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Abstract. The Longest Common Substring problem is to compute the
longest substring which occurs in at least d ≥ 2 of m strings of total
length n. In this paper we ask the question whether this problem allows
a deterministic time-space trade-off using O(n1+ε) time and O(n1−ε)
space for 0 ≤ ε ≤ 1. We give a positive answer in the case of two
strings (d = m = 2) and 0 < ε ≤ 1/3. In the general case where 2 ≤
d ≤ m, we show that the problem can be solved in O(n1−ε) space and
O(n1+ε log2 n(d log2 n+ d2)) time for any 0 ≤ ε < 1/3.

1 Introduction

The Longest Common Substring (LCS) Problem is among the fundamental and
classic problems in combinatorial pattern matching [6]. Given two strings T1
and T2 of total length n, this is the problem of finding the longest substring that
occurs in both strings. In 1970 Knuth conjectured that it was not possible to
solve the problem in linear time [10], but today it is well-known that the LCS
can be found in O(n) time by constructing and traversing a suffix tree for T1
and T2 [6]. However, obtaining linear time comes at the cost of using Θ(n) space,
which in real-world applications might be infeasible.

In this paper we explore solutions to the LCS problem that achieve sublinear,
i.e., o(n), space usage3 at the expense of using superlinear time. For example,
our results imply that the LCS of two strings can be found deterministically in
O(n4/3) time while using only O(n2/3) space. We will also study the time-space
trade-offs for the more general version of the LCS problem, where we are given
m strings T1, T2, . . . , Tm of total length n, and the goal is to find the longest
common substring that occurs in at least d of these strings, 2 ≤ d ≤ m.

1.1 Known Solutions

For m = d = 2 the LCS is the longest common prefix between any pair of
suffixes from T1 and T2. Naively comparing all pairs leads to an O(n2|LCS|)
time and O(1) space solution, where |LCS| denotes the length of the LCS. As

3 We assume the input is in read-only memory and not counted in the space usage.



already mentioned we can also find the LCS in O(n) time and space by finding
the deepest node in the suffix tree that has a suffix from both T1 and T2 in its
subtree. Alternatively, we can build a data structure that for any pair of suffixes
can be queried for the value of their longest common prefix. Building such a data
structure is known as the Longest Common Extension (LCE) Problem and it has
several known solutions [2,7]. If a data structure for a string of length n with
query time q(n) and space usage s(n) can be built in time p(n), then this implies
a solution for the LCS problem using O(q(n)n2 + p(n)) time and O(s(n)) space.
For example using the deterministic data structure of Bille et al. [2], the LCS
problem can be solved in O(n2(1+ε)) time and O(n1−ε) space for any 0 ≤ ε ≤ 1/2.

In the general case where 2 ≤ d ≤ m, the LCS can still be found in O(n)
time and space using the suffix tree approach. Using Rabin-Karp fingerprints [9]
we can also obtain an efficient randomised algorithm using sublinear space. The
algorithm is based on the following useful trick: Suppose that we have an efficient
algorithm for deciding if there is a substring of length i that occurs in at least
d of the m strings. Moreover, assume that the algorithm outputs such a string
of length i if it exists. Then we can find the LCS by repeating the algorithm
O(log |LCS|) times in an exponential search for the maximum value of i. To
determine if there is a substring of length i that occurs in at least d strings,
we start by checking if any of the n1−ε first substrings of length i occurs at
least d times. We can check this efficiently by storing their fingerprints in a
hash table and sliding a window of length i over the strings Tj , j = 1, . . . ,m.
For each substring we look up its fingerprint in the hash table and increment an
associated counter if it is the first time we see this fingerprint in Tj . If at any time
a counter exceeds d, we stop and output the window. In this way we can check
all i length substrings in O(nε) rounds each taking time O(n). Thus, this gives
a Monte Carlo algorithm for the general LCS problem using O(n1+ε log |LCS|)
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Table 1. The first half summarises solutions for d = m = 2, and the second half
summarises solutions for the general case. The complexity bounds are worst-case unless
otherwise stated; w.h.p. means with probability at least 1− 1/nc for any constant c.



time and O(n1−ε) space for all 0 ≤ ε ≤ 1. From the properties of fingerprinting
we know that the algorithm succeeds with high probability. The algorithm can
also be turned into a Las Vegas algorithm by verifying that the fingerprinting
function is collision free in O(n2) time. Table 1 summarises the solutions.

1.2 Our Results

We show the following main result:

Theorem 1. Given m strings T1, T2, . . . , Tm of total length n, an integer 2 ≤
d ≤ m and a trade-off parameter ε, the longest common substring that occurs in
at least d of the m strings can be found in

(i) O(n1−ε) space and O(n1+ε) time for d=m=2 and 0<ε≤ 1
3 , or in

(ii) O(n1−ε) space and O(n1+ε log2 n(d log2 n+d2)) time for 2≤d≤m, 0≤ε< 1
3 .

The main innovation in these results is that they are both deterministic. More-
over, our first solution improves over the randomised fingerprinting trade-off by
removing the log |LCS| factor. The basis of both solutions is a sparse suffix ar-
ray determining the lexicographic order on O(n1−ε) suffixes sampled from the
strings T1, T2, . . . , Tm using difference covers.

2 Preliminaries

Throughout the paper all logarithms are base 2, and positions in strings are
numbered from 1. Notation T [i..j] stands for a substring T [i]T [i + 1] · · ·T [j] of
T , and T [i..] denotes the suffix of T starting at position i. The longest common
prefix of strings T1 and T2 is denoted by lcp(T1, T2).

2.1 Suffix Trees

We assume a basic knowledge of suffix trees. In order to traverse and construct
suffix trees in linear time and space, we will assume that the size of the alphabet
is constant. Thus, the suffix tree for a set of strings S, denoted ST (S), together
with suffix links, can be built in O(n) time and space, where n is the total length
of strings in S [6]. We remind that a suffix link of a node labelled by a string `
points to the node labelled by `[2..] and that suffix links exist for all inner nodes
of a suffix tree. We need the following lemma:

Lemma 1. Let ST (S) be the suffix tree for a set of strings S, and A be a set of
all nodes (explicit or implicit) of ST (S) labelled by substrings of another string
T . I.e., the labels of the nodes in A are exactly all common substrings of T and
strings from S. Then ST (S) can be traversed in O(|T |) time so that

(i) All nodes visited during the traversal will belong to A, and
(ii) Every node in A will have at least one visited descendant.



Proof. We first explain how the tree is traversed. We traverse ST (S) with T
starting at the root. If a mismatch occurs or the end of T is reached at a node
v (either explicit or implicit) labelled by a string ` we first jump to a node v′

labelled by `[2..]. We do that in three steps: 1) walk up to the higher end u of the
edge v belongs to; 2) follow the suffix link from u to a node u′; 3) descend from
u′ to v′ comparing only the first characters of the labels of the edges with the
corresponding characters of `[2..] in O(1) time. Then we proceed the traversal
from the position of T at which the mismatch occurred. The traversal will end
at the root of the suffix tree.

All nodes visited during the traversal are labelled by substrings of T , and thus
belong to A. For each i the traversal visits the deepest node of ST (S) labelled
by a prefix of T [i..]. Hence, conditions (i) and (ii) of the lemma hold. We now
estimate the running time. Obviously, the number of successful matches is no
more than |T |. We estimate the number of operations made due to unsuccessful
matches by amortised analysis. During the traversal we follow at most |T | suffix
links and each time the depth of the current node decreases by at most one [6].
Hence, the number of up-walks is also bounded by |T |. Each up-walk decreases
the current node-depth by one as well. On the contrary, traversal of an edge at
step 3) increases the current node-depth by one. Since the maximal depth of a
node visited by the traversal is at most |T |, the total number of down-walks is
O(|T |). ut

2.2 Difference Cover Sparse Suffix Arrays

A difference cover modulo τ is a set of integers DCτ ⊆ {0, 1, . . . , τ−1} which for
any i, j contains two elements i′, j′ such that j− i ≡ j′− i′ (mod τ). For any τ a
difference cover DCτ of size at most

√
1.5τ + 6 can be computed in O(

√
τ) time

[4]. Note that this size is optimal to within constant factors, since any difference
cover modulo τ must contain at least

√
τ elements.

For a string T of length n and a fixed difference cover modulo τ , DCτ , we
define a difference cover sample DCτ (T ) as the subset of T ’s positions that are
in the difference cover modulo τ , i.e.,

DCτ (T ) = {i | 1 ≤ i ≤ n ∧ i mod τ ∈ DCτ} .

The following lemma captures two important properties of difference cover sam-
ples that we will use throughout the paper. The proof follows immediately from
the above definitions.

Lemma 2. The size of DCτ (T ) is O(n/
√
τ), and for any pair p1, p2 of positions

in T there is an integer 0 ≤ i < τ such that both (p1 + i) and (p2 + i) are in
DCτ (T ).

We will consider difference cover samples of the string T = T1$1T2$2 · · ·Tk$k,
i.e., the string obtained by concatenating and delimiting the input strings with
unique characters $1, . . . , $k. See Figure 1 for an example of a difference cover
sample of two input strings.
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DCτ DCτ DCτ DCτ DCτ DCτ

SAτ = 14 21 17 26 6 1 16 22 11 12 19 24 4 27 7 2 9[ , , , , , , , , , , , , , , , , ]

LCPτ = 0 3 1 2 2 0 1 2 1 2 3 4 0 1 1 0[ , , , , , , , , , , , , , , , ]

SARτ = 14 1 17 21 26 6 16 22 11 19 12 24 4 2 27 7 9[ , , , , , , , , , , , , , , , , ]

LCPRτ = 0 1 1 4 3 0 2 4 1 3 2 1 0 2 4 0[ , , , , , , , , , , , , , , , ]

Fig. 1. The string T = T1$1T2$2 = aggctagctacct$1acacctaccctag$2 sampled with
the difference cover DCτ = {1, 2, 4} modulo 5. The resulting difference cover sample is
DCτ (T ) = {1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 26, 27}. Below the arrays SAτ ,
LCPτ , SARτ and LCPRτ are shown. Sampled positions in T1 and T2 are marked by
white and black dots, respectively.

The difference cover sparse suffix array, denoted SAτ is the suffix array
restricted to the positions of T sampled by the difference cover, i.e., it is an
array of length n/

√
τ containing the positions of the sampled suffixes, sorted

lexicographically. Similarly, we define the difference cover sparse lcp array, de-
noted LCPτ , as the array storing the longest common prefix (lcp) values of
neighbouring suffixes in SAτ . Moreover, for a sampled position p ∈ DCτ (T ) we
denote by RB(p) the reversed substring of length τ ending in p, i.e., RB(p) =
T [p]T [p − 1] . . . T [p − τ + 1], and we refer to this string as the reversed block
ending in p. As for the sampled suffixes, we define arrays SARτ and LCPRτ for
the reversed blocks. The first contains the sampled positions sorted according
to the lexicographic ordering of the reversed blocks, and the latter stores the
corresponding longest common prefix values. See Figure 1 for an example of the
arrays SAτ , LCPτ , SARτ and LCPRτ .

The four arrays can be constructed in O(n
√
τ+(n/

√
τ) log(n/

√
τ)) time and

O(n/
√
τ) space [3,11]. To be able to compute the longest common prefix between

pairs of sampled suffixes and pairs of reversed blocks in constant time, we use
the well-known technique of constructing a linear space range minimum query
data structure [5,1] for the arrays LCPτ and LCPRτ .

3 Longest Common Substring of Two Strings

In this section we prove Theorem 1(i). We do so by providing two algorithms
both using O(n/

√
τ) space which are then combined to obtain the desired trade-

off. The first one correctly computes the LCS if it has length at least τ , while the
second one works if the length of the LCS is less than τ . In the second algorithm
we must assume that τ ≤ n2/3, which translates into the ε ≤ 1/3 bound on the
trade-off interval.



SAτ = 14 21 17 26 6 1 16 22 11 12 19 24 4 27 7 2 9[ , , , , , , , , , , , , , , , , ]

I1 I2 I3 I4

LCPτ = 0 3 1 2 2 0 1 2 1 2 3 4 0 1 1 0[ , , , , , , , , , , , , , , , ]

Fig. 2. The intervals of SAτ containing the pairs with lcp values at least ` = 2 for
the string shown in Figure 1. The pair maximising the lcp value of the corresponding
reversed blocks is p′1 = 11, p′2 = 22, which happens to be the LCS of T1 and T2: ctacc.

3.1 A Solution for Long LCS

We first compute a difference cover sample with parameter τ for the string
T = T1$1T2$2, where $1, $2 are special characters that do not occur in T1 or
T2. We then construct the arrays and the range minimum query data structures
described in Section 2.2 for computing longest common prefixes between pairs
of sampled suffixes or pairs of reversed blocks in constant time.

The LCS is the longest common prefix of suffixes T [p1..] and T [p2..] for some
p1 ≤ |T1| and p2 > |T1| + 1. If |LCS| ≥ τ then from the property of difference
cover samples (Lemma 2) it follows that there is an integer r < τ such that
p′1 = p1 + r and p′2 = p2 + r are both in DCτ (T ), and the length of the LCS is
thus r + lcp(T [p′1..], T [p′2..])− 1. In particular, this implies that

|LCS| = max
p′1≤|T1|
p′2>|T1|+1

(
lcp

(
RB(p′1), RB(p′2)

)
+ lcp

(
T [p′1..], T [p′2..]

)
− 1

)
.

The −1 is necessary since a sampled suffix overlaps with the reversed block in
one position. We will find the LCS by computing a pair of sampled positions
p∗1 ≤ |T1|, p∗2 > |T1| + 1 that maximises the above expression. Obviously, this
can be done by performing two constant time range minimum queries for all
O((n/

√
τ)2) pairs of sampled positions, but we want to do better.

The main idea of our algorithm is to exploit the observation that since
lcp(RB(p∗1), RB(p∗2)) ≤ τ , it must hold that lcp(T [p∗1..], T [p∗2..]) is in the interval
[`max − τ + 1; `max], where `max is the longest common prefix of two sampled
suffixes of T1 and T2. Thus, we can ignore a lot of pairs with small lcp values.

First, we compute `max in O(n/
√
τ) time by one scan of LCPτ . We then

compute the pair p∗1, p
∗
2 in τ rounds. In a round i, 0 ≤ i ≤ τ−1, we only consider

pairs p′1 ≤ |T1|, p′2 > |T1|+ 1 such that the length of the longest common prefix
of T [p′1..] and T [p′2..] is at least ` = `max − i. Among these pairs we select the
one maximising lcp

(
RB(p′1), RB(p′2)

)
.

The candidate pairs with a longest common prefix of length at least ` are
located in disjoint intervals I1, I2, . . . , Ik of SAτ . We compute these intervals by
scanning LCPτ to identify the maximal contiguous ranges with lcp values greater
than or equal to `. For each interval Ij we will find a pair p′1 ≤ |T1|, p′2 > |T1|+1
in Ij that maximises lcp

(
RB(p′1), RB(p′2)

)
. If lcp

(
RB(p′1), RB(p′2)

)
+ ` − 1 is

greater than the maximum value seen so far, we store this value as the new
maximum. See Figure 2 for an example.



Instead of searching the k intervals one by one, we process all intervals si-
multaneously. To do so, we first allocate an array A of size n/

√
τ and if r is the

rank of a reversed block RB(p), p ∈ Ij , we set A[r] to be equal to j. We then
scan A once and compute the longest common prefixes of every two consecutive
reversed blocks ending at positions p′1 ≤ |T1|, p′2 > |T1|+ 1 from the same inter-
val. We can do this if we for each interval Ij keep track of the rightmost r such
that A[r] = j.

The intervals considered in each round are disjoint so each round takes
O(n/

√
τ) time and never uses more than O(n/

√
τ) space. The total time is

O(n
√
τ) in addition to the O(n

√
τ + (n/

√
τ) log(n/

√
τ)) time for the construc-

tion. Hence we have showed the following lemma:

Lemma 3. Let 1 ≤ τ ≤ n. If the length of the longest common substring
of T1 and T2 is at least τ , it can be computed in O(n/

√
τ) space and O(n

√
τ +

(n/
√
τ) log n) time, where n is the total length of T1 and T2.

3.2 A Solution for Short LCS

In the following we require that τ ≤ n2/3, or, equivalently, that τ ≤ n/
√
τ . Let us

assume, for simplicity, that n1 = |T1| is a multiple of τ . Note that if |LCS| ≤ τ
then the LCS is a substring of one of the following strings: T1[1..2τ ], T1[τ +
1..3τ ], . . . , T1[n1−2τ+1..n1]. Therefore, we can reduce the problem of computing
the LCS to the problem of computing the longest substring of T2 which occurs
in at least one of these strings.

We divide the set S =
{
T1[1..2τ ], T1[τ + 1..3τ ], . . . , T1[n1 − 2τ + 1..n1]

}
into

disjoint subsets Si, i = 1, . . . ,
√
τ , such that the total length of strings in Si is no

more 2n/
√
τ (note that we can do this since τ ≤ n/

√
τ). For each Si we compute

the longest substring t∗i of T2 which occurs in one of the strings in Si, and take
the one of the maximal length.

To compute t∗i for Si we build the generalised suffix tree ST (Si) for the
strings in Si. We traverse ST (Si) with T2 as described in Lemma 1. Any common
substring of T2 and one of the strings in Si will be a prefix of the label of some
visited node in ST (Si). It follows that t∗i is the label of the node of maximal
string depth visited during the traversal.

We now analyse the time and space complexity of the algorithm. Since the
total length of the strings in Si is at most 2n/

√
τ , the suffix tree can be built

in O(n/
√
τ) space and time. The traversal takes O(n) time (see Lemma 1).

Consequently, t∗i can be found in O(n/
√
τ) space and O(n) time. By repeating

for all i = 1, . . . ,
√
τ , we obtain the following lemma:

Lemma 4. Let 1 ≤ τ ≤ n2/3. If the length of longest common substring of T1
and T2 is at most τ , it can be computed in O(n/

√
τ) space and O(n

√
τ) time,

where n is the total length of T1 and T2.

Combining the Solutions. By combining Lemma 3 and Lemma 4, we see that
the LCS can be computed in O

(
n/
√
τ
)

space and O
(
n
√
τ + (n/

√
τ) log n

)
time



for 1 ≤ τ ≤ n2/3. Substituting τ = n2ε the space bound becomes O(n1−ε) and
the time O(n1+ε + n1−ε log n), which is O(n1+ε) for ε > 0. This concludes the
proof of Theorem 1(i).

4 Longest Common Substring of Multiple Strings

In this section we prove Theorem 1(ii). Similar to the case of two strings, the
algorithm consists of two procedures that both use space O(n/

√
τ). The first

one correctly computes the LCS if its length is at least τ ′ = 1
11τ log2 n, while

the second works if the length of the LCS is at most τ ′. We then combine the
solutions to obtain the desired trade-off. The choice of the specific separation
value τ ′ comes from the fact that we need τ ′ ≤ n, and since the general solution
for long LCS requires a data structure with a superlinear space bound.

4.1 A General Solution for Long LCS

Note that we cannot use the same idea that we use in the case of two strings
since the property of difference cover samples (Lemma 2) does not necessarily
hold for d positions. Instead we propose a different approach described below.

If d > n/
√
τ , the algorithm returns an empty string and stops. This can be

justified by the following simple observation.

Lemma 5. If d > n/
√
τ then |LCS| < τ .

Proof. From d > n/
√
τ it follows that among any d strings from T1, T2, . . . , Tm

there is at least one string shorter than
√
τ . Therefore, the length of LCS is

smaller than
√
τ < τ . ut

This leaves us with the case where d ≤ n/
√
τ . We first construct the difference

cover sample with parameter τ ′ for the string T = T1$1T2$2 · · ·Tm$m, where $i,
1 ≤ i ≤ m, are special characters that do not occur in T1, T2, . . . , Tm. We also
construct the arrays and the range minimum query data structures described
in Section 2.2 for computing longest common prefixes between pairs of sampled
suffixes or pairs of reversed blocks in constant time.

Suppose that the LCS is a prefix of Ti[pi..], for some 1 ≤ i ≤ m, 1 ≤ pi ≤ |Ti|.
Then to compute |LCS| it is enough to find (d − 1) suffixes of distinct strings
from T1, T2, . . . , Tm such that the lcp values for them and Ti[pi..] are maximal.
The length of the LCS will be equal to the minimum of the lcp values. Below we
show how to compute the minimum.

Let N1 stand for zero, and Ni, i ≥ 2, stand for the length of T1$1 · · ·Ti−1$i−1.
Consider the sampled positions p1i , p

2
i , . . . , p

z
i in an interval [Ni+pi, Ni+pi+ τ ′]

(see Figure 3).
From the property of the difference cover samples it follows that there is an

integer r < τ ′ such that both p′i = (Ni + pi) + r and p′j = (Nj + pj) + r are in

DCτ ′(T ) — in particular, p′i = pki for some k. Moreover, if lcp
(
Ti[pi..], Tj [pj ..]

)
≥



T
T1$1 . . . Ti−1$i−1 Ti+1$i+1 . . . Tm$m

Ni p1i ...p
k
i...p

z
i Ni+1

RB(pki )

Fig. 3. Sampled positions p1i , p
2
i , . . . , p

z
i of T in an interval [Ni + pi, Ni + pi + τ ′], and

a reversed block RB(pki ).

τ ′, then the length of the longest common prefix of RB(pki ) and RB(p′j) is at

least r = (pki −Ni)− pi.
Let lcpkj be the maximum length of the longest common prefix of Ti[p

k
i −Ni..]

and Tj [p
′
j − Nj ..], taken over all possible choices of p′j , Nj < p′j ≤ Nj+1, such

that lcp
(
RB(pki ), RB(p′j)

)
≥ ((pki −Ni)− pi). For each k we define a list Lk to

contain values ((pki −Ni) − pi) + lcpkj −1, j 6= i, in decreasing order. Note that
since the number of the sampled positions in [Ni + pi, Ni + pi + τ ′] is at most√

1.5τ ′ + 6 (see Section 2.2), the number of the lists does not exceed
√

1.5τ ′ + 6
as well.

We first explain how we use the lists to obtain the answer and then how
their elements are retrieved. The lists Lk are merged into a sorted list L un-
til it contains values corresponding to suffixes of (d − 1) distinct strings from
T1, T2, . . . , Tm. The algorithm maintains a heap Hval on the values stored in the
heads of the lists and a heap Hid on the distinct identifiers of strings already
added to L. At each step it takes the maximum value in Hval and moves it from
its list to L. Then it updates Hval and Hid and proceeds. The last value added
to L will be equal to the length of the LCS.

We now explain how to retrieve values from Lk. Consider a set S of |DCτ ′(T )|
coloured points in the plane, where a point corresponding to a position p ∈
DCτ ′(T ) will have x-coordinate equal to the rank of T [p..] in the lexicographic
ordering of the sampled suffixes, y-coordinate equal to the rank of RB(p) in the
lexicographic ordering of the reversed blocks, and colour equal to the number of
the string T [p..] starts within.

We will show that after having retrieved the first `−1 elements from Lk, the
next element can be retrieved using O(log n) coloured orthogonal range reporting
queries on the set S. For an integer ` and an axis-parallel rectangle [a1, b1] ×
[a2, b2], such a query reports ` points of distinct colours lying in the rectangle.
We need only to consider the positions p such that lcp

(
RB(pki ), RB(p)

)
≥ ((pki −

Ni)− pi). These positions form an interval Ik of the reversed block array, SARτ .
For each Lk we maintain a rectangle R = [x1;x2] × Ik such that x1 ≤ x ≤ x2,
where x is the x-coordinate of the point corresponding to the position pki . After
the first (`− 1) elements of Lk have been retrieved, R contains points of (`− 1)
colours besides i and Lk[` − 1] = ((pki − Ni) − pi) + lcp

(
x1, x2) − 1, where

lcp
(
x1, x2) is the longest common prefix of suffixes of T with ranks x1 and x2

(see Figure 4). To retrieve the next element we extend R until it contains points
of ` colours not equal to i. We do this by extending either its left or right side
until it includes a point of a new colour. We keep the rectangle that maximises
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x
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Fig. 4. Retrieving the `th element of Lk. A rectangle R = [x1;x2]× Ik contains points
of (`−1) colours besides i. The two points of new colours shown in bold are the closest
points of new colours from the left and from the right. We extend either the left or
right side of the rectangle until it includes one of these points.

lcp(x1, x2). Finding the two candidate rectangles can be done by performing
two separate binary searches for the right and left sides using O(log n) coloured
orthogonal range queries. Note that in each query at most ` points are to be
reported.

The procedure described above is repeated for all 1 ≤ i ≤ m and 1 ≤ pi ≤
|Ti|. The maximum of the retrieved values will be equal to the length of the
LCS. We can compute the LCS itself, too, if we remember i and pi on which the
maximum is achieved.

Lemma 6. Let 1 ≤ τ ≤ 11n/ log2 n, and let LCS denote the longest substring
that appears in at least d of the strings T1, T2, . . . , Tm of total length n. In the
case where |LCS| ≥ 1

11τ log2 n, the LCS can be found in O(n/
√
τ) space and

O(nd
√
τ log2 n(log2 n+ d)) time.

Proof. If d > n/
√
τ , the algorithm returns an empty string and thus is correct.

Otherwise, τ ′ = 1
11τ log2 n ≤ n, and correctness of the algorithm follows from its

description. The data structures for performing constant time lcp computations
require O(n/

√
τ) space and can be built in O(n

√
τ log n) time.

Suppose that i and pi are fixed. Each interval Ik can be found using O(log n)
lcp computations. To perform coloured orthogonal range queries on the set S of
size |DCτ ′(T )| = O(n/(

√
τ log n)), we use the data structure [8] that can be con-

structed in O(|S| log2 |S|) = O((n log n)/
√
τ) time and O(|S| log |S|) = O(n/

√
τ)

space and allows to report ` points of distinct colours in time O(log2 |S|+ `) =
O(log2 n + `). Thus retrieving Lk[`] takes time O(log n(log2 n + `)). The merge
stops after retrieving at most d elements from each of the O(

√
τ ′) lists, which

will take O(d
√
τ ′ log n(log2 n+ d)) = O(d

√
τ log2 n(log2 n+ d)) time.

Merging the lists into L will take O(log τ ′ + log d) time per element, i.e.,

O(d
√
τ ′(log τ ′ + log d)) = O(d

√
τ log3/2 n) time in total, and O(

√
τ ′ + d) =

O(n/
√
τ) space (remember that we are in the case d ≤ n/

√
τ). Therefore, com-

puting the longest prefix of Ti[pi..] which occurs in at least (d− 1) other strings
will take O(d

√
τ log2 n(log2 n+ d)) time. The lemma follows. ut



4.2 A General Solution for Short LCS

We start by proving the following lemma:

Lemma 7. Given input strings T1, T2, . . . , Tm of total length n and a string S
of length |S|. The longest substring t of S that appears in at least d of the input
strings can be found in O((|S|+ n) log |t|) time and O(|S|) space.

Proof. We prove that there is an algorithm that takes an integer i, and in O(|S|+
n) time and O(|S|) space either finds an i-length substring of S that occurs in at
least d input strings, or reports that no such substring exists. The lemma then
follows, since by running the algorithm O(log |t|) times we can do an exponential
search for the maximum value of i.

We construct the algorithm as follows. First we build the suffix tree ST (S)
for the string S, together with all suffix links. For every node of the suffix tree
we store a pointer to its ancestor of string depth i (all such pointers can be
computed in O(|S|) time by post-processing the tree). Besides, for every node
v ∈ ST (S) of string depth i (explicit or implicit), we store a counter c(v) and an
integer id(v), both initially set to zero. These nodes correspond exactly to the
i-length substrings of S, and we will use c(v) to count the number of distinct
input strings that the label of v occurs in. To do this, we traverse ST (S) with
the input strings T1, T2, . . . , Tm one at a time as described in Lemma 1. When
matching a character a of Tj , we always check if a node v of string depth i above
our current location has id(v) < j. In that case, we increment the counter c(v)
and set id(v) = j to ensure that the counter is only incremented once for Tj .

To prove the correctness note that for any i-length substring ` of Tj that
also occurs in S there exists a node of ST (T ) labelled by it, and one of the
descendants of this node will be visited during the matching process of Tj (see
Lemma 1). The converse is also true, because any node v′ ∈ ST (T ) visited during
the traversal implies that all prefixes of the label of v′ occur in Tj .

The suffix tree for S can be constructed in O(|S|) time and space. The traver-
sal with Tj can be implemented to take time O(|Tj |), i.e., O(n) time for all the
input strings. In addition to the suffix tree, at most |S| constant space counters
are stored. Thus the algorithm requires O(n+ |S|) time and O(|S|) space. ut

We now describe the algorithm for finding the LCS when |LCS| ≤ τ ′ = 1
11τ log2 n.

Consider the partition of T into substrings of length δn/
√
τ overlapping in τ ′

positions, where δ is a suitable constant. Assuming that τ ≤ n2/3−γ for some
constant γ > 0, implies that these strings will have length at least 2τ ′, and thus
the LCS will be a substring of one of them. We examine the strings one by one
and apply Lemma 7 to find the longest substring that occurs in at least d input
strings. It follows that we can check one string in O(n/

√
τ) space and O(n log n)

time, so by repeating for all O(
√
τ) strings, we have:

Lemma 8. Let 1 ≤ τ ≤ n2/3−γ for some constant γ > 0, and let LCS denote
the longest substring that appear in at least d of the strings T1, T2, . . . , Tm of
total length n. If |LCS| ≤ 1

11τ log2 n, the LCS can be found in O(n/
√
τ) space

and O(
√
τn log n) time.



Combining the Solutions. Our specific choice of separation value ensures that
the assumption on τ of Lemma 8 implies the assumption of Lemma 6 (because
n2/3−γ ≤ 11n/ log2 n for all n and γ > 0). Thus by combining the two solutions
the LCS can be computed in O(n/

√
τ) space and O(d

√
τn log2 n(log2 n + d))

time for 1 ≤ τ ≤ n2/3−γ , γ > 0. Substituting τ = n2ε, we obtain the bound
stated by Theorem 1(ii) with the requirement that 0 ≤ ε < 1/3.

5 Open Problems

We conclude with some open problems. Is it possible to extend the trade-off
range of our solutions to ideally 0 ≤ ε ≤ 1/2? Can the time bound for the general
LCS problem be improved so it fully generalises the solution for two strings? The
difference cover technique requires Ω(

√
n) space, so the most interesting question

is perhaps whether the LCS problem can be solved deterministically in O(n1−ε)
space and O(n1+ε) time for any 0 ≤ ε ≤ 1?
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