Skip to main content

Speckle Tracking in Interpolated Echocardiography to Estimate Heart Motion

  • Conference paper
Book cover Functional Imaging and Modeling of the Heart (FIMH 2013)

Abstract

The heart motion estimation plays an important role in identifying different types of pathology. For this purpose, ultrasound imaging has commonly used due to its high time resolution. In this modality, the speckle is used as a characteristic feature of tissues to improve the accuracy of heart motion estimation which has important clinical implications. However, speckle tracking methods are commonly based on the statistics of speckle, which are affected by the preprocessing steps during the acquisition. This work aims for developing a speckle tracking method for myocardial motion estimation that considers the interpolation step performed to achieve the Cartesian arrangement of the ultrasonic image. The evaluation of the method was carried out using two types of synthetic images and by comparing to other state-of-the-art methods. Results showed that the methods based on speckle features provide a more realistic motion of the heart and follow the natural torsion than others. Besides, the proposed method obtains the best registration performance in most of the deformations tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burckhardt, C.: Speckle in ultrasound b-mode scans. IEEE Trans. Sonics Ultrason 25(1), 1–6 (1978)

    Article  Google Scholar 

  2. Notomi, Y., Lysyansky, P., Setser, R.M., Shiota, T., Popović, Z.B., Martin-Miklovic, M.G., Weaver, J.A., Oryszak, S.J., Greenberg, N.L., White, R.D., Thomas, J.D.: Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J. Am. Coll. Cardiol. 45(12), 2034–2041 (2005)

    Article  Google Scholar 

  3. Helle-Valle, T., Crosby, J., Edvardsen, T., Lyseggen, E., Amundsen, B.H., Smith, H.J., Rosen, B.D., Lima, J.A., Torp, H., Ihlen, H., Smiseth, O.A.: New noninvasive method for assessment of left ventricular rotation. Circulation 112(20), 3149–3156 (2005)

    Article  Google Scholar 

  4. Miyazaki, C., Powell, B.D., Bruce, C.J., Espinosa, R.E., Redfield, M.M., Miller, F.A., Hayes, D.L., Cha, Y.M., Oh, J.K.: Comparison of echocardiographic dyssynchrony assessment by tissue velocity and strain imaging in subjects with or without systolic dysfunction and with or without left bundle-branch block. Circulation 117(20), 2617–2625 (2008)

    Article  Google Scholar 

  5. Wang, J., Khoury, D., Thohan, V., Torre-Amione, G., Nagueh, S.: Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation 115(11), 1376–1383 (2007)

    Article  Google Scholar 

  6. Lim, P., Buakhamsri, A., Popovic, Z.B., Greenberg, N.L., Patel, D., Thomas, J.D., Grimm, R.A.: Longitudinal strain delay index by speckle tracking imaging: A new marker of response to cardiac resynchronization therapy. Circulation 118(11), 1130–1137 (2008)

    Article  Google Scholar 

  7. Mohana Shankar, P.: A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason., Ferroelectr., Freq. Control 47(3), 727–736 (2000)

    Article  Google Scholar 

  8. Tao, Z., Tagare, H., Beaty, J.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Trans. Med. Imag. 25(11), 1483–1491 (2006)

    Article  Google Scholar 

  9. Nillesen, M.M., Lopata, R.G., Gerrits, I.H., Kapusta, L., Thijssen, J.M., de Korte, C.L.: Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images. Ultrasound in Med. & Biol. 34(4), 674–680 (2008)

    Article  Google Scholar 

  10. Yue, Y., Clark, J., Khoury, D.: Speckle tracking in intracardiac echocardiography for the assessment of myocardial deformation. IEEE Trans. Biomed. Eng. 56(2), 416–425 (2009)

    Article  Google Scholar 

  11. Cohen, B., Dinstein, I.: New maximum likelihood motion estimation schemes for noisy ultrasound images. Pattern Recognition 35(2), 455–463 (2002)

    Article  MATH  Google Scholar 

  12. Vegas-Sánchez-Ferrero, G., Martín-Martínez, D., Aja-Fernández, S., Palencia, C.: On the influence of interpolation on probabilistic models for ultrasonic images. In: International Symposium on Biomedical Imaging, pp. 292–295. IEEE Press (2010)

    Google Scholar 

  13. Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-hill, New York (1991)

    Google Scholar 

  14. Kotropoulos, C., Magnisalis, X., Pitas, I., Strintzis, M.: Nonlinear ultrasonic image processing based on signal-adaptive filters and self-organizing neural networks. IEEE Trans. Image Process. 3(1), 65–77 (1994)

    Article  Google Scholar 

  15. Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Trans. Image Process. 12(11), 1427–1442 (2003)

    Article  Google Scholar 

  16. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: A demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Tristán, A., Arribas, J.I.: A fast B-spline pseudo-inversion algorithm for consistent image registration. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 768–775. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Vegas-Sanchez-Ferrero, G., Aja-Fernandez, S., Martin-Fernandez, M., Frangi, A.F., Palencia, C.: Probabilistic-driven oriented speckle reducing anisotropic diffusion with application to cardiac ultrasonic images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 518–525. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Curiale, A.H., Vegas Sánchez-Ferrero, G., Aja-Fernández, S. (2013). Speckle Tracking in Interpolated Echocardiography to Estimate Heart Motion. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics