurements, compu-
tational simulation to image guided interventions. For such applications, it is
necessary to have an accurate segmentation of the whole heart which includes
the four chambers and eventually also the great vessels. Manual delineation of
the cardiac anatomical structures is a labour intensive and tedious task, which
is prone to inter- and intraobserver variations. Therefore, it is highly desirable
to develop techniques for automatic segmentation.

Although most of the heart segmentation algorithms found in the literature
have been focused in the left ventricle [1], recently new methods that tackle
whole heart segmentation in 3D data have been developed. These segmentation
methods have used either model-based approaches |2, 13] or atlas propagation
techniques |[4-7]. Among these, atlas propagation techniques are well-known and
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proven succesful for brain segmentation and, recently have gained popularity for
heart segmentation.

In this work, we present a multi-atlas propagation segmentation approach
for segmenting the whole heart. Our approach differentiates from previous atlas
propagation methods in three aspects: 1) By using multiple atlases instead of a
single one [6], 2) by providing a segmentation capable of labelling the differen
structures of the heart, instead of providing a single binary mask of the whole
heart [4, 5], and 3) by using a multi-label fusion strategy based on the STAPLE
algorithm [8] that incorporates a locally normalised cross correlation (LNCC)
based ranking combined with a consensus based region-of-interest selection and
an iterative Markov Random Field into the multi-label STAPLE algorithm. Pre-
viously, Kirigli et al. have used a majority voting scheme that does not allow to
evaluate the local similarity among the images.

In the remaining sections of the paper, we first describe the proposed multi
atlas propagation segmentation approach, followed by the experimental setup
and the obtained results. To prove the robustness of our method to different im-
age modalities, quantitative evaluation is given on MRI and CTA data. Finally,
we discuss on the results and present conclusions.

2 Methodology

2.1 Multi-atlas Propagation Segmentation Framework

Let Y, be an unseen image to be segmented and A; = (Y;; Li), i = {1,...,n}, be
the set of n atlases composed of an intensity image Y; and a label image L;. The
final segmentation is obtained by transforming the set of n atlases into the image
space of Y,, and then applying a fusion criterion to combine the label images L;
from each atlas into a consensus segmentation L,,.

Registration of cardiac images is challenging due to the structures surround-
ing the heart (e.g. ribs, liver) that tend to bias the registration. To avoid such
problem, we divide the registration in two-stages. At the first stage, we seek to
define a region of interest (ROI) that encloses the heart in the Y, and remove
the surrounding structures. The unseen image Y, is affinely registered [9] to the
intensity images Y; of the atlases (Fig. [I), step 1). The obtained transforma-
tions are applied to the binarized L; images, which are then fused using a simple
majority voting criterion. As the different labels from L; are not considered, a
binary mask M, roughly englobing the heart is obtained as an output (Fig. ),
step 2-3).

After the affine alignment step, a nonrigid free form deformation registra-
tion [10, [11]) using normalised mutual information is applied to align the atlases
with the the unseen image (Fig. ) step 4). To avoid the bias that surrounding
structures can produce in the registration, the unseen image is masked using
the binary image M,. After non-rigidly transforming the atlases to the unseen
image space, the final segmentation is obtained through combination of the label
images. In the following section, we further describe the fusion criterion (Fig. )
step 5).
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Fig. 1. In the proposed method, the atlases A; are first roughly aligned with the unseen
image, Y., through an affine registration (step 1). The obtained transformations are
used to map the label images into the unseen image space (step 2). The binarized
label images are fused using a majority voting scheme to obtain a mask of the region
of interest (step 3). Using the obtained mask as an additional input, the atlases are
nonrigidly aligned to the unseen image and subsequently transformed (step 4). Finally,
the transformed labels are fused using a cross-correlation metric.

2.2 Locally Normalised Cross Correlation (LNCC)

The final segmentation L,, is obtained by using the multi-STEPS algorithm ﬂﬁ]
in combination with a LNCC-based ranking strategy in order to determine which
are the most suitable registered atlases to use in the fusion process.

The goal of the LNCC is to rank the registered atlases according to the local
quality of the match between the unseen image Y, and the warped atlases. The
metric requires the computation of the mean and standard deviation of a pair
of images on a local Gaussian window using a convolution method. Denoting for
the sake of simplicity the unseen image as Y and an atlas intensity image as A,
the LNCC at a voxel position p is defined as:

(Y, A)p

INCC = (v )op(4)

(1)
where
(Y,A),=Y A, -Y, A,
Y, =Goe*Y
op(Y) =Y2, Y,
with * denoting the convolution operator and G, a Gaussian kernel with stan-
dard deviation o¢.
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Due to the local nature of the metric, the similarity between the unseen image
and the atlases can be described on a voxel by voxel basis, enabling a voxel by
voxel ranking. The multi-STEPS algorithm provides a variable X that allows
to control the number of atlases to use locally according to the LNCC. If the
atlas A; is among the top X ranked at a particular voxel position, then it will
be considered for the fusion process at that specific voxel.

3 Experiments and Results

Our method was evaluated on 22 3D SSFP MRI scans acquired at King’s College
London [13] and 8 3D CTA cases acquired in the Erasmus MC (Rotterdam, The
Netherlands) |7]. MRI images had a size of 256 x 256 x 140 and the CTA mean
size is 512 x 512 x 274. For each scan, a manual segmentation of the four main
chambers, the myocardium and the aorta. Additionally, the CTA cases contained
manual annotations of the pericardium and the MRI scans contained annotations
of the pumonary artery. We chose not to consider these two for the evaluation,
as they were not present in both datasets.

A leave-one-out strategy was applied, where one scan is segmented using the
remaining cases as atlas database. It should be noted that MRI and CTA scans
were evaluated separately. The quality of the automatic segmentations was as-

sessed by comparing them to the manual segmentations through the Dice score,

Dice = 21VsesWman|
T |Vseg+tVman|

and the manual annotation, respectively. Table [I] presents the obtained results

for each cardiac structure, whereas Fig. Rlillustrates some of the obtained results
in MRI and CTA.

Additionally, we evaluated the method performance as a function of the atlas
database size (Fig.[Blleft), n and the number of top atlases X considered in the
final fusion (Fig. Bl right). For the first experiment, we varied n from 3 to the
total available atlases (n = 22 in MRI and n = 7 in CTA), while considering
X = n/3 for the final fusion. The atlases were ranked using a global metric [14]
to define the inclusion order To evaluate the effect of X in the segmentation
results, we varied it in the range X = {2,...,n/2} while using the whole set of
available atlases for each modality. The quality of the segmentation was assessed
through the whole heart Dice score.

where Vg and Vi,qy denote the automated segmentation

Table 1. Mean (£ std) Dice score for the evaluated datasets.

MR CTA

Myocardium 0.87 £ 0.06 0.86 £ 0.07
Left ventricle 0.95 + 0.02 0.93 £+ 0.05
Right ventricle. 0.92 £ 0.03 0.89 £+ 0.03
Left atrium 0.92 £0.03 0.90 £+ 0.04
Right atrium 0.89 £ 0.05 0.84 £+ 0.05
Aorta 0.86 £ 0.09 0.87 £+ 0.06
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Fig. 2. Coronal, sagital and axial views of two segmented volumes. On top an MRI
scan (whole heart Dice score 0.903) and, on the bottom a CT scan (whole heart Dice
score 0.894).
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Fig. 3. Left. Evolution of whole heart Dice score as a function of the atlas database size
in MRI and CTA scans. Best results are achieved with n = 22 in MRI (Dice = 0.909)
and in n = 7 CTA (Dice = 0.890).Note that the curve for CTA is shorter as less
atlases are available. Right. Algorithm performance as a function of the number X of
top ranked atlases considered for the fusion in MRI scans and CTA. A database of
n = 22 atlases was considered for MRI and n = 6 for CTA. Best results are achieved
for X =7 in MRI (Dice = 0.909) and X = 3 in CTA (Dice = 0.890).
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4 Discussion

The results presented in Table[lshow that our method has a good performance in
the segmentation of the different cardiac structures under different image modal-
ities. Average whole heart segmentation on MRI was 0.90940.03 and 0.890+0.04
on CTA images. The latter results are comparable to those reported by Zhuang
et al. [6] using a single atlas on MRI images (Dice score of 0.84 £ 0.05) and by
Kirigli et al [7] using a majority voting scheme to fuse 7 atlases on CTA images
(Dice score of 0.93).

We consider that the overall better performance of our method on MRI images
than on CTA can be explained mainly by the fact that our MRI atlas database
is larger than that one of CTA. From Fig. Bl it can be seen that the Dice score of
the MRI segmentations has a rapid increase but, afterwards it tends to stabilise
(for n >= 17 the Dice score varies from 0.902 to 0.909). If such behavior is
extrapolated to the CTA curve, we should expect to have a better performance
on CTA with a larger database. Although the LNCC-based ranking implies using
only a percentage of the n for the fusion, having a larger atlas database increases
the probability of having better matches between the atlases and the unseen
image. Our experiments on MRI suggest that using X = n/3 top atlases provides
the best results (Fig. B]). When this rule was applied to the CTA database, only
X = 2 atlases should be used, which leads to consensus problems. We consider
that the limited number of CTA atlases does not allow to exploit the advantages
of our atlas ranking scheme. An alternative to increase the atlas database could
be to use all the available atlases images, regardless of their modality, in the
fusion process. However, after initial experimentations we found out that the
inter-modality registration did not provide satisfactory results. The different
imaging protocols result in images with different field of views (Fig. M) that
introduce large registration errors. A more robust registration strategy that can
cope with such inter modality differences is part of the future work.

Despite our algorithm performing better on MRI than on CTA, the Dice score
obtained for the aorta in CTA is higher than on MR. This can be explained by
the quality of the aorta labels in the atlases. The annotations for the aorta on
the CTA are more homogenious and follow an annotation protocol [7]. On the
opposite, the MRI aortic annotations do not follow a particular protocol which
results on different extensions of the ascending aorta being labeled. This behavior
points out one of the disadvantages of multi-atlas segmentation approaches where
the quality of the final segmentation strongly depends on the quality of the label
images.

The runtime of our method depends more on the size of the images that are
to be segmented than on the number of atlases that are used. Despite having a
larger number of atlases, the MRI database (22 compared to 7 from CTA), it
takes approximately 30 minutes to segment one patient on a PC with a quad-core
processor (2.13GHz), whereas the segmentation of a CTA scan takes approxi-
mately one hour.
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Fig. 4. Sagittal view of the heart at approximately the same position in an MRI (left)
and CTA (right) dataset. The field of views of each case are completely different and
thus the information contained.

5 Conclusions

In this paper we proposed the use of a multi-atlas propagation segmentation
framework for whole heart segmentation in multi-modal 3D images. Our ap-
proach performs a two-stage registration step that aims to first localize the heart
and globally align the images in order to use such alignment as a robust initial-
isation of a nonrigid transformation, where surrounding structures are masked
out. A key feature of our approach is that it makes use of a multi-label rank-
ing criterion, based on the local normalised cross correlation, to select the best
atlases for label fusion. This is the first time that the multi-STEPS is applied
to whole heart segmentation and has proven its robustenss by being successfully
applied to different image modalities.
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