
Bounding Skeletons, Locally Scoped Terms
and Exact Bounds for Linear Head Reduction

Pierre Clairambault

Computer Laboratory, University of Cambridge
pierre.clairambault@cl.cam.ac.uk

Abstract. Bounding skeletons were recently introduced as a tool to
study the length of interactions in Hyland/Ong game semantics. In this
paper, we investigate the precise connection between them and execu-
tion of typed λ-terms. Our analysis sheds light on a new condition on
λ-terms, called local scope. We show that the reduction of locally scoped
terms matches closely that of bounding skeletons. Exploiting this con-
nection, we give upper bound to the length of linear head reduction for
simply-typed locally scoped terms. General terms lose this connection
to bounding skeletons. To compensate for that, we show that λ-lifting
allows us to transform any λ-term into a locally scoped one. We deduce
from that an upper bound to the length of linear head reduction for ar-
bitrary simply-typed λ-terms. In both cases, we prove the asymptotical
optimality of the upper bounds by providing matching lower bounds.

1 Introduction

In the last two decades there has been a growing interest in the study of quanti-
tative or intensional aspects of higher-order programs; in particular, the study
of their complexity has generated a lot of effort. In the context of the λ-calculus,
the first result that comes to mind is the work by Schwichtenberg [14], later im-
proved by Beckmann [2], establishing upper bound to the length of β-reduction
sequences for simply-typed λ-calculus. In the somewhat related line of work of
implicit complexity, type systems have been developed to characterize extension-
ally certain classes of functions, such as polynomial [10] or elementary [8] time.
Such systems rely on a soundness theorem establishing that well-typed terms
normalize in a certain restricted time, which is itself established using syntactic
methods that are specific to the system being studied. This calls for the de-
velopment of syntax-independent tools to study precisely the execution time of
higher-order programs. The present paper is a step towards that goal.

In [4], in the context of Hyland-Ong game semantics, we showed that pro-
vided some size information on strategies we could give a bound to the length of
their interactions. This was done by annotating each step of an interaction se-
quence with a finite tree of natural numbers – hereby called a bounding skeleton1

– and showing that progress in the interaction amounts to a simple reduction on

1 They were called agents in [4].



the bounding skeleton. We gave bounds to the length of this reduction, hence
bounding with it the length of the interaction sequence. The strength of this ap-
proach is that the games model is syntax-independent: in the variant considered
in [4], it accommodates the simply-typed λ-calculus possibly with computational
effects such as non-determinism, control, or ground type references. Its key weak-
ness however, is that the direct connection between game-theoretic interaction
and execution has only been made explicit [6] for pure simply-typed λ-terms
of the form M N1 . . . Np, where M and the Nis are η-long Böhm trees – we
will call such terms game situations. Although terms can be transformed into
game situations (as briefly described in [4]), the transformation is very inefficient
and yields bounds that are sub-optimal and not very informative. For bounding
skeletons to be a useful tool in complexity analysis, it is crucial to relate them
directly to the execution of programs, without the detour by game semantics.
Such a connection is non-trivial, as the dynamics of reduction in all generality
is much more complicated than for game situations.

In this paper, we develop such a connection. This is done by introducing a
new structural condition on terms, local scope, that ensures that information
only flows locally through redexes, and not remotely through variables shared
by distant subterms. We show that the reduction of η-long, locally scoped terms
can be directly simulated within bounding skeletons. Using this property and (a
small optimization of) our results in [4] on bounding skeletons, we deduce exact
bounds to the execution time of locally scoped terms. We also show that the
operation of λ-lifting [12] transforms arbitrary terms into locally scoped ones,
and exploit this transformation to give exact bounds for the execution time of
arbitrary simply-typed λ-terms.

Related works. There are multiple approaches to the complexity analysis of
higher-order programs, but they seem to separate into two major families. On
the one hand, Beckmann [2], extending earlier work by Schwichtenberg [14],
gave exact bounds to the maximal length of β-reduction on simply-typed λ-
terms. His analysis uses very basic information on the terms (their length, or
height, and order), but gives bounds that are in general very rough. On the
other hand other groups, including Dal Lago and Laurent [13], De Carvalho
[9], or Bernardet and Lengrand [3], use semantic structures (respectively, game
semantics, relational semantics, or non-idempotent intersection types) to capture
abstractly the precise complexity of particular terms. Their bounds are much
more precise on particular terms, but require information on the terms whose
extraction is in general as long to obtain as actual execution. The present work
belongs to the first family. However, unlike Beckmann and Schwichtenberg the
reduction we consider is linear head reduction, which is the notion of execution
implemented by abstract machines [7] and is therefore much closer to the actual
execution of functional programming languages.

Outline. In Section 2, we start by introducing linear head reduction along with
bounding skeletons, and recall the main result of [4]. In Section 3, we introduce
local scope, show our simulation result and deduce exact bounds on the length
of linear head reduction on locally scoped terms. Finally in Section 4, we show



how to use λ-lifting to transform arbitrary terms into locally scoped ones, and
deduce exact bounds for linear head reduction on general terms.

2 Preliminaries

In this section, we start by recalling some of the background of this research.
The natural starting point is linear head reduction [7], which can be seen as
a direct implementation on λ-terms of the notion of execution performed by
abstract machines. We will then turn to the presentation of bounding skeletons:
we will recall the results of [4] on the length of their reductions, along with a
small improvement.

2.1 Linear head reduction

We work here with the simply-typed λ-calculus à la Church, i.e. the variables
are explicitly annotated with types (although we often omit the annotations for
the sake of readability). Types are built from a unique atom o and the arrow
constructor →. We suppose that for every type A, there is a constant ∗A : A
of type A. We will often omit the index and write ∗. As usual, we write fv(M)
for the set of free variables of a term M . The typing relation Γ ` M : A is
defined by the usual deduction rules for simply-typed λ-calculus. All the terms
considered in this paper are supposed well-typed. Note that our choices – only
one atom, each type is inhabited – merely make the presentation simpler and
are not strictly required for our results to hold.

This work focuses strongly on linear substitution, for which only one variable
occurrence is substituted at a time. In this situation, it is convenient to have a
distinguished notation for particular occurrences of variables. We will use the
notations x0, x1, . . . to denote particular occurrences of the same variable x in a
term M . When in need of additional variable identifiers, we will use x1, x2, . . ..
Sometimes, we will still denote occurrences of x by just x when their index is not
relevant. Although it is not the focus of this development, we will occasionally
also refer to β-reduction: it is the standard rewriting rule on λ-terms, defined
by (λx.M) N →β M [N/x], where M [N/x] is the substitution of all occurrences
of the variable x by N , applied in any position within M . We write ≡β for the
corresponding equivalence relation. If x0 is a specific occurrence of x, we will
use M [N/x0] for the substitution of x0 by N , leaving all other occurrences of
x unchanged. We assume Barendregt’s convention and consider all terms up to
α-equivalence (so, substitution involves renaming of bound variables).

Intuitively, linear head reduction proceeds as follows. We first locate the
head variable occurrence, i.e. the leftmost variable occurrence in the term M .
Then we locate the abstraction, if any, that binds this variable. Then we locate
(again if it exists) the subterm N of M in argument position for that abstrac-
tion, and we substitute the head occurrence by N . We touch neither the other
occurrences of x nor the redex. It is worth noting that locating the argument
subterm can be delicate, as it is not necessarily part of a β-redex. For instance



in (λyA.(λxB .x0M))N1N2, we want to replace x0 by N2, even though N2 is not
directly applied to λxB .x0M . Therefore, the notion of redex will be generalized.

Note that a term is necessarily of the form ∗M1 . . . Mn, x0 M1 . . . Mn, λx.M
or (λx.M) M1 . . . Mn. That will be used quite extensively to define and reason
on linear head reduction. The length of a term M is the number of charac-
ters in M , i.e. l(∗) = 1, l(x0) = 1, l(λx.M) = l(M) + 1, l(M1 M2) = l(M1) +
l(M2). Its height is h(∗) = 0,h(x0) = 1,h(λx.M) = h(M),h(M1 M2) =
max(h(M1),h(M2) + 1).

Definition 1. Given a term M , we define its set of prime redexes. They are
written as pairs (λx,N) where N is a subterm of M , and λx is used to denote
the (if it exists, necessarily unique by Barendregt’s convention) subterm of M of
the form λx.N ′. We define the prime redexes of M by induction on its length,
distinguishing several cases depending on the form of M .

– If M = ∗ M1 . . . Mn, then M has no prime redex.
– If M = x0 M1 . . . Mn, then M has no prime redex.
– If M = λx.M ′, then M has the prime redexes of M ′.
– If M = (λx.M ′) M1 . . . Mn, then the prime redexes of M are (λx,M1) plus

those of M ′ M2 . . . Mn.

The head occurrence of a term M is the leftmost occurrence of a variable
or constant in M . If (λx,N) is a prime redex of M where the head occurrence
of M is an occurrence x0 of the variable x, then the linear head reduct of M
is M ′ = M [N/x0]. We write M→lhrM

′.

Example 1. As an example, we give the linear head reduction sequence of the
term (λf.λx.f (f x)) (λy.y).

(λf.λx.f (f x)) (λy.y)→lhr (λf.λx.(λz.z) (f x)) (λy.y)

→lhr (λf.λx.(λz.f x) (f x)) (λy.y)

→lhr (λf.λx.(λz.(λu.u) x) (f x)) (λy.y)

→lhr (λf.λx.(λz.(λu.x) x) (f x)) (λy.y)

At this point the reduction stops since the head occurrence is an occurrence of
x, and the corresponding abstraction subterm is not part of a prime redex.

We will abbreviate linear head reduction by lhr. It is straightforward to see
that lhr is compatible with β-reduction, in the sense that if M →lhr M

′ we have
M ≡β M ′. Just as for β-reduction, lhr always terminates on well-typed terms,
let us denote by N (M) the length of the reduction sequence of M . Since redexes
for lhr are not necessarily β-redexes, it will be necessary to consider the following
generalization of redexes:

Definition 2 (Generalized redex). The generalized redexes of a term M
are the prime redexes of all subterms of M . In particular, all prime redexes are
generalized redexes.



Example 2. Consider the following λ-term:

M = (λx.x) ((λy.(λz.u)) v w)

The only prime redex of M is (λx, (λy.(λz.u)) v w), and it is therefore also a
generalized redex. The two other generalized redexes are (λy, v), which is also a
β-redex, and (λz,w), which is not.

2.2 Bounding skeletons

This section focuses on a pivotal notion of this paper, that of a bounding skele-
ton. Intuitively, it is what is left of a term when all precise dynamic information
is forgotten, and only the structural size information necessary to study termi-
nation is retained. Formally, a bounding skeleton is a finite tree whose nodes
and edges are labeled by natural numbers. We write:

n[{d1}a1, . . . , {dp}ap] =

n
d1 dp

a1 . . . ap

This notion was introduced in [4] where it was extracted from game semantics,
and more precisely from the notion of pointing sequence central to Hyland-Ong
games [11], but also appearing crucially in the earlier work of Coquand [5].
Bounding skeletons arise as measures of positions in pointing sequences, progress
in the sequence corresponding to reduction of the skeleton. By the operational
content of game semantics [6], bounding skeletons can also be seen as measures
of terms obtained by lhr from a term of a particular form called a game situation.
A game situation is a term of the form M N1 . . . Nn, where M : A1 → . . .→
An → o and Ni : Ai are closed η-long Böhm trees – the terminology is motivated
by the strong geometric correspondence between η-long Böhm trees and the
innocent strategies of [11]. We know by the result of Danos, Herbelin and Regnier
[6] that the lhr sequence of M N1 . . . Nn is in step-by-step correspondence with
the game-theoretic interaction between the corresponding strategies JMK and
JNiK. To illustrate how bounding skeletons arise from lhr of game situations,
let us suppose for simplicity that M : (A → o) → o and that M has the form
λx.x M ′ with M ′ η-long Böhm tree of type A, possibly including x as a free
variable. Then we have the lhr step:

(λx.x M ′) N →lhr (λx.N M ′) N

Therefore, a situation with a closed Böhm tree M applied to a closed Böhm tree
N is reduced to a closed Böhm tree N applied to an open Böhm tree M ′, along
with an environment associating x to the closed Böhm tree N . In other words:

M ?N → N ?M ′
{x 7→N}



where the notation used will remain informal, but should be clear nonetheless.
This can be represented by the following operation on trees of terms:

M

N
→

N

M ′

N

Replacing the terms by some measure of size (which will be made precise later
in the paper) and annotating the edges with a measure of their types, these trees
give rise to bounding skeletons, and this reduction appears as an instance of the
following non-deterministic rule, illustrated in Figure 1.

n[{d1}a1, . . . , {dp}ap]→bs ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap]

where n, di ≥ 1 and a ·d b denotes the skeleton n[{d1}a1, . . . , {dp}aq, {d}b], for
two skeletons a = n[{d1}a1, . . . , {dp}aq] and b.

This observation still applies with further reductions of M N , as we es-
tablished in [4] through game semantics. Along with bounds to the length of
reduction of bounding skeletons, this allowed us to bound the maximum length
of lhr sequences starting from game situations. We also gave a bound for regular
terms, relying on a very rough translation of arbitrary terms into game situa-
tions – as a result, this bound was far from optimal and not very informative.
We aim in this paper to study the direct connection of bounding skeletons and
syntax outside of game situations and independently on game semantics.

n

dpd1

ai
di−1

bs // n− 1
dpd1

a1 aq a1 aq

Fig. 1. Rewriting rule on skeletons

Remark 1. Note that reduction is set to only happen in root position, i.e. at the
root of the tree. Generalizing it to apply deeper leads to pathological behavior.
For instance deep reduction does not terminate on the variant without edge
labels, whereas the standard (root) reduction does. It is not known whether
deep reduction terminates in the presence of edge labels, or to which extent
the relationship with syntactic reduction is preserved – the correspondence with
game semantics is lost.

The main result of [4] is a bound on the length of reduction for bounding
skeletons. The bound we state here is in fact a minor improvement of the result



in [4], however the tools and methods to get it are the same. Therefore to save
space, we omit the details of the optimization. As for terms, we write N (a)
for the norm of a bounding skeleton a, i.e. the length of its longest reduction
sequence. We also write max(a) for the highest node label in a, ord(a) for the
order of a, i.e. the highest edge label in a and depth(a) for the depth of a, i.e.
the maximal depth of a node in a, the root being at depth 1. Here, log denotes
the logarithm to base 2 and the tower of exponentials 2pn is defined by 2p0 = p
and 2pn+1 = 22

p
n .

Theorem 1 (Upper bound). If ord(a),depth(a),max(a) ≥ 1, then

N (a) ≤ 2
depth(a) log(max(a)+1)
ord(a)−1

Constructions. In defining the interpretation of terms as bounding skeletons,
we will make use of the following constructions. If (ai)1≤i≤n is a finite family of
bounding skeletons, then writing ai = ni[{di,1}bi,1, . . . , {di,pi}bi,pi ], we define:

n⊔
i=1

ai = ( max
1≤i≤n

ni) · [{di,j}bi,j | 1 ≤ i ≤ n & 1 ≤ j ≤ pi]

n∑
i=1

ai = (

n∑
i=1

ni) · [{di,j}bi,j | 1 ≤ i ≤ n & 1 ≤ j ≤ pi]

so, they either take the maximum or the sum of the roots, and simply append
all the subtrees of the ais. In the binary case, we write as usual + for the sum.
Finally, each natural number n can be seen as an atomic bounding skeleton n[]
without subtrees, still denoted by n. That should never cause any confusion.

Embedding. The norm of a bounding skeleton is unchanged by permutation of
subtrees, or merging of identical subtrees, and is only increased by an increase
of labels. If a = n[{d1}a1, . . . , {dp}ap] and a′ = n′[{d′1}a′1, . . . , {d′p′}a′p′ ], we say
that a embeds in a′, written a ↪→ a′, if n ≤ n′ and for any i ∈ {1, . . . , p} there
exists j ∈ {1, . . . , p′} such that di ≤ d′j and ai ↪→ a′j . Then we have:

Lemma 1 (Embedding lemma). If a ↪→ b, then N (a) ≤ N (b).

We illustrate the reduction in Figure 2, where at each step we emphasize the
subtree selected non-deterministically for the next reduction step. For concise-
ness, we also do not represent the subtrees under a node labeled 0, as they can
play no further part in the reduction.

3 Locally scoped terms and bounding skeletons

This section explains the direct connection between linear head reduction and
the reduction of bounding skeletons. We will first introduce locally scoped terms,
for which this connection holds, then prove their simulation within bounding
skeletons, and finally deduce bounds for the length of their reduction.



Fig. 2. Example reduction sequence on bounding skeletons

3.1 Locally scoped terms

Define inductively a closure as an open term M along with an environment
σ, mapping free variables of M to closures of the same type. We say that a
closure Mσ is hereditarily normal when M is β-normal and η-long, and when
for any x ∈ fv(M), the closure σ(x) is hereditarily normal. Hereditarily normal
closures are very close to bounding skeletons: from a hereditarily normal closure
Mσ one can obtain a bounding skeleton having the height of M as root, and the
bounding skeletons corresponding to σ(x) for x ∈ fv(x) as subtrees.

Although we will not make this formal in this paper, our simulation of lhr in
bounding skeletons exploits that some terms can be represented as hereditarily
normal closures. For instance, take the term:

K1 = (λxo→o.(λyo→o.y) x) (λzo.z)

The term K1 is faithfully represented by the hereditarily normal closure:

yy 7→x
x 7→λz.z

From that, we see that K1 corresponds (ignoring edge labels) to the bounding
skeleton 1[1[1]]. Note in passing that K1 reduces to (λx.(λy.x) x) (λz.z), which
by the same idea as above corresponds to the hereditarily normal form xx 7→λz.z,
and to the bounding skeleton 1[1] – which embeds in the bs-reduct 1[1, 0[1[1]]]
of 1[1[1]], so the lhr reduction of K1 is accounted for in bounding skeletons.

Unfortunately, this connection does not always work. For instance, take:

K2 = (λx.x ∗) (λz.(λy.y) z)

When trying to represent K2 as a hereditarily normal closure, we run into the
issue that since z is not a closed subterm, there is not way to replace the redex
(λy.y) z by an environment. Of course, in K1, we also had a generalized redex
(λy, x) where x is not closed. But in K1, x was active, in the sense that we had a
redex (λx, λz.z), so we knew how to define the environment on x. On the other
hand, z is passive in K2: there is no generalized redex (λz,N). In summary, the
issue with K2 is that there is a generalized redex (λy, z) where z (obviously)
contains a passive free variable z, and because of that K2 cannot be directly
represented as a hereditarily normal closure.



Definition 3. A variable x in M is active iff it is a free variable or if there
is a generalized redex (λx,N) in M . It is passive otherwise. A term M is
locally scoped (abbreviated l.s.) if for any generalized redex (λx,N) in M all
the free variables in N are active in M . Likewise, M is strongly locally scoped
(abbreviated s.l.s.) if for any generalized redex (λx,N) in M , N is closed.

So, the term K1 above is locally scoped, but K2 is not since there is a gener-
alized redex (λy, z) with z passive. Neither of those are strongly locally scoped.
Any β-normal term is strongly locally scoped, and so is any term obtained by
applications of β-normal forms (such as λ-terms corresponding to terms of com-
binatory logic). Local scope will be sufficient to ensure that the interpretation to
bounding skeletons is a simulation, but the correspondence between terms and
bounding skeletons will be tighter for strongly locally scoped terms: for those,
the tree structure of the bounding skeleton will match the tree structure of im-
bricated generalized redexes. Strongly locally scoped terms are not stable under
lhr, so we need to develop the full connection on locally scoped terms instead.

Lemma 2. If M is a locally scoped term of ground type and M →lhr M
′, then

M ′ is locally scoped.

3.2 Interpretation in bounding skeletons

Interpretation. The level of a type is defined by lv(o) = 0 and lv(A → B) =
max(lv(A) + 1, lv(B)). Likewise, the level lv(M) of a term M is the level of
its type. Finally, the order ord(M) of a term M is the maximal lv(N), for all
subterms N of M . Within a term Γ ` M : A such that (x : B) ∈ Γ , we write
lvM (x) = lv(B). The term M will generally be obvious from the context, so we
will just write lv(x).

Definition 4. Let Γ ` M : A be a term, with a bs-environment ρ, being
defined as a partial function associating to each variable x of Γ on which it is
defined a bounding skeleton ρ(x). Then the bounding skeleton JMKρ is defined by
induction on the length of M , as follows:

J∗ M1 . . . MnKρ = 0
Jx0 M1 . . . MnKρ = 1 +

⊔n
i=1JMiKρ if ρ(x) undefined

Jx0 M1 . . . MnKρ = (1 +
⊔n
i=1JMiKρ) ·lv(x)+1 ρ(x) if ρ(x) defined

Jλx.MKρ = JMKρ
J(λx.M) M1 . . . MnKρ = JM M2 . . . MnKρ∪{x 7→JM1Kρ}

We write JMK for JMK∅.

Measures on terms and their preservation. To estimate lhr on s.l.s. terms, we
need to define measures on terms that reflect the geometry of the corresponding
bounding skeletons. So instead of the height, we have two alternative quantities.



The depth depth(M) of a term M is defined by induction on the length of M :

depth(∗ M1 . . . Mn) = 1

depth(x0 M1 . . . Mn) = max
1≤i≤n

depth(Mi)

depth(λx.M) = depth(M)

depth((λx.M) M1 . . . Mn) = max(depth(M M2 . . . Mn),depth(M1) + 1)

Likewise, the local height lh(M) of a term M is defined by:

lh(∗ M1 . . . Mn) = 0

lh(x0 M1 . . . Mn) = 1 + max
1≤i≤n

lh(Mi)

lh(λx.M) = lh(M)

lh((λx.M) M1 . . . Mn) = max(lh(M M2 . . . Mn), lh(M1))

Then, we have the following lemma:

Lemma 3. If M is a strongly locally scoped term, then we have:

depth(JMK) ≤ depth(M) max(JMK) ≤ lh(M) ord(JMK) ≤ ord(M)

Simulation. In order to have our simulation result of linear head reduction into
bounding skeletons, we need the additional requirement that the terms being
interpreted are η-long – it is natural since our tools originate from game seman-
tics, in which strategies are representations of η-long normal forms. As usual,
η-expansion is the rule M →η λx

A.M x, that applies when M has type A→ B
and x 6∈ fv(M). Non β-normal η-long terms are often defined as the terms on
which any further η-expansion creates a new β-redex. Since we have general-
ized the notion of redex, we instead define them as the terms for which any
η-expansion creates a new generalized redex. Then, η-long terms are stable un-
der lhr. Moreover, we have:

Proposition 1 (Simulation). Let Γ ` M,M ′ : o be η-long locally scoped
terms, and suppose M →lhr M

′. Then, there is a such that JMK→bs a←↩ JM ′K.

3.3 Bounds for strongly locally scoped terms

As a first application, we give exact bounds for the maximal length of lhr on
strongly locally scoped terms. Formally, we will estimate the following quantity.

Llsn(h, d) = max{N (M) | ord(M) ≤ n& lh(M) ≤ h& depth(M) ≤ d&M s.l.s.}

To express our results, we will use some standard notations for comparing
growth rates of functions. For functions f, g : N → N, we write f(n) = Θ(g(n))



when there exists reals c1, c2 > 0 and N ∈ N such that for all n ≥ N , c1g(n) ≤
f(n) ≤ c2g(n). This is generalized to functions of multiple variables f, g : Np → N
by setting that f(n1, . . . , np) = Θ(g(n1, . . . , np)) iff there are c1, c2 > 0 and
Ni ∈ N for all i ∈ {1, . . . , p} such that for all ni ≥ Ni we have c1g(n1, . . . , np) ≤
f(n1, . . . , np) ≤ c2g(n1, . . . , np). If h : N → N is another function, we write
f(n1, . . . , np) = h(Θ(g(n1, . . . , np))) iff there is a function φ : Np → N such that
f(n1, . . . , np) = h(φ(n1, . . . , np)) and φ(n1, . . . , np) = Θ(g(n1, . . . , np)).

η-long form. Our simulation result only applies to η-long terms. Therefore, in
order to obtain the upper bound we first need the following result:

Proposition 2. If M is a term, then there is an η-long term M ′ such that:

lh(M ′) ≤ lh(M) + ord(M) depth(M ′) = depth(M)
ord(M ′) = ord(M) N (M ′) ≥ N (M)

Moreover if M was s.l.s., M ′ is still s.l.s..

The proof is mostly direct, but rather long and technical. We show first that
η-expansion can only increase the norm and that it preserves strong local scope
and the order of terms. Moreover, if η-expansion is restricted so that it does not
create new generalized redexes, then it terminates on an η-long form. Besides,
restricted η-expansion preserves depth and a variant lh′(M) of lh(M) such that
lh(M) ≤ lh′(M) ≤ lh(M) + ord(M), taking into account the potential size of
the variables that are not yet expanded. Details are omitted.

Upper bound. If Γ `M : A1 → . . .→ An → o is a s.l.s. term, we first make it of
ground type by forming Γ ` M ∗A1

. . . ∗An : o – its norm can only increase,
the other quantities stay unchanged and the term is still s.l.s.. By Proposition 2,
there is M ′ η-long, of ground type, and s.l.s. such that lh(M ′) ≤ lh(M)+ord(M),
depth(M ′) = depth(M), ord(M ′) = ord(M) and N (M ′) ≥ N (M). Along with
Lemma 3, Proposition 1 and Theorem 1 this gives the following proposition.

Proposition 3. Suppose M is a strongly locally scoped term of order at least

one. Then, N (M) ≤ 2
depth(M) log(lh(M)+ord(M)+1)
ord(M)−1 .

Lower bound. We now set to prove the optimality of this upper bound by ex-
hibiting a family of terms whose reduction length asymptotically reaches it. The
family we describe is a variant of one used by Beckmann in [2], constructed by
iterated exponentiation of Church numerals. We define higher types for Church
integers by setting A−2 = o and An+1 = An → An. Then, writing np for the
Church integer for n of type Ap, we define, for n, k, p ≥ 0 and M : Ap:

[n]0p(M) = M [n]k+1
p (M) = np+1 [n]kp(M)

One can immediately check that [n]kp(M) : Ap and that for all q ∈ N, [n]kp(q
p
)→∗β

qn
k

p
. Exploiting this construction we set, for n, k, p ≥ 0:

Sn,k,p = [n]kp(2p) 2p−1 . . . 20



For which it is immediate to check that for all n, k, p ≥ 0 we have Sn,k,p →∗β
22
nk

p
0
. Moreover, by construction of Sn,k,p, for n ≥ 2 and p, k ≥ 1 we have

lh(Sn,k,p) = n + 1, depth(Sn,k,p) = k + 1 and ord(Sn,k,p) = p + 3, and Sn,k,p is
s.l.s.. To deduce a lower bound from this, we need to relate it to lhr using:

Lemma 4. If M →∗β n0, then N (M ido) ≥ n, where ido = λxo.x.

Proof. By induction on n, exploiting that lhr preserves β-equivalence.

Theorem 2. For fixed n ≥ 2 we have Llsn(h, d) = 2
Θ(d log(h))
n−1 .

Proof. Let us first consider the case where n ≥ 3, as n = 2 requires a separate
construction for the lower bound. Let us fix h ≥ 3 and d ≥ 2. By Propo-

sition 3, we already know that Llsn(d, h) ≤ 2
d log(h+n+1)
n−1 . Moreover, we have

lh(Sh−1,d−1,n−3 ido) = h and depth(Th−1,d−1,n−3 ido) = d, and by Lemma 4 we

have N (Th−1,d−1,n−3 ido) ≥ 2
(d−1) log(h−1)
n−1 . To summarize:

2
(d−1) log(h−1)
n−1 ≤ Llsn(d, h) ≤ 2

d log(h+n+1)
n−1

Therefore, with n ≥ 3 fixed and d, h parameters we have Llsn(h, d) = 2
Θ(d log(h))
n−1 .

For n = 2, the upper bound still holds. For d, p ≥ 2, define:

Un,d = n1 (n1 . . . (n1 ido) . . .)

where there are d copies of n1 in total. Then, the term Un,d is s.l.s. and we have
lh(Un,d) = n + 1, depth(Un,d ido) = d + 1, ord(Un,d ido) = 2 and N (Un,d) ≥
nd = 2d log(n). It follows that Lls2(d, h) = 2Θ(d log(h)).

In particular, reduction length for s.l.s. second-order terms of fixed depth is
bounded by a polynomial of degree less than the depth.

4 Exact bounds for general terms

4.1 Lambda-lifting to strongly locally scoped terms

In order to deduce bounds for general terms, we now describe a transformation
taking any λ-term M to a corresponding s.l.s. term M ′; this transformation is a
variant of the familiar notion of λ-lifting [12], adapted to lift variables through
generalized redexes as well as β-redexes.

Take a term M = λxA.(λyA.y) x. Obviously, M is not s.l.s.: indeed there
is a prime redex (λy, x) and the subterm x has x free. In order to make the
variable x “local”, we modify the abstraction subterm λy.y to forward explicitly
the variable x. We get the term M ′ = λxA.(λyA→A.y x)(λx′

A
.x′). The type of

y has changed, but not the type of the overall term. Note that the terms M
and M ′ are still β-equivalent, although we are not going to use that explicitly.
More importantly, the norm has increased, the order has increased by one, and



y ∈ fv(M1)

(λx.M) M1 . . . Mn →λl (λx.M [x y/x]) (λy′.M1[y′/y]) . . . Mn

Mi →λl M
′
i

x0 M1 . . . Mn →λl x0 M1 . . . M ′i . . . Mn

M →λl M
′

λx.M →λl λx.M
′

M1 →λl M
′
1

(λx.M) M1 . . . Mn →λl (λx.M) M ′1 . . . Mn

M M2 . . . Mn →λl M
′ M ′2 . . . M ′n

(λx.M) M1 . . . Mn →λl (λx.M ′) M1 M
′
2 . . . M ′n

Fig. 3. Definition of the λ-lifting expansion →λl

the other quantities are essentially unchanged. We formalize this construction
by the λ-lifting expansion →λl, defined in Figure 3.

In general →λl leaves the type unchanged, although it can change the type
of bound variables. Moreover→λl terminates, and its normal form is necessarily
s.l.s.. Altogether, we have the following result:

Lemma 5. For any term M , there is a strongly locally scoped M ′ such that:

lh(M ′) ≤ lh(M) + 1 depth(M ′) = depth(M)
ord(M ′) ≤ ord(M) + 1 N (M ′) ≥ N (M)

This is established by a rather lengthy technical proof, studying commutations
between→λl and→lhr. Preservation of depth is easy since we do not add general-
ized redexes, and (relative) preservation of order and local height is established
as for →η, by building variants lh′ and ord′ which take into account the po-
tential expansion of variables, that satisfy lh(M) ≤ lh′(M) ≤ lh(M) + 1 and
ord(M) ≤ ord′(M) ≤ ord(M) + 1 and are preserved by →λl.

4.2 Expanding variables

For non locally scoped terms, the local height and the depth are rather unnatural
quantities, and the bounds are not naturally expressed in terms of them. We
convert one to the other using another norm-increasing term transformation.

Lemma 6. For any term M , there exists a term M ′ such that M →η∗ M
′,

lh(M ′) ≤ 2 depth(M ′) ≤ h(M)
ord(M ′) = ord(M) N (M ′) ≥ N (M)



The term M ′ is obtained by replacing each occurrence x0 in M of a variable

x : A1 → . . .→ An → o by its η-expanded form λy1
A1 . . . . .λynAn .x0 y

1 . . . yn.
Since we have M →η∗ M

′, we already know that N (M ′) ≥ N (M), the other
inequalities are easily established by induction.

4.3 Exact bounds for general terms

In this section, we are interested in estimating the quantity:

Lgenn(h) = max{N (M) | ord(M) ≤ n & h(M) ≤ h}

We do that by applying the tools developed earlier to get an upper bound
on the length of reduction, and then prove a matching lower bound by providing
terms whose length of reduction asymptotically reaches the upper bound.

Upper bound. Starting from a term M , we first expand variables using Lemma
6, then make it s.l.s. using Lemma 5. This gives M ′ such that:

lh(M ′) ≤ 3 depth(M ′) = h(M)
ord(M ′) ≤ ord(M) + 1 N (M ′) ≥ N (M)

By applying Proposition 3, we get:

Proposition 4. Suppose M is a term. Then, N (M) ≤ 2
h(M) log(ord(M)+5)
ord(M) .

Lower bound. We provide a lower bound matching asymptotically the upper
bound offered by Proposition 4. The construction is essentially the same as the
one used in [2] for the lower bound in terms of height.

For p ≥ 1 and k ≥ 0, we define bp0 = 2p and bpk+1 = λxAp−1 .bpk (bpk x). Then,
we set:

Bpk = bpk 2p−1 . . . 20

Note that this term is not s.l.s.. By standard arithmetic of Church numerals,
we have that for any p ≥ 1, k ≥ 0, Bpk →∗β 2kp+2

0
. By Lemma 4 it follows that

N (Bpk ido) ≥ 2kp+2. It is direct to check that ord(Bpk) = p+ 2 and h(Bpk) = k+ 3
(for k ≥ 1). Therefore, we have:

Theorem 3. For fixed n ≥ 3 we have Lgenn(h) = 2
Θ(h)
n .

For a term M of height h and order n, Beckmann’s results [2] predict that

any β-reduction chain of M terminates in less than 2
Θ(h)
n+1 steps. It might seem

counter-intuitive that our bound (with linear head reduction) is smaller than
Beckmann’s (with β-reduction) since we substitute only one occurrence at a time,
which is obviously longer. However, Beckmann considers arbitrary β-reduction,
not head β-reduction. The possibility of reducing in arbitrary locations of the
term unlocks much longer reductions, since higher-order free variables or con-
stants can isolate sections of the term that will never arrive in head position but
can still be affected by arbitrary β-reduction. The fact that the length of linear
head reduction has the same order of magnitude as head β-reduction is not sur-
prising in the light of Accattoli and Dal Lago’s recent result [1] that a similar
notion of linear head reduction is quadratically related to head reduction.



5 Conclusion

We have worked out the precise connection between bounding skeletons and
syntactic reduction, deducing bounds for linear head reduction in the simply-
typed λ-calculus. The analysis uncovers locally scoped terms, whose reduction re-
lates closely to game-theoretic interaction. Through this work, we obtain syntax-
independent tools to reason on the complexity of programs, hopefully useful in
implicit complexity. Although we have only described this connection here for the
pure λ-calculus, the connection with games suggest that similar constructions
should yield the same results for languages with effects such as control, non-
determinism or ground state. In future work we plan plan to generalize these
tools to more expressive languages, in particular in the presence of recursion.

Acknowledgment. We gratefully acknowledge the support of the ERC Advanced
Grant ECSYM.

References

1. Beniamino Accattoli and Ugo Dal Lago. On the invariance of the unitary cost
model for head reduction. In Ashish Tiwari, editor, RTA, volume 15 of LIPIcs,
pages 22–37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

2. Arnold Beckmann. Exact bounds for lengths of reductions in typed lambda-
calculus. J. Symb. Log., 66(3):1277–1285, 2001.

3. Alexis Bernadet and Stéphane Lengrand. Complexity of strongly normalising -
terms via non-idempotent intersection types. In FOSSACS, pages 88–107, 2011.

4. Pierre Clairambault. Estimation of the length of interactions in arena game se-
mantics. In FOSSACS, pages 335–349, 2011.

5. Thierry Coquand. A semantics of evidence for classical arithmetic. J. Symb. Log.,
60(1):325–337, 1995.

6. V. Danos, H. Herbelin, and L. Regnier. Game semantics and abstract machines. In
Logic in Computer Science, 1996. LICS’96. Proceedings., Eleventh Annual IEEE
Symposium on, pages 394–405. IEEE, 1996.

7. V. Danos and L. Regnier. How abstract machines implement head linear reduction.
2003. unpublished.

8. Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Inf.
Comput., 183(1):123–137, 2003.

9. Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic
measure of the execution time in linear logic. TCS, 412(20):1884–1902, 2011.

10. Jean-Yves Girard. Light linear logic. In Daniel Leivant, editor, LCC, volume 960
of Lecture Notes in Computer Science, pages 145–176. Springer, 1994.

11. J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III.
Inf. Comput., 163(2):285–408, 2000.

12. Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations.
In FPCA, pages 190–203, 1985.

13. Ugo Dal Lago and Olivier Laurent. Quantitative game semantics for linear logic.
In Michael Kaminski and Simone Martini, editors, CSL, volume 5213 of Lecture
Notes in Computer Science, pages 230–245. Springer, 2008.

14. H. Schwichtenberg. An upper bound for reduction sequences in the typed λ-
calculus. Archive for Mathematical Logic, 30(5):405–408, 1991.


