
An IMS DSL Developed at Ericsson

Pascal Potvin, Mario Bonja, Gordon Bailey and Pierre Busnel

Ericsson,
8400 boul. Décarie, Mont-Royal, Qc, H4P 2N2, Canada

{firstname.lastname}@ericsson.com

Abstract. In this paper, we present how we created a Domain Specific Lan-
guage (DSL) dedicated to IP Multimedia Subsystem (IMS) at Ericsson. First,
we introduce IMS and how developers are burdened by its complexity when in-
tegrating it in their application. Then we describe the principles we followed to
create our new IMS DSL from its core in the Scala language to its syntax. We
then present how we integrated it in two existing projects and show how it can
save time for developers and how readable the syntax of the IMS DSL is.

Keywords: Domain Specific Language, IP Multimedia System, application de-
velopment, industrial experience

1 Introduction

The IP Multimedia Subsystem (IMS) relies on a complex architecture. The whole
system is made up of different components, each with a very specific purpose, such as
the Call Session Control Function (CSCF), which aggregates several roles related to
sessions (routing, registering, etc.), the Home Subscriber Server (HSS) for managing
user identities, authentication, subscription information, etc., the Presence and Group
Management (PGM) for handling presence information about users and groups, and
the Media Resource Function (MRF) for mixing, selecting and converting media
sources and playing announcements and tones. These are essential components, but
the IMS architecture contains many more. Knowing them is important for a developer
building an IMS based application to understand the behavior of an IMS network and
how to interact with it.

The CSCF contains a proxy which serves as an entry point to IMS functionalities.
The client communicates with the proxy using the Session Initiation Protocol (SIP).
IMS also works with many other communication protocols, such as the Session De-
scription Protocol (SDP) for negotiating media properties during a SIP Invite request,
the Message Session Relay Protocol (MSRP) for transferring files as well as instant
messaging, HTTP for updating presence documents through the XML Configuration
Access Protocol (XCAP), H.248 for media mixing, and playing tones and announce-
ments, etc. Thus, IMS application developers have to learn the different processes to
register with IMS, to publish a presence document, to send an instant message to an-
other user or to handle media mixing between users, sending tones and announce-
ments.

All the necessary information is disseminated in multiple Internet Engineering
Task Force (IETF) Request For Comments (RFC), the standards defining internet
technologies. Even for basic operations, such as registering and subscribing, develop-
ers have to refer to several documents. This process is both time-consuming and frus-
trating for developers who only want to use simple IMS functionalities in an applica-
tion without the hassle of learning IMS in fine detail. Facing a steep learning curve,
developers must immerse themselves in IMS and become experts in order to use it. In
an industrial context this situation usually leads to the need to establish large teams of
specialists covering the different areas of knowledge required to develop a given
functionality, hence it is a limiting factor to the spontaneous development of new
services by enthusiasts.

We begin this essay with an introduction to DSLs, and then explain our choice of
Scala for the implementation of our IMS DSL. Following this we discuss our experi-
ence implementing four prototypes using the IMS DSL. Finally we present the archi-
tecture and features of the IMS DSL and conclude our discussion.

2 DSL

A Domain Specific Language (DSL) [1-5] is simple and concise with the expressive
power focused on a particular problem domain. It is custom-built to be very intuitive
and fluent for a domain expert to use. It allows one to efficiently and quickly build
applications for that domain, thus reducing development time and increasing produc-
tivity.

By definition, a good DSL is at a higher level of abstraction than a high-level Gen-
eral-Purpose programming Language (GPL). The goal of a DSL is to digest the com-
plexity of the problem domain, de-cluttering it of the implementation details through a
syntax built around familiar terms and concepts from the domain. This allows domain
experts to save time and effort and focus on the tasks of interest, such as enabling
IMS communications without having to worry about the programming details of tradi-
tional libraries or APIs such as initialization and default handling which must be done
explicitly in traditional libraries. This also enables domain neophytes with minimal
knowledge of the domain to create sound IMS applications without having to learn all
the intricacies of IMS first. Ideally, domain experts could provide the required
knowledge to further develop the IMS DSL. This simplification and clarification of
the problem domain allows IMS application development to be left to the neophyte,
making prototyping and developing proof-of-concept applications much more practi-
cal, especially in cases where the complexity of the problem domain is high, such as
the case of IMS.

We have decided to build the IMS DSL on top of a GPL, thus following the em-
bedded approach [6-7] in order to save us the effort required to develop all the periph-
eral functionality of a complete language e.g. conditional handling, loops, etc. and
also to enable us to easily use existing libraries covering the protocols we want to
offer functionality for. The host language of the resulting IMS DSL is Scala. While it
is a relatively young language, it will offer much more flexibility than other GPLs.

3 Scala

Scala [8] is a GPL designed to build software components in a concise and type-safe
way. It integrates features of object-oriented and functional programming paradigms.
The source code sizes of applications written in Scala are typically smaller by a factor
of two or three compared to equivalent Java applications.

Existing Java code and programmer skills are fully re-usable. Scala is compiled in-
to bytecode to be run on the Java Virtual Machine (JVM), which allows Scala pro-
grams to access functionality defined in Java. Scala code can be called from Java code
and vice versa.

Below we list a few of the interesting properties of Scala with respect to the devel-
opment of a DSL:

 Scala provides a lightweight syntax for defining anonymous functions, supports
higher-order functions, allows functions to be nested, and supports currying. This
helped us develop a more readable syntax for the IMS DSL.

 Scala code can run on the Android platform, .Net platform, and anywhere else Java
code can run. This provides us with the potential for deploying our IMS DSL not
only on dedicated network nodes, but eventually also on end user equipment to fa-
cilitate development on a wider range of platforms.

 Scala provides type inference, everything-is-an-object, function passing, and many
other features which cut away unneeded syntactic overhead. Scala is a pure object-
oriented language in the sense that every value is an object; it is a functional lan-
guage in the sense that every function is a value; and it is a statically typed pro-
gramming language. Types and behaviors of objects are described by classes and
traits. For the IMS DSL these traits mean a simpler syntax and structure without
the need for complex class hierarchies.

 Scala code can be run in an interactive shell where Scala expressions are interpret-
ed interactively. A Scala program may also be run as a shell script or as a batch
command. Initially this helped us develop and test the IMS DSL. At the current
state we have less need for the interpreter but might look back at its use in the fu-
ture.

We take advantage of the fact that in Scala's syntax dots are optional in most method
calls, and parentheses are not required for method calls with zero or one parameter, to
develop a DSL that is more readable than most GPLs. For instance, the chain of
method calls userA.send(“Hello World”).to(userB) can also be written
as userA send “Hello World” to userB. Thus, the syntax of our IMS
DSL can be given a format which is similar to English and is simpler to understand,
since it is close to natural language as a result of the absence of dots and parentheses,
which are mandatory in most modern GPLs. Despite its resemblance to natural lan-
guage, our DSL syntax is well-defined and unambiguous in terms of method invoca-
tion order. It is worth noting, as we will see later on, that when the IMS DSL is used
within a java program this intuitiveness is limited e.g.: we need to use the dot nota-
tion.

4 IMS DSL Development in Scala

The IMS DSL must be simple to understand and use correct IMS terminology so that
software engineers who have already acquired high-level knowledge of IMS can learn
its syntax quickly and put it in practice immediately. Thus, our IMS DSL must avoid
constructs peculiar to GPLs like variable declaration. It must get rid of any irrelevant
programming details which are a legacy of GPLs, while remaining extensible and
flexible enough for the domain of IMS communication.

To develop the IMS DSL, we have made use of the relaxed syntax of Scala as well
as its implicit conversion between types. Other useful features of Scala, such as func-
tional decomposition and identifier names entirely made up of arithmetic operator
characters, have not yet been exploited. However, as more and more functionalities
are added to the IMS DSL in the future, these features will be indispensable for the
conciseness and maintainability of the IMS DSL.

The IMS DSL features have been built following a few principles:

 List the domain concepts to be expressed in the DSL and the relationship they have
with respect to each other’s.

 From that list define the domain notation and syntax.
 Make sure that each syntax element has an intuitive, logical and functional default

behavior, while still enabling more specific behaviors when required.
 Keep the syntax free of anything which does not come from the problem domain

itself, only include host language specific artifacts if absolutely necessary.

Those propositions may sound simple but discipline is required to fulfill them proper-
ly. In order to properly perform these steps, a good understanding of the domain is
required as well as programming competency. However one must not let his previous
experience in programming taint or limit the syntax to be developed. It is really easy
for one to simply dilute the DSL aspect to a point where it would be indistinguishable
from a traditional library.

In the context of the IMS DSL the domain is defined as an application using the
available IMS interfaces. Those interfaces are pre-provisioned and the details of the
provisioning are controlled by the IMS DSL developed application through configura-
tion files which are application specific. Thus an IMS network must already be pro-
vided and configured and some of the details of that configuration need to be availa-
ble to the IMS DSL application.

5 Development Experiences Using the IMS DSL

The development of the IMS DSL as described here took place over the course of the
last two years. It followed an iterative approach where new functionality was intro-
duced and refined in the IMS DSL syntax as new requirements in the prototype pro-
jects developed using the IMS DSL arose.

The first three projects listed below were developed as proofs of concept of how
IMS technology can be an enabler for machine-to-machine (M2M) communication in

the vision of “More than 50 billion connected devices” [9] that Ericsson is bringing
forward in the industry. The core functionalities of an IMS network include authenti-
cation, security, and quality of service management, which greatly simplifies the de-
velopment of M2M applications.

The last project we discuss below, still a proof of concept, was basically chosen as
a vehicle to augment the IMS DSL’s provided functionality.

5.1 Tolmie 2 – Assisted Living Project

The objective of the Tolmie project is to build the basics of the IMS DSL and demon-
strate the advantages of that approach compared to a more traditional general purpose
language approach. The Tolmie project had previously been implemented in C++. By
re-implementing the Tolmie project using the IMS DSL we can firstly develop a base
for the IMS DSL and secondly compare the new Tolmie 2 implementation to the pre-
existing Tolmie C++ prototype for the same functionality. We can compare how the
IMS DSL improves the efficiency of development by considering the time it takes for
both approaches and we can qualitatively compare how much more expressive the
IMS DSL is compared to the direct library calls used in the initial prototype.

For those reasons the Tolmie project, also known as the Assisted Living project,
was chosen as a basis for comparison. In the Tolmie project we demonstrate that IMS
can be used as a smart bit-pipe for machine-to-machine communication, allowing
health professionals to monitor their patients remotely. The patient wears a life-
monitoring sensor that periodically sends health data to a server. The server contains
an agent manager that can interact with IMS. The caregivers are able to observe the
evolution of patient data on an Android application called eRCS client, which re-
ceives data over IMS.

The Tolmie Agent Manager establishes IMS access for six functional require-
ments; we use the IMS DSL to implement those six IMS functionalities.

When the agent manager receives sensor data from a new device, it creates a new
agent to act on behalf of the device. The newly created agent then needs to register
with the IMS network. After completing the registration, the agent manager will pub-
lish data about itself to the PGM so that the caregivers will be notified.

In order for a caregiver to request or stop a live feed through the eRCS client, each
agent must be ready to receive a SIP instant message from the eRCS client and pro-
cess its content to determine whether to add or remove a live feed subscriber. The
agent must then be able to send live feed data to the eRCS client through SIP instant
messaging. Once the maximum live feed duration has passed, the agent must send a
SIP instant message to uncheck the live feed button on the eRCS client of each live
feed subscriber.

In brief, the required IMS functionalities in Tolmie are as follows: SIP Register,
SIP Publish, and sending and receiving SIP Instant Messaging.

After completion of the IMS DSL implementation of the prototype, a comparison
can be made between the original code in C++, which uses a C SIP stack (PJSIP), and
the new one in Java, which uses the IMS DSL for accessing IMS functionalities, to

observe how the IMS DSL can lead to more concise code and much shorter develop-
ment times.

The original development time (coding and unit testing only) for Tolmie was 12
man-weeks. The re-implementation of Tolmie 2 using the IMS DSL took 3 man-
weeks and implementing the IMS DSL itself took 9 man-weeks. It is to be noted that
this figure intentionally excludes the high level design and testing of the solution in
both cases since it is obvious that it was in part re-used for implementing the IMS
DSL version of it, and thus would have made it look better than it should in reality.
Secondly one should also know that some of the developers were common between
the developments of the two versions thus leading to some non-measureable benefits
while developing the IMS DSL version.

Table 1 below presents a comparison between the amounts of code required to im-
plement various IMS related functions in C++ and in the IMS DSL:

Functionality C++ Lines Required IMS DSL Lines Required
Initialization 27 0
SIP Register 23 1
Send Message 11 1
Receive Message 49 1
SIP Publish 131 1

Table 1. Required lines of code in C++ versus using the IMS DSL.

5.2 Tolmie 3 – Automotive Telemetry Project

The objective of the Tolmie 3 project, also known as the Automotive Telemetry pro-
ject, is to further our knowledge and expertise in using IMS as a smart bit-pipe for
machine-to-machine communication, by allowing an engineer or a mechanic to obtain
real-time data from an automobile on-board computer. A device is linked to the auto-
mobile CAN Bus, periodically forwarding data to a server via IMS steams on a mo-
bile network (3G or LTE). The engineers or mechanics can monitor the automobile
data via a web interface linked to the server.

The goal of implementing Tolmie 3 using the existing IMS DSL is to observe how
the IMS DSL facilitates re-use of existing functionality and judge the ease of imple-
menting new features to support the new requirements.

As an improvement over the Tolmie 2 project, where the data was sent over IP to
an IMS gateway where an agent manager was translating the data into an IMS format,
the Tolmie 3 project performs the IMS encapsulation as the first step. Thus the device
linked to the CAN Bus is the IMS User Agent and communicates directly with the
IMS network, providing authentication and security directly from the device itself.

Comparing the development time of Tolmie 3 with that of Tolmie 2, which had
similar functionality in a different configuration, we can verify that there is a re-use
factor provided by the IMS DSL between the two projects. The development time
(coding and unit testing) for Tolmie 3 took four man-weeks and practically no re-
work was required on the IMS DSL in order to implement the prototype. This devel-

opment time is quite close to the three weeks required to develop Tolmie 2 (excluding
the development of the DSL itself), proving the potential for re-use of the IMS DSL.

5.3 Area 51 – Home Automation Project

The objective of the Area 51 project, also known as the Home Automation project, is
to verify whether the IMS DSL can be used by IMS neophytes to develop an automat-
ed house where the IMS DSL is used to develop an IMS smart bit-pipe for machine-
to-machine communication with a server which can be accessed by the home owner.
The project was driven by enthusiasts volunteering occasionally in their spare time,
and two eight hours sessions where the group gathered to work in a more structured
fashion.

A model house is used to represent the home. A number of sensors and actuators
are installed in the house: a doorbell and a motor to open and close the entrance door
remotely; lighting and switches to control the main rooms’ light levels; a light detec-
tor to control the exterior lighting based on ambient light levels and a temperature
sensor and electric fan to represent the climate control of the house. These compo-
nents are connected to an Arduino [10] microcontroller which communicates via a
USB connection with the Home Gateway we built using an Odroid-X [11], an ARM
based micro-computer platform. The Home Gateway makes use of the IMS DSL to
encapsulate the data from the house into an IMS pipe going to a server, and to receive
commands from the server via the same IMS pipe. On the server side, the IMS DSL is
used for the same purpose in order to communicate with a web server accessible by
the home owner.

We can observe in this development environment if the IMS DSL is simple enough
that enthusiasts can use it in order to implement the required functionality within the
time constraints imposed by the schedule.

As this project was executed on a voluntary basis, we do not have a strict account-
ing of the spent time to develop the prototype. However, based on the feedback of the
group of volunteers, we can make the qualitative statement that the ISM DSL is con-
venient and easy to use for IMS neophytes, enabling them to quickly create a func-
tioning prototype application.

5.4 A Core IMS DSL (ACID) Telephony Application Server (TAS) Project

The objective of the ACID-TAS project, also known as the Light Weight Telephony
Server, is to further our knowledge and expertise in implementing an IMS DSL. For
this project we are developing the following telephony services: originating and ter-
minating call handling; incoming and outgoing call barring; originating and terminat-
ing identity presentation and restriction; call diversion (on busy, on no reply, on not
logged-in, deflection and unconditional) and a conference call service. For this pro-
ject, the IMS DSL can no longer act merely as a user agent. It needs to provide back-
to-back user agent functionality to the developers. Moreover, it needs to address new
interfaces, such as the H.248 protocol for conference handling with the MRF.

A light weight telephony server had been implemented as a proof of concept within
Ericsson using Java and the JSR-289 SIP Servlet framework a few years ago. The
goal of the ACID TAS project was to test our IMS DSL on an existing and more de-
manding IMS based prototype and compare it to the previous project. A comparison
can then be made between the original project’s code and that of the new prototype
which makes use of the IMS DSL. Again, we can observe how the IMS DSL leads to
more concise code and much shorter development times.

The original development time (coding and unit testing) for the Light Weight Te-
lephony Server in Java using the JSR-289 framework had been 22 man-months. The
re-implementation through ACID-TAS using the IMS DSL took 4 man-months and
implementing the new required functionality in the IMS DSL itself took 9 man-
months. Again it is to be noted that this figure intentionally excludes the high level
design and testing of the solution in both cases since it is obvious that it was in part
re-used for implementing the IMS DSL version of it, and thus would have made it
look better than it should in reality. In this trial however, none of the original devel-
opers (non-DSL version) participated in coding of the IMS DSL version of the Te-
lephony Application Server. We also consider that the general level of proficiency of
the developers in both projects were of equivalent levels. Finally, the objectives and
the acceptance criteria were the same for both proofs of concept which ended with a
demonstration to the financing stake holders. This shows again the advantage of using
a DSL on the development time and the re-use factor in doing so.

From the point of view of readability, we demonstrate later on in this essay how
simple the conference server portion of the ACID-TAS is to understand.

6 Architecture

Figure 1 below presents the multiple layers of the architecture of the resulting DSL
design positioned in the IMS architecture. Starting from the bottom to the top, we rely
on the network layer to access the IMS network from our IMS library.

Fig. 1. IMS DSL architecture layers

The IMS DSL Library layer is a standalone java-written interface that contains
IMS primitives such as register, subscribe, publish, etc. It uses both SIP and XCAP
protocols for interacting with IMS. HTTP based protocols like XCAP are implement-
ed using the standard Java HTTP library.

The Session Initiation Protocol is implemented using Jain-SIP, an open-source Ja-
va SIP library. Jain-SIP only provides a low-level API to instantiate, send and receive
basic SIP messages. To get the high level SIP user-agent functionalities like register-
ing, publishing, subscribing to users etc., we developed a complementary layer acting
as the missing user-agent. One instance of this layer can then be manipulated as a SIP
user would. The IMS library layer uses these sub-libraries transparently.

The IMS library interfaces with the DSL in such a way that there is little coupling
between the two layers. Thus, it will be easy to switch the set of libraries it depends
upon in the future to better match general Ericsson architectures.

The IMS DSL layer is the DSL itself, and is the core of our development. It is the
result of the grammar development and the selection of the abstraction level. The
DSL is developed in Scala and relies on the IMS Library for accessing IMS function-
alities. It is composed of objects, classes and methods to support the DSL syntax and
internal operations related to IMS.

The Interpreter is an optional layer that can be used to call the DSL from another
language.

Finally the application can be any program coded in Java using the embedded IMS
DSL to build a service from the provided functionality.

6.1 IMS DSL Features

The current version of the IMS DSL supports a limited number of features, with
each feature's syntax designed to express concepts from the IMS domain as simply
and naturally as possible. The following is a list of the current IMS functionalities
supported and how they are expressed in the IMS DSL. Thanks to the interoperability
between Scala and Java, it is possible to use the IMS DSL as an API directly in Java
code.

This leads to the obvious question of why we call the IMS DSL a DSL and not
simply an API? Through the development of the IMS DSL, the primary focus has
been to provide a simple and concise syntax to express concepts in the IMS domain.
Once that syntax had been defined, we implement it using Scala. As a final step we
devise a scheme for java applications to access the IMS DSL syntax. This is what
makes an embedded DSL different from a traditional library or API. Libraries and
APIs are developed to provide functionality through a host language, using all the
facilities and conventions of the host language. In an embedded DSL, the first priority
is to define a syntax that clearly and concisely expresses ideas in the problem domain.
Once this syntax is defined, it is implemented as completely as possible within the
constraints imposed by the host language. Intuitive and simple expression of domain
concepts always takes precedence over the established conventions and idioms of the
host language.

6.2 Registering with IMS

This entails sending a SIP REGISTER Message to the Call Session Control Func-
tion in order to register a SIP user with the Home Subscriber Server. If successful, the
server will reply with a positive response, and the registration will be valid for a cer-
tain duration after which the user must register again. Such technical details have
been abstracted by the IMS DSL, so one can register by writing the following code:

<USER> hasCredentials (<USERNAME>, <DOMAIN>, <PASSWORD>)

6.3 Sending a SIP Request or a Status

After a SIP user has been registered, it can send SIP requests to other users via
their SIP URI. A request body and various headers may optionally be added.

<USER> sendRequest <REQUEST TYPE>
 [withHeader(<NAME>,<VALUE>)]
 to <SIP_URI>

The same can also be done to respond with a SIP status. The send response method
is quite powerful in the sense that it uses the supplied request information to build the
response and send it.

<USER> sendStatus <STATUS_CODE>
 inResponseTo <INCOMING_REQUEST>

6.4 Sending a SIP Message (Instant Message)

A registered user can send a message to another user via their SIP URI. A content
type and multiple headers may optionally be added. Sending an instant message is
actually a special case of sending a SIP request.

<USER> send <MESSAGE>
 [withContentType <TYPE>]
 [withHeader(<NAME>,<VALUE>)]
 to <SIP_URI>

6.5 Publish XCAP

The IMS DSL allows the user to publish its current presence state by using the
XCAP protocol. The XML data within a specific XML tag is published to the pres-
ence document in the PGM.

<USER> publish <XML_DATA> as <TAG_NAME>

6.6 Managing Contact Lists

The user’s contact list can be managed with the following methods:

<USER> [addContact | removeContact] <USER_URI>

<USER> [newContactList | removeContactList] <LIST_NAME>

<USER> add <USER_URI> to <LIST_NAME>

<USER> remove <USER_URI> from <LIST_NAME>

6.7 Incoming Message Handling to Perform Actions

An action (user-supplied method) can be bound to the reception of a message with
optional conditions. The action will be executed only if all the conditions are met. If
not, the action is passed to the next configured handler. If none of the handlers are
configured to handle this message, it is simply replied to with a positive acknowl-
edgement. It is worth noting that the handling of instant message reception is man-

aged by the IMS DSL, so the developer will not have to write event handlers to speci-
fy what to do.

The <MESSAGE_TYPE> can either be a request type (Any, Bye, Invite…) or a re-
sponse type (Any, Ringing, Ok…).

<USER> onReceive <MESSAGE_TYPE>
 [withContentType <TYPE>]
 [withBody <BODY>]
 [withHeader(<NAME>,<VALUE>)]
 [from <SIP_URI>]
 Do <ACTION>

6.8 Incoming Dual Tone Multiple Frequencies (DTMF) Handling

Similarly to the incoming message handling, the IMS DSL allows the user to exe-
cute specific actions when receiving DTMF digits encapsulated in SIP INFO messag-
es. Handling DTMF digits is actually a special case of the onReceive method shown
above.

<USER> onDtmf Do <ACTION>

6.9 Conferencing

The IMS DSL offers conferencing capabilities.
First, the conferencing engine needs to be initialized. This can be done either when

the server user is created or later. This must be done once for each registered server
user.

<SERVER> supportingConference

When the conferencing engine is ready, an ad-hoc conference can be established
on that server user. It starts with the participants of a 2-party call inviting a third party
to the call. It is assumed the 2 first participants are already in an active call. The IMS
DSL needs the full URI and call ID of the 2 first participants and the phone number of
the third party.

The complexity of the conferencing feature is hidden from the end user. The IMS
DSL will send the appropriate SIP messages to the initial participants to move them
from a point-to-point call to the conference bridge. The MRFP H.248 signalling is
also handled in the process.

<SERVER> createConf <CONFERENCE_URI>
 withInitialParticipant
 <PART_A_URI> <PART_A_CALLID>
 <PART_B_URI> <PART_B_CALLID>

The following code will add the new participant to the conference. This step can be
repeated for each new participant. Again, the IMS DSL handles all the SIP and H.248
signalling.

<SERVER> updateConf <CONFERENCE_URI>
 withNewParticipant <PART_NUMBER>

When the participants are leaving the conference, their SIP client will send a SIP
BYE message. The following code will remove them from the conference.

<SERVER> removeParticipant <PARTICIPANT_URI>

6.10 A Typical IMS DSL Usage

The previous sections describing the various capabilities were expressed in the
IMS DSL syntax. When used in a Java environment, the IMS DSL syntax is invoked
using the Java API. For instance, the methods that create an ad-hoc conference:

Server createConf "15141234000@ims.server.ericsson.com"
 withInitialParticipants
 "15141234567@ims.server.ericsson.com" "12345634567"
 "15141234568@ims.server.ericsson.com" "12345634568"
Server updateConf "15141234000@ims.server.ericsson.com"
 withNewParticiapant "15141234568"

Would look like this:

Server.createConf("15141234000@ims.server.ericsson.com")
 .withInitialParticipants(
 "15141234567@ims.server.ericsson.com", "12345634567",

"15141234568@ims.server.ericsson.com",
"12345634568");

Server.updateConf("15141234000@ims.server.ericsson.com")
 .withNewParticiapant("15141234568");

The application code example shows how the IMS DSL conferencing feature is ac-
tually used in a java context. Basically Scala provides a java front end so that the IMS
DSL primitives can be directly used in a java application.

The processData() method was called by the DTMF action method when a user en-
tered DTMF digits during a call. The request parameter contains the incoming SIP
INFO message with the entered digit in the message body. The method uses data ac-
cessors such as request.getRType() and request.getHeader() to easily access SIP
header information. The incoming data manipulation is minimal and the incoming SIP
INFO message is used unmodified when passed to the conferencing methods. The
only computation done in the processData method is to gather the digits entered by
the end user and fetch the other participant’s call ID from the local session info data-
base.

This example uses 7 lines of IMS DSL code. If we were to implement the same
functionality in Java, the code size would grow by at least 300 lines. Bold text indi-
cates IMS DSL code as accessed via the java API to the IMS DSL.

public void processData (Request request)
{
 // Respond right away with OK.
 server.sendStatus(StatusCode.OK).inResponseTo(request);

 // We only handle SIP Info messages.
 if (request.getRType().equals(RequestType.Info))
 {
 // Add the received digit to buffer.
 // Expected format that is: "#10-digit-number#".
 Buffer += request.getBody().charAt(request.getBody()
 .indexOf("=") + 1);

 // pattern is ".*#\\d{10,}#.*"
 if (buffer.matches(pattern))
 {
 // We have a pattern match. For this sample,
 // we only have one conferencing server.
 String conferenceURI =
 "15148500002@ims.server.ericsson.com";

 if (!request.getReceiverUri()
 .contentEquals(conferenceURI))
 {
 // The sender is not part of a conference,
 // let's add everyone.
 // First, we need to extract the call id of
 // both legs. It is in the form of
 // "Call-ID: <callerId string>".
 String fromCallID = request.getHeader("Call-ID");

 // Since the SIP Info message does not contain
 // the call ID of the other leg, we get it from
 // the database we keep of the various users.
 String toCallID = SessionInfo.getSessionInfo()
 .getForwardCallID(fromCallID);

 server.createConf(conferenceURI)
 .withInitialParticipants(
 request.getHeader("From"),
 fromCallID,

 request.getHeader("To"),
 toCallID);
 }

 // Format the joining number URI.
 int start = buffer.indexOf("#");
 int end = buffer.indexOf("#", start + 5);
 String joiningNumber =
 buffer.substring(start + 1, end);
 String joiningNumberURI =
 SipUri.getShortUri(joiningNumber,
 "ims.server.ericsson.com");

 server.retrieveConf(conferenceURI).
 addNewParticipant(joiningNumberURI);

 // We are done with the buffer, clean it.
 buffer = "";
 }
 }
}

6.11 Graphical Representation

In order to help visualize the flow of events generated by the IMS DSL on a net-
work level, a graphical representation was built to accompany the IMS DSL. The goal
of the graphical representation is to complement the IMS DSL and enhance its capaci-
ty to simplify development, both for IMS domain experts and for neophyte develop-
ers. The graphical representation runs in parallel with multiple IMS DSL applications,
collecting information about the IMS activity they generate, and displaying that in-
formation to the IMS DSL user in a simple and intuitive way.

Currently the graphical representation is limited to a dynamic view of the execu-
tion of the IMS DSL code. Our ambition in the future is to provide a way to model the
static structure of the IMS DSL code and its dynamic execution in a similar way.
Then, the current representation would be used to compare the designed model to the
executed behavior.

Fig. 2. Graphical Representation

The graphical representation is integrated in the IMS DSL, and collects all of the
IMS packets that it sends and receives. Multiple IMS DSL applications may be ana-
lyzed simultaneously; each program is synchronized against a common reference
clock, allowing packets from multiple applications to be displayed in the correct or-
der. The collected packets are analyzed, and logically connected packets are grouped
together. As packets are collected, they are displayed to the user in a sequence dia-
gram. In the diagram, logical groups of packets are visually connected, and are color-
coded to indicate their status.

The graphical representation tool is implemented in three parts. The first part of the
graphical representation tool is code which is integrated into the source of the IMS
DSL. This integrated component captures all outgoing and incoming packets, as well
as full Java stack traces for each packet.

The second part of the graphical representation is a server program which accepts,
synchronizes and analyzes information from running IMS DSL programmed applica-
tions, and makes it available to the graphical client program.

The third part is the graphical client program, which receives information from the
server component and visualizes it in the sequence diagram display.

The features of the graphical representation tool provide advantages for both expe-
rienced software developers and IMS domain experts. For software developers who
are not well versed in IMS communication, the intuitive graphical representation pro-
vides insight into how their program operates, and where problems might lie. For
domain experts, the graphical representation gives a convenient high-level view that
offers a lot of information at a glance, but also allows the expert the freedom to exam-
ine the details of their program’s operation.

The graphical representation sequence diagram display and color-coded groupings
make it possible for domain experts and developers to quickly understand how their
applications interact with IMS on a high level of abstraction. The sequence diagram
layout is familiar to domain experts and software developers alike, and is intended to
be simple for both classes of user to understand. Color-coded packet groups add addi-
tional structure to the familiar layout, and reduce the amount of time required to un-
derstand the IMS communication represented by the diagram. For domain experts, the
colored groups highlight patterns which are already well known, and for software
developers without a strong knowledge of IMS, they are a useful learning tool, hinting
at the meaning of the underlying data.

Like the IMS DSL itself, the graphical representation provides a high level view,
but does not restrict its users. It allows them to view IMS activity in detail. Each
packet can be inspected to reveal its complete contents, enabling domain experts to
understand the behavior of their applications on a much lower level of abstraction,
and debug complex IMS communication problems.

Developers and domain experts both benefit from the ability to link sent IMS
packets back to their IMS DSL source code. For domain experts this facilitates under-
standing the DSL, as it allows the familiar area of IMS communications to be mapped
very concretely to DSL commands. For the experienced software developer, this fea-
ture is useful for understanding the DSL, as well as for aiding in the understanding of
IMS. Linking high-level DSL commands to the exchanges of IMS messages that they
produce provides insight into how logical actions, such as the initiation of a telephone
call, are accomplished through exchanges of multiple packets in IMS.

7 Conclusion

Two of the projects implemented using the IMS DSL, Tolmie 2 and ACID TAS,
were initially created using different languages, paradigms and team members than
the current ones. Comparing the recorded working hours for the coding and unit test-
ing of the original projects with the recorded hours for the current IMS DSL incarna-
tions of those projects, we can claim at least four fold increases in efficiency for those
phases of software design and development. This figure is not taking into account the
time required to produce the actual IMS DSL. If we factor in this additional time, we
arrive at approximately equal costs for the original and DSL implementations for one
of the developed projects. Hence developing an application and the domain language
supporting this application does not account for a higher cost. However, having at
hand a DSL speeds up any subsequent project making use of it and also facilitates the

domain comprehension for non-experts as shown from the feedback received from a
group of enthusiast coders on the Area 51 project.

Through the development of the IMS DSL we have gained knowledge and experi-
ence on the process of developing a Scala embedded DSL. Through the projects de-
veloped using the IMS DSL we have been able to measure and observe the benefits in
terms of code simplicity, expressiveness and conciseness. We have also been able to
measure and observe the benefits in terms of an increase by a factor of three to four in
the speed of development times for the coding and unit testing phases, as well as the
ease of and potential for re-use of the IMS DSL in different projects. Lastly we have
received positive feedback regarding the ease of use, and the simplicity and clarity of
the code produced with the IMS DSL.

This positive outlook will be further pursued in the coming year as we will evalu-
ate the potential of an IMS DSL embedded in the action language of a UML based
Model Driven Development workflow.

At this point in time, the IMS DSL has been developed as a proof of concept to
showcase the potential benefits of the DSL approach. The projects conducted using
the IMS DSL were also proofs of concept. It is obvious to us that productizing the
IMS DSL would involve a great deal of work, especially to integrate it in the Ericsson
software infrastructure. However, the benefits observed at least warrant the study of
the business case of doing so. Based on our experience, the main hindrance to the
development of a DSL is one’s ability to accept the DSL paradigm and maintain dis-
cipline to avoid falling back on developing it as he would any other software library.

8 References

1. Andrew Hunt and David Thomas, "The Pragmatic Programmer: From Journeyman to Mas-
ter", Addison Wesley, First Edition, October 13, 1999, ISBN: 0-201-61622-X, 352 pages,
p.70-76

2. “Domain-specific language”, http://en.wikipedia.org/wiki/Domain_specific_language (ac-
cessed on 2013-01-30)

3. Arie van Deursen, Paul Klint and Joost Visser, “Domain-specific languages”, SEN-R0032
November 30, 2000, ISSN 1386-369X,
http://homepages.cwi.nl/~paulk/publications/Sigplan00.pdf (access on 2013-01-30)

4. Aruna Raja and Devika Lakshmanan, “Domain Specific Languages”, International Journal
of Computer Applications (0975 - 8887), Volume 1 No. 21, 2010,
http://oaj.unsri.ac.id/files/wwwijcaonline/journal/number21/pxc387640.pdf (accessed on
2013-01-31)

5. Walid Taha, “Domain-Specific Languages”, IFIP TC 2 Working Conference, DSL 2009,
Oxford, UK, July 15-17, 2009,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.6989&rep=rep1&type=pdf
(accessed on 2013-01-31)

6. Marjan Mernik, Jan Heering and Anthony M. Sloane, “When and How to Develop Do-
main-Specific Languages”, ACM Computing Surveys (CSUR), Volume 37 Issue 4, De-
cember 2005, http://www.rose-hulman.edu/Users/faculty/young/OldFiles/CS-
Classes/OldFiles/csse490-mbse/Readings/DSL-Survey-WhenHow.pdf (accessed on 2013-
01-30)

7. Paul Hudak, “Modular Domain Specific Languages and Tools”, Fifth International Con-
ference on Software Reuse, 1998. Proceedings. ,
http://www.cis.uab.edu/courses/cs793/spring2010/dsel-Hudak.pdf (accessed on 2013-01-
30)

8. “The Scala Programming Language”, http://www.scala-lang.org/ (accessed on 2013-02-
06)

9. “More than 50 billion connected devices”,
http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf (accessed on 2013-02-
04)

10. “Arduino”, http://www.arduino.cc (accessed on 2013-01-31)
11. “Odroid-X, Hardkernel”,

http://www.hardkernel.com/renewal_2011/products/prdt_info.php?g_code=G1339993289
31 (accessed on 2013-01-31)

