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Abstract

We consider the problem of computing the q-gram profile of a string T of size N compressed
by a context-free grammar with n production rules. We present an algorithm that runs in
O(N −α) expected time and uses O(n+ q+ kT,q) space, where N −α ≤ qn is the exact number
of characters decompressed by the algorithm and kT,q ≤ N−α is the number of distinct q-grams
in T . This simultaneously matches the current best known time bound and improves the best
known space bound. Our space bound is asymptotically optimal in the sense that any algorithm
storing the grammar and the q-gram profile must use Ω(n+ q+ kT,q) space. To achieve this we
introduce the q-gram graph that space-efficiently captures the structure of a string with respect
to its q-grams, and show how to construct it from a grammar.

1 Introduction

Given a string T , the q-gram profile of T is a data structure that can answer substring frequency
queries for substrings of length q (q-grams) in O(q) time. We study the problem of computing the
q-gram profile from a string T of size N compressed by a context-free grammar with n production
rules. We assume that the model of computation is the standard w-bit word RAM where each
word is capable of storing a character of T , i.e., the characters of T are drawn from an alphabet
{1, . . . , 2w}, and hence w ≥ logN [8]. The space complexities are measured by the number of words
used.

The generalization of string algorithms to grammar-based compressed text is currently an active
area of research. Grammar-based compression is studied because it offers a simple and strict setting
and is capable of modelling many commonly used compression schemes, such as those in the Lempel-
Ziv family [21, 22], with little expansion [2, 15]. The problem of computing the q-gram profile has
its applications in bioinformatics, data mining, and machine learning [4,12,14]. All are fields where
handling large amount of data effectively is crucial. Also, the q-gram distance can be computed
from the q-gram profiles of two strings and used for filtering in string matching [1, 9, 17–20].

Recently the first dedicated solution to computing the q-gram profile from a grammar-based
compressed string was proposed by Goto et al. [7]. Their algorithm runs in O(qn) expected time1

and uses O(qn) space. This was later improved by the same authors [6] to an algorithm that
takes O(N − α) expected time and uses O(N − α) space, where N is the size of the uncompressed
string, and α is a parameter depending on how well T is compressed with respect to its q-grams.

1The bound in [7] is stated as worst-case since they assume alphabets of size O(Nc) for fast suffix sorting, where
c is a constant. We make no such assumptions and without it hashing can be used to obtain the same bound in
expectation.
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N−α ≤ min(qn,N) is in fact the exact number of characters decompressed by the algorithm in order
to compute the q-gram profile, meaning that the latter algorithm excels in avoiding decompressing
the same character more than once.

We present a Las Vegas-type randomized algorithm that gives Theorem 1.

Theorem 1 Let T be a string of size N compressed by a grammar of size n. The q-gram profile

can be computed in O(N − α) expected time and O(n+ q + kT,q) space, where kT,q ≤ N − α is the

number of distinct q-grams in T .

Hence, our algorithm simultaneously matches the current best known time bound and improves
the best known space bound. Our space bound is asymptotically optimal in the sense that any
algorithm storing the grammar and the q-gram profile must use Ω(n+ q + kT,q) space.

A straightforward approach to computing the q-gram profile is to first decompress the string
and then use an algorithm for computing the profile from a string. For instance, we could construct
a compact trie of the q-grams using an algorithm similar to a suffix tree construction algorithm as
mentioned in [10], or use Rabin-Karp fingerprints to obtain a randomized algorithm [20]. However,
both approaches are impractical because the time and space usage associated with a complete
decompression of T is linear in its size N = O(2n). To achieve our bounds we introduce the q-gram
graph, a data structure that space efficiently captures the structure of a string in terms of its q-
grams, and show how to compute the graph from a grammar. We then transform the graph to a
suffix tree containing the q-grams of T . Because our algorithm uses randomization to construct the
q-gram graph, the answer to a query may be incorrect. However, as a final step of our algorithm,
we show how to use the suffix tree to verify that the fingerprint function is collision free and thereby
obtain Theorem 1.

2 Preliminaries and Notation

2.1 Strings and Suffix Trees

Let T be a string of length |T | consisting of characters from the alphabet Σ. We use T [i : j],
0 ≤ i ≤ j < |T |, to denote the substring starting in position i of T and ending in position j of T .
We define socc(s, T ) to be the number of occurrences of the string s in T .

The suffix tree of T is a compact trie containing all suffixes of T . That is, it is a trie containing
the strings T [i : |T | − 1] for i = 0..|T | − 1. The suffix tree of T can be constructed in O(|T |) time
and uses O(|T |) space [3]. The generalized suffix tree is the suffix tree for a set of strings. It can
be constructed using time and space linear in the sum of the lengths of the strings in the set. The
set of strings may be compactly represented as a common suffix tree (CS-tree). The CS-tree has
the characters of the strings on its edges, and the strings start in the leaves and end in the root. If
two strings have some suffix in common, the suffixes are merged to one path. In other words, the
CS-tree is a trie of the reversed strings, and is not to be confused with the suffix tree. For CS-trees,
the following is known.

Lemma 1 (Shibuya [16]) Given a set of strings represented by a CS-tree of size n and comprised

of characters from an alphabet of size O(nc), where c is a constant, the generalized suffix tree of

the set of strings can be constructed in O(n) time using O(n) space.
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For a node v in a suffix tree, the string depth sd(v) is the sum of the lengths of the labels on the
edges from the root to v. We use parent(v) to get the parent of v, and nca(v, u) is the nearest
common ancestor of the nodes v and u.

2.2 Straight Line Programs

A Straight Line Program (SLP) is a context-free grammar in Chomsky normal form that derives a
single string T of length N over the alphabet Σ. In other words, an SLP S is a set of n production
rules of the form Xi = XlXr or Xi = a, where a is a character from the alphabet Σ, and each rule
is reachable from the start symbol Xn. Our algorithm assumes without loss of generality that the
compressed string given as input is compressed by an SLP.

It is convenient to view an SLP as a directed acyclic graph (DAG) in which each node represents
a production rule. Consequently, nodes in the DAG have exactly two outgoing edges. An example
of an SLP is seen in Figure 2(a). When a string is decompressed we get a derivation tree which
corresponds to the depth-first traversal of the DAG.

We denote by tXi
the string derived from production rule Xi, so T = tXn . For convenience we

say that |Xi| is the length of the string derived from Xi, and these values can be computed in linear
time in a bottom-up fashion using the following recursion. For each Xi = XlXr in S,

|Xi| =

{

|Xl|+ |Xr| if Xi is a nonterminal,

1 otherwise.

Finally, we denote by occ(Xi) the number of times the production rule Xi occurs in the derivation
tree. We can compute the occurrences using the following linear time and space algorithm due to
Goto et al. [7]. Set occ(Xn) = 1 and occ(Xi) = 0 for i = 1..n − 1. For each production rule of
the form Xi = XlXr, in decreasing order of i, we set occ(Xl) = occ(Xl) + occ(Xi) and similarly for
occ(Xr).

2.3 Fingerprints

A Rabin-Karp fingerprint function φ takes a string as input and produces a value small enough
to let us determine with high probability whether two strings match in constant time. Let s be a
substring of T , c be some constant, 2N c+4 < p ≤ 4N c+4 be a prime, and choose b ∈ Zp uniformly
at random. Then,

φ(s) =

|s|
∑

k=1

s[k] · bk mod p.

Lemma 2 (Rabin and Karp [11]) Let φ be defined as above. Then, for all 0 ≤ i, j ≤ |T | − q,

φ(T [i : i+ q]) = φ(T [j : j + q]) iff T [i : i+ q] = T [j : j + q] w.h.p.

We denote the case when T [i : i+q] 6= T [j : j+q] and φ(T [i : i+q]) = φ(T [j : j+q]) for some i and j a
collision, and say that φ is collision free on substrings of length q in T if φ(T [i : i+q]) = φ(T [j : j+q])
iff T [i : i+ q] = T [j : j + q] for all i and j, 0 ≤ i, j < |T | − q.

3



Besides Lemma 2, fingerprints exhibit the useful property that once we have computed φ(T [i :
i + q]) we can compute the fingerprint φ(T [i + 1 : i + q + 1]) in constant time using the update
function,

φ(T [i+ 1 : i+ q + 1]) = φ(T [i : i+ q])/b− T [i] + T [i+ q + 1] · bq mod p.

3 Key Concepts

3.1 Relevant Substrings

Consider a production rule Xi = XlXr that derives the string tXi
= tXl

tXr . Assume that we have
counted the number of occurrences of q-grams in tXl

and tXr separately. Then the relevant substring
rXi

is the smallest substring of tXi
that is necessary and sufficient to process in order to detect

and count q-grams that have not already been counted. In other words, rXi
is the substring that

contains q-grams that start in tXl
and end in tXr as shown in Figure 1. Formally, for a production

rule Xi = XlXr, the relevant substring is rXi
= tXi

[max(0, |Xl|−q+1) : min(|Xl|+q−2, |Xi|−1)].
We want the relevant substrings to contain at least one q-gram, so we say that a production rule
Xi only has a relevant substring if |Xi| ≥ q. The size of a relevant substring is q ≤ |rXi

| ≤ 2(q− 1).

Xi

Xl Xr

tXi

tXl
tXr

rXi

2(q − 1)

Figure 1: The derivation tree for Xi = XlXr and the relevant susbtring rXi
of Xi.

The concept of relevant substrings is the backbone of our algorithm because of the following. If
Xi occurs occ(Xi) times in the derivation tree for S, then the substring tXi

occurs at least occ(Xi)
times in T . It follows that if a q-gram s occurs socc(s, tXi

) times in some substring tXi
then we

know that it occurs at least socc(s, tXi
) · occ(Xi) times in T . Using our description of relevant

substrings we can rewrite the latter statement to socc(s, tXi
) · occ(Xi) = socc(s, tXl

) · occ(Xl) +
socc(s, tXr) · occ(Xr) + socc(s, rXi

) · occ(Xi) for the production rule Xi = XlXr. By applying this
recursively to the root Xn of the SLP we get the following lemma.

Lemma 3 (Goto et al. [6]) Let Sq = {Xi | Xi ∈ S and |Xi| ≥ q} be the set of production rules

that have a relevant substring, and let s be some q-gram. Then,

socc(s, T ) =
∑

Xi∈Sq

socc(s, rXi
) · occ(Xi).
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3.2 Prefix and Suffix Decompression

The following Lemma states a result that is crucial to the algorithm presented in this paper.

Lemma 4 (Ga̧sieniec et al. [5]) An SLP S of size n can be preprocessed in O(n) time using

O(n) extra space such that, given a pointer to a variable Xi in S, the prefix and suffix of tXi
of

length j can be decompressed in O(j) time.

Ga̧sieniec et al. give a data structure that supports linear time decompression of prefixes, but it is
easy to extend the result to also hold for suffixes. Let s be some string and sR the reversed string.
If we reverse the prefix of length j of sR this corresponds to the suffix of length j of s. To obtain an
SLP for the reversed string we swap the two variables on the right-hand side of each nonterminal
production rule. The reversed SLP S ′ contains n production rules and the transformation ensures
that tXi′

= tRXi
for each production rule Xi′ in S ′. A proof of this can be found in [13]. Producing

the reversed SLP takes linear time and in the process we create pointers from each variable to its
corresponding variable in the reversed SLP. After both SLP’s are preprocessed for linear time prefix
decompression, a query for the length-j suffix of tXi

is handled by following the pointer from Xi to
its counterpart in the reversed SLP, decompressing the prefix of length j of this, and reversing the
prefix.

3.3 The q-gram Graph

We now describe a data structure that we call the q-gram graph. It too will play an important
role in our algorithm. The q-gram graph Gq(T ) captures the structure of a string T in terms of its
q-grams. In fact, it is a subgraph of the De Bruijn graph over Σq with a few augmentations to give
it some useful properties. We will show that its size is linear in the number of distinct q-grams in
T , and we give a randomized algorithm to construct the graph in linear time in N .

A node in the graph represents a distinct (q−1)-gram, and the label on the node is the fingerprint
of the respective (q − 1)-gram. The graph has a special node that represents the first (q − 1)-gram
of T and which we will denote the start node. Let x and y be characters and α a string such that
|α| = q− 2. There is an edge between two nodes with labels φ(xα) and φ(αy) if xαy is a substring
of T . The graph may contain self-loops. Each edge has a label and a counter. The label of the edge
{φ(xα), φ(αy)} is y, and its counter indicates the number of times the substring xαy occurs in T .
Since |xαy| = q this data structure contains information about the frequencies of q-grams in T .

Lemma 5 The q-gram graph of T , Gq(T ), has O(kT,q) nodes and O(kT,q) edges.

Proof. Each node represents a distinct (q−1)-gram and its outgoing edges have unique labels. The
combination of a node and an outgoing edge thus represents a distinct q-gram, and therefore there
can be at most kT,q edges in the graph. For every node with label φ(T [i : i+q−1]), i = 1..|T |−q−1,
the graph contains a node with label φ(T [i + 1 : i+ q]) with an edge between the two. The graph
is therefore connected and has at most has at most kT,q + 1 nodes. �

The graph can be constructed using the following online algorithm which takes a string T , an
integer q ≥ 2, and a fingerprint function φ as input. Let the start node of the graph have the
fingerprint φ(T [0 : (q− 1)− 1]). Assume that we have built the graph Gq(T [0 : k+(q− 1)− 1]) and
that we keep its nodes and edges in two dictionaries implemented using hashing. We then compute
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the fingerprint φ(T [k + 1 : k + (q − 1)]) for the (q − 1)-gram starting in position k+ 1 in T . Recall
that since this is the next successive q-gram, this computation takes constant time. If a node with
label φ(T [k+1 : k+(q−1)]) already exists we check if there is an edge from φ(T [k : k+(q−1)−1])
to φ(T [k + 1 : k + (q − 1)]). If such an edge exists we increment its counter by one. If it does not
exist we create it and set its counter to 1. If a node with label φ(T [k + 1 : k + (q − 1)]) does not
exist we create it along with an edge from φ(T [k : k + (q − 1)− 1]) to it.

Lemma 6 For a string T of length N , the algorithm is a Monte Carlo-type randomized algorithm

that builds the q-gram graph Gq(T ) in O(N) expected time.

4 Algorithm

Our main algorithm is comprised of four steps: preparing the SLP, constructing the q-gram graph
from the SLP, turning it into a CS-tree, and computing the suffix tree of the CS-tree. Ultimately
the algorithm produces a suffix tree containing the reversed q-grams of T , so to answer a query for
a q-gram s we will have to lookup sR in the suffix tree. Below we will describe the algorithm and
we will show that it runs in O(qn) expected time while using O(n+q+kT,q) space; an improvement
over the best known algorithm in terms of space usage. The catch is that a frequency query to
the resulting data structure may yield incorrect results due to randomization. However, we show
how to turn the algorithm from a Monte Carlo to a Las Vegas-type randomized algorithm with
constant overhead. Finally, we show that by decompressing substrings of T in a specific order,
we can construct the q-gram graph by decompressing exactly the same number of characters as
decompressed by the best known algorithm.

The algorithm is as follows. Figure 2 shows an example of the data structures after each step
of the algorithm.

Preprocessing. As the first step of our algorithm we preprocess the SLP such that we know
the size of the string derived from a production rule, |Xi|, and the number of occurrences in the
derivation tree, occ(Xi). We also prepare the SLP for linear time prefix and suffix decompressions
using Lemma 4.

Computing the q-gram graph. In this step we construct the q-gram graph Gq(T ) from the
SLP S. Initially we choose a suitable fingerprint function for the q-gram graph construction algo-
rithm and proceed as follows. For each production rule Xi = XlXr in S, such that |Xi| ≥ q, we
decompress its relevant substring rXi

. Recall from the definition of relevant substrings that rXi
is

the concatenation of the q− 1 length suffix of tXl
and the q− 1 length prefix of tXr . If |Xl| ≤ q− 1

we decompress the entire string tXl
, and similarly for tXr . Given rXi

we compute the fingerprint of
the first (q− 1)-gram, φ(rXi

[0 : (q− 1)− 1]), and find the node in Gq(T ) with this fingerprint as its
label. The node is created if it does not exist. Now the construction of Gq(T ) can continue from
this node, albeit with the following change to the construction algorithm. When incrementing the
counter of an edge we increment it by occ(Xi) instead of 1.

The q-gram graph now contains the information needed for the q-gram profile; namely the
frequencies of the q-grams in T . The purpose of the next two steps is to restructure the graph to
a data structure that supports frequency queries in O(q) time.
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Transforming the q-gram graph to a CS-tree. The CS-tree that we want to create is basically
the depth-first tree of Gq(T ) with the extension that all edges in Gq(T ) are also in the tree. We
create it as follows. Let the start node of Gq(T ) be the node whose label match the fingerprint of
the first q − 1 characters of T . Do a depth-first traversal of Gq(T ) starting from the start node.
For a previously unvisited node, create a node in the CS-tree with an incoming edge from its
predecessor. When reaching a previously visited node, create a new leaf in the CS-tree with an
incoming edge from its predecessor. Labels on nodes and edges are copied from their corresponding
labels in Gq(T ). We now create a path of length q− 1 with the first q− 1 characters of T as labels
on its edges. We set the last node on this path to be the root of the depth-first tree. The first node
on the path is the root of the final CS-tree.

Computing the suffix tree of the CS-tree. Recall that a suffix in the CS-tree starts in a node
and ends in the root of the tree. Usually we store a pointer from a leaf in the suffix tree to the
node in the CS-tree from which the particular suffix starts. However, when we construct the suffix
tree, we store the value of the counter of the first edge in the suffix as well as the label of the first
node on the path of the suffix.

X7

X6X5

X3 X4

X1 = a X2 = b

(a) SLP.

φ(ab) φ(ba)

φ(bb)

a
1

b
1

a
1

b
2

b
1

(b) The 3-gram graph.

φ(ab)

φ(ba)

φ(ab)

φ(bb)

φ(ba) φ(bb)

a

b

a
1

b
2

b
1

a
1 b

1

(c) CS-tree.

φ(ba)
1
φ(ba)

1
φ(ab)

2
φ(ab)φ(bb)

1
φ(bb)

1

a

b

$

b

a$

ba$

ba

a$

ba$

ba
$ $

(d) Suffix tree.

Figure 2: An SLP compressing the string ababbbab, and the data structures after each step of the
algorithm executed with q = 3.

Our algorithm resembles the one by Goto et al. [6]. The main difference between the algorithms
is that Goto et al. use the so-called neighbour graph to capture the q-grams of T where we use

7



the q-gram graph. This is also the key to the improvement in space usage. If a q-gram occurs in
several relevant substrings it will occur several times in the neighbour graph but only once in the
q-gram graph.

4.1 Correctness

Before showing that our algorithm is correct, we will prove some crucial properties of the q-gram
graph, the CS-tree, and the suffix tree of the CS-tree subsequent to their construction in the
algorithm.

Lemma 7 The q-gram graph Gq(T ) constructed from the SLP is connected.

Proof. Consider a production rule Xi = XlXr. If |Xi| ≤ 2(q − 1) we decompress the entire string
tXi

and insert it into the q-gram graph, and we know that Gq(tXi
) is connected. Assume that

Gq(tXl
) and Gq(tXr) are both connected. We know from Lemma 3 that if we insert all the relevant

substrings of the nodes reachable from Xl (including Xl) into the graph, then it will contain all
(q− 1)-grams of tXl

. Since the first q− 1 characters of rXi
is a suffix of tXl

, the subgraphs Gq(tXl
)

and Gq(rXi
) will have at least one node in common, and similarly for Gq(tXr) and Gq(rXi

). There-
fore, Gq(Xi) is connected. �

Lemma 8 Assuming that we are given a fingerprint function φ that is collision free for substrings

of length q − 1 in T , then the CS-tree built by the algorithm contains each distinct q-gram in T
exactly once.

Proof. Let v be a node with an outgoing edge e in Gq(T ). The combination of the label of v
followed by the character on e is a distinct q-gram and occurs only once in Gq(T ) due to the way
we construct it. There may be several paths of length q − 1 ending in v spelling the same string s,
and because the fingerprint function is deterministic, there can not be a path spelling s ending in
some other node. Since the depth-first traversal of Gq(T ) only visits e once, the resulting CS-tree
will only contain the combination of the labels on v and e once. �

Lemma 9 Assuming that we are given a fingerprint function φ that is collision free for substrings

of length q − 1 in T , then any node v in the suffix tree of the CS-tree with sd(v) ≥ q is a leaf.

Proof. Each suffix of length ≥ q in the CS-tree has a distinct q length prefix (Lemma 8), so
therefore each node in the suffix tree with string depth ≥ q is a leaf. �

We have now established the necessary properties to prove that our algorithm is correct.

Lemma 10 Assuming that we are given a fingerprint function φ that is collision free on all sub-

strings of length q − 1 of T , our algorithm correctly computes a q-gram profile for T .
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Proof. Our algorithm inserts each relevant substring rXi
exactly once, and if a q-gram s oc-

curs socc(s, rXi
) times in rXi

, the counter on the edge representing s is incremented by exactly
socc(s, rXi

) · occ(Xi). From Lemma 3 we then know that when Gq(T ) is fully constructed, the
counters on its edges correspond to the frequencies of the q-grams in T . Since Gq(T ) is connected
(Lemma 7) the tree created by the algorithm is a CS-tree that contains each q-gram from Gq(T )
exactly once (Lemma 8). Finally, we know from Lemma 9 that a node v with sd(v) ≥ q in the
suffix tree is a leaf, so searching for a string of length q in the suffix tree will yield a unique result
and can be done in O(q) time. �

4.2 Analysis

Theorem 2 The algorithm runs in O(qn) expected time and uses O(n+ q + kT,q) space.

Proof. Let Sq = {Xi | Xi ∈ S and |Xi| ≥ q} be the set of production rules that have a relevant
substring. For each production rule Xi = XlXr ∈ Sq we decompress its relevant substring of
size |rXi

| and insert it into the q-gram graph. Since rXi
is comprised of the suffix of tXl

and the
prefix of tXr we know from Lemma 4 that rXi

can be decompressed in O(|rXi
|) time. Inserting

rXi
into the q-gram graph can be done in O(|rXi

|) expected time (Lemma 6). Since |Sq| = O(n)
and q ≤ |rXi

| ≤ 2(q − 1) this step of the algorithm takes O(qn) time. When transforming the
q-gram graph to a CS-tree we do one traversal of the graph and add q − 1 nodes, so this step
takes O(q + kT,q) time. Constructing the suffix tree takes expected linear time in the size of the
CS-tree if we hash the characters of the alphabet to a polynomial range first (Lemma 1). Finally,
observe that since our algorithm is correct, it detects all q-grams in T and therefore there can be
at most kT,q ≤

∑

Xi∈Sq
|rXi

| = O(qn) distinct q-grams in T . Thus, the expected running time of

our algorithm is O(qn).
In the preprocessing step of our algorithm we use O(n) space to store the size of the derived

substrings and the number of occurrences in the derivation tree as well as the data structure needed
for linear time prefix and suffix decompressions (Lemma 4). The space used by the q-gram graph is
O(kT,q), and when transforming it to a CS-tree we add at most one new node per edge in the graph
and extend it by q−1 nodes and edges. Thus, its size is O(q+kT,q). The CS-tree contains O(q+kT,q)
suffixes, so the size of the suffix tree is O(q+kT,q). In total our algorithm uses O(n+q+kT,q) space. �

4.3 Verifying the fingerprint function

Until now we have assumed that the fingerprints used as labels for the nodes in the q-gram graph
are collision free. In this section we describe an algorithm that verifies if the chosen fingerprint
function is collision free using the suffix tree resultant from our algorithm.

If there is a collision among fingerprints, the q-gram graph construction algorithm will add an
edge such that there are two paths of length q − 1 ending in the same node while spelling two
different strings. This observation is formalized in the next lemma.

Lemma 11 For each node v in Gq(T ), if every path of length q − 1 ending in v spell the same

string, then the fingerprint function used to construct Gq(T ) is collision free for all (q − 1)-grams

in T .
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Proof. From the q-gram graph construction algorithm we know that we create a path of characters
in the same order as we read them from T . This means that every path of length q− 1 ending in a
node v represents the q−1 characters generating the fingerprint stored in v, regardless of what comes
before those q−1 characters. If all the paths of length q−1 ending in v spell the same string s, then
we know that there is no other substring s′ 6= s of length q−1 in T that yields the fingerprint φ(s). �

It is not straightforward to check Lemma 11 directly on the q-gram graph without using too much
time. However, the error introduced by a collision naturally propagates to the CS-tree and the
suffix tree of the CS-tree, and as we shall now see, the suffix tree offers a clever way to check for
collisions. First, recall that in a leaf v in the suffix tree, we store the fingerprint of the reversed
prefix of length q − 1 of the suffix ending in v. Now consider the following property of the suffix
tree.

Lemma 12 Let vφ be the fingerprint stored in a leaf v in the suffix tree. The fingerprint function

φ is collision free for (q − 1)-grams in T if vφ 6= uφ or sd(nca(v, u)) ≥ q − 1 for all pairs v, u of

leaves in the suffix tree.

Proof. Consider the contrapositive statement: If φ is not collision free on T then there exists some
pair v, u for which vφ = uφ and sd(nca(v, u)) < q − 1. Assume that there is a collision. Then at
least two paths of length q− 1 spelling the same string end in the same node in Gq(T ). Regardless
of the order of the nodes in the depth-first traversal of Gq(T ), the CS-tree will have two paths
of length q − 1 spelling different strings and yet starting in nodes storing the same fingerprint.
Therefore, the suffix tree contains two suffixes that differ by at least one character in their q − 1
length prefix while ending in leaves storing the same fingerprint, which is what we want to show. �

Checking if there exists a pair of leaves where vφ = uφ and sd(nca(v, u)) < q−1 is straightforward.
For each leaf we store a pointer to its ancestor w that satisfies sd(w) ≥ q− 1 and sd(parent(w)) <
q − 1. Then we visit each leaf v again and store vφ in a dictionary along with the ancestor pointer
just defined. If the dictionary already contains vφ and the ancestor pointer points to a different
node, then it means that vφ = uφ and sd(nca(v, u)) < q − 1 for some two leaves.

The algorithm does two passes of the suffix tree which has size O(q + kT,q). Using a hashing
scheme for the dictionary we obtain an algorithm that runs in O(q + kT,q) expected time.

4.4 Eliminating redundant decompressions

We now present an alternative approach to constructing the q-gram graph from the SLP. The
resulting algorithm decompresses fewer characters.

In our first algorithm for constructing the q-gram graph we did not specify in which order to
insert the relevant substrings into the graph. For that reason we do not know from which node
to resume construction of the graph when inserting a new relevant substring. So to determine
the node to continue from, we need to compute the fingerprint of the first (q − 1)-gram of each
relevant substring. In other words, the relevant substrings are overlapping, and consequently some
characters are decompressed more than once. Our improved algorithm is based on the following
observation. Consider a production rule Xi = XlXr. If all relevant substrings of production rules
reachable from Xl (including rXl

) have been inserted into the graph, then we know that all q-grams
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in tXl
are in the graph. Since the q − 1 length prefix of rXi

is also a suffix of tXl
, then we know

that a node with the label φ(rXi
[0 : (q − 1) − 1]) is already in the graph. Hence, after inserting

all relevant substrings of production rules reachable from Xl we can proceed to insert rXi
without

having to decompress rXi
[0 : (q − 1)− 1].

Algorithm. First we compute and store the size of the relevant substring |rXi
| = min(q−1, |Xl|)+

min(q − 1, |Xr |) for each production rule Xi = XlXr in the subset Sq = {Xi | Xi ∈ S and Xi ≥ q}
of the production rules in the SLP. We maintain a linked list L with a pointer to its head and tail,
denoted by head(L) and tail(L). The list is initially empty.

We now start decompressing T by traversing the SLP depth-first, left-to-right. When following
a pointer fromXi to a right child, andXi ∈ Sq, we addXi and the sentinel value |rXi

|−(q−1) to the
back of L. As characters are decompressed they are fed to the q-gram graph construction algorithm,
and when a counter on an edge in Gq(T ) is incremented, we increment it by occ(head(L)). For each
character we decompress, we decrement the sentinel value for head(L), and if this value becomes 0
we remove the head of the list and set head(L) to be the next production rule in the list. Note that
when L is empty in the beginning of the execution of the algorithm we do not alter any values.

When leaving a node Xi ∈ Sq we mark it as visited and store a pointer from Xi to the node
with label φ(tXi

[|Xi| − (q − 1) : |Xi| − 1]) in Gq(T ), i.e., the node labelled with the suffix of length
q − 1 of tXi

. To do this we need to consider two cases. Let Xi = XlXr. If Xr ∈ Sq then we copy
the pointer from Xr. If Xr /∈ Sq then φ(tXi

[|Xi| − (q − 1) : |Xi| − 1]) is the most recently visited
node in Gq(T ).

If we encounter a node that has been marked as visited, we decompress its prefix of length q−1
using the data structure of Lemma 4, set the node with label φ(tXi

[|Xi| − (q − 1) : |Xi| − 1]) to
be the node from where construction of the q-gram graph should continue, and do not proceed to
visit its children nor add it to L.

Analysis. Assume without loss of generality that the algorithm is at a production rule deriving
the string tXi

= tXl
tXr and all q-grams in tXl

are in Gq(T ). There is always such a rule, since
we start by decompressing the string derived by the left child of the leftmost rule in Sq. For each
variable Xi added to L we decompress |rXi

| − (q − 1) characters before Xi is removed from the
list. We only add a variable once to the list, so the total number of characters decompressed
is at most (q − 1) +

∑

Xi∈Sq
|rXi

| − (q − 1) = O(N − α), and we hereby obtain our result from

Theorem 1. This is fewer characters than our first algorithm that require
∑

Xi∈Sq
|rXi

| characters
to be decompressed. Furthermore, it is exactly the same number of characters decompressed by
the fastest known algorithm due to Goto et al. [6].
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