Skip to main content

Changes in In Vivo Myocardial Tissue Properties Due to Heart Failure

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7945))

Abstract

A clinical image data driven mechanics analysis was used to quantify changes in tissue-specific passive and contractile material properties for groups of normal and HF patients. We have developed an automated mechanics modelling framework to firstly construct left ventricular (LV) mechanics models based on shape information derived from non-invasive dynamic magnetic resonance images, then to characterise passive tissue stiffness and maximum contractile stress by matching the simulated LV mechanics with data from the dynamic cardiac images. Preliminary statistical analysis revealed that patients with hypertrophy or non-ischemic heart failure exhibited increased passive myocardial stiffness compared to the normals. Elevated maximum contractile stress was also observed for hypertrophic patients. Tissue-specific parameter estimation analysis of this kind can potentially be applied in the clinical setting to provide a more specific disease measure to assist with stratification of HF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zile, M.R., Brutsaert, D.L.: New Concepts in Diatsolic Dysfunction and Diastolic Heart Failure: Part I: Diagnosis, Prognosis, and Measurements of Diastolic Function. Circ. 105, 1387–1393 (2002)

    Article  Google Scholar 

  2. Kitzman, D.W., et al.: Pathophysiological Characterization of Isolated Diastolic Heart Failure in Comparison to Systolic Heart Failure. J. Am. Med. Assoc. 288, 2144–2150 (2002)

    Article  Google Scholar 

  3. Zile, M.R., Baicu, C.F., Gaasch, W.H.: Diastolic Heart Failure - Abnormalities in Active Relaxation and Passive Stiffness of the Left Ventricle. New Engl. J. Med. 350(19), 1953–1959 (2004)

    Article  Google Scholar 

  4. Moulton, M.J., et al.: Myocardial material property determination in the in vivo heart using magnetic resonance imaging. Int. J. Card. Imaging 12, 153–167 (1996)

    Article  Google Scholar 

  5. Paulus, W.J., et al.: How to diagnose diastolic heart failure. Eur. Heart J. 28(20), 2539–2550 (2007)

    Article  Google Scholar 

  6. Leonard, B.L., Smaill, B.H., LeGrice, I.J.: Structural Remodeling and Mechanical Function in Heart Failure. Microsc. Microanal. 18(01), 50–67 (2012)

    Article  Google Scholar 

  7. Westermann, D., et al.: Role of Left Ventricular Stiffness in Heart Failure With Normal Ejection Fraction. Circ. 117(16), 2051–2060 (2008)

    Article  Google Scholar 

  8. Teeters, J.C., Alexis, J.D.: Systolic Heart Failure. In: Manual of Heart Failure Management, pp. 1–9. Springer, London (2009)

    Google Scholar 

  9. McMurray, J.J.V.: Systolic Heart Failure. New Engl. J. Med. 362(3), 228–238 (2010)

    Article  Google Scholar 

  10. Wang, V.Y., et al.: Automated Personalised Human Left Ventricular FE Models To Investigate Heart Failure Mechanics. (in press)

    Google Scholar 

  11. Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A.J., Wright, G.A.: Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI. The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge, http://hdl.handle.net/10380/3070

  12. LV Segmentation Challenge: Data, http://smial.sri.utoronto.ca/LV_Challenge/Data.html

  13. Fonseca, C.G., et al.: The Cardiac Atlas Project – An Imaging Database for Computational Modeling and Statistical Atlases of the Heart. Bioinformatics 27, 2288–2295 (2011)

    Article  Google Scholar 

  14. Young, A.A., et al.: Left Ventricular Mass and Volume: Fast Calculation with Guide-Point Modeling on MR Images1. Radiology 216(2), 597–602 (2000)

    Google Scholar 

  15. Li, B., et al.: In-line automated tracking for four dimensional ventricular function with magnetic resonance imaging. J. Am. Coll. Cardiol. Img. 3, 860–866 (2010)

    Article  Google Scholar 

  16. Nielsen, P.M.F., Le Grice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 1378, H1365-H1378 (1991)

    Google Scholar 

  17. Honda, H., et al.: Non-invasive estimation of human left ventricular end-diastolic pressure. Med. Eng. Phys. 6, 485–488 (1998)

    Article  Google Scholar 

  18. McKay, R.G., et al.: Assessment of the end-systolic pressure-volume relationship in human beings with the use of a time-varying elastance model. Circ. 74, 97–104 (1986)

    Article  Google Scholar 

  19. Scali, M., Basso, M., Gandolfo, A., Bombardini, T., Bellotti, P., Sicari, R.: Real Time 3D echocardiography (RT3D) for assessment of ventricular and vascular function in hypertensive and heart failure patients. Cardiovasc. Ultrasound 10(1), 27 (2012)

    Article  Google Scholar 

  20. Guccione, J.M., et al.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113, 43–55 (1991)

    Article  Google Scholar 

  21. Wang, V.Y., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Myocardial Contractility and Regional Work throughout the Cardiac Cycle Using FEM and MRI. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 149–159. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Hunter, P.J., McCulloch, A.D., ter Keurs, H.E.D.J.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. and Molec. Biol. 69, 289–331 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, V.Y., Young, A.A., Cowan, B.R., Nash, M.P. (2013). Changes in In Vivo Myocardial Tissue Properties Due to Heart Failure. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics