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Abstract

This paper investigates some issues arising in categorical models of
reversible logic and computation. Our claim is that the structural (coher-
ence) isomorphisms of these categorical models, although generally over-
looked, have decidedly non-trivial computational content. The theory
of categorical coherence is based around reversible structural operations
(canonical isomorphisms) that allow for transformations between related,
but distinct, mathematical structures. A number of coherence theorems
are commonly used to treat these transformations as though they are
identity maps, from which point onwards they play no part in computa-
tional models. We simply wish to point out that doing so overlooks some
significant computational content.

We give a single example (taken from an uncountably infinite set of
similar examples, and based on structures used in models of reversible
logic and computation) of a category whose structural isomorphisms ma-
nipulate modulo classes of natural numbers. We demonstrate that the
coherence properties that usually allow us to ignore these structural iso-
morphisms in fact correspond to countably infinite families of non-trivial
identities in modular arithmetic. Further, proving the correctness of these
equalities without recourse to the theory of categorical coherence appears
to be a hard task.

1 Introduction

1.1 Historical background

In [6], J.-Y. Girard introduced Linear Logic, a striking new decomposition of
classical logic. By contrast to previous approaches to logic, it was based around
the twin related principles of reversibility and resource-sensitivity. Although the
structural operations of copying and contraction (i.e. deletion against a copy)
were not completely abandoned (as in sub-structural logics [23]), they were
severely restricted. Via the Curry-Howard isomorphism [21] (also known as the
‘proofs-as-programs’ correspondence) linear logic also has a close connection
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with reversible and resource-sensitive versions of computing systems such as
lambda calculus and combinatory logic [2].

The computational interpretation was pushed further in the Geometry of
Interaction program [9], giving related models of linear logic [7, 8] (see also
[4]). Although these models were degenerate in the logical sense (they identi-
fied conjunction with disjunction, and existential quantification with universal
quantification) their computational content remained, as demonstrated by a se-
ries of practical computational interpretations in [8]. (As shown later [12], the
dynamical part of the Geometry of Interaction system was implemented using
precisely the same tools required to model reversible (space-bounded) Turing
machines).

A significant challenge for logicians at this point was to give categorical
models of both Linear Logic and the (related but distinct) Geometry of Interac-
tion system, following the close correspondence between logics / type systems,
and closed categories pioneered by [17]. For the purposes of this paper, we
concentrate on the more computationally oriented Geometry of Interaction.

Several authors [1, 10, 15] noted that the dynamical, or computational, part
of the Geometry of Interaction system was a form of compact closure [16] aris-
ing from categorical constructions [15, 1] on the category of partial reversible
functions. As pointed out in [10, 11, 2] (and implicit in [7]), the Geometry
of Interaction is an essentially untyped (in the sense of λ-calculus) reversible
computational system — this is a consequence of the requirements of reversibil-
ity and resource-sensitivity. Any categorical interpretation must take this into
account.

1.2 The purpose of this paper

The purpose of this paper is simply to point out some previously overlooked,
decidedly non-trivial, computational content that arises in these models (in
fact, familiarity with the logical models and computational systems listed above
is not a requirement for understanding this paper – but does help place the
theory firmly within its historical context). The computational content comes,
not from the dynamics of the GoI system (i.e. compact closure in categories
of partial reversible functions), but simply from the fact that the system in
question is untyped. Categorically, a model of an untyped system is a category
with precisely one object (i.e. a monoid). Thus the GoI system is modelled
within a monoid of partial reversible functions.

In categorical logic / categorical models of computation, it is standard to
ignore completely a class of structural isomorphisms known as coherence iso-
morphisms. There is a formal justification for doing so — any category with
non-trivial structural isomorphisms is equivalent (in a very precise sense) to one
with trivial structural isomorphisms [22].

However, there is a subtlety that is often overlooked; the process of con-
structing this equivalent category with trivial structural isomorphisms involves
modifying the collection of objects of the category (& hence, by the corre-
spondence between categories and logics pioneered in [17], modifying the type
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system). An appendix to [14] (see also [13]) makes clear what this means for
untyped systems; the ‘equivalent’ version with trivial structural isomorphisms
has a countably infinite class of objects, and thus is no longer type-free.

As type-freeness is such an essential component of the GoI system, we are
thus forced to deal with these structural isomorphisms – this paper studies a set
of such isomorphisms that arise implicitly in [7]. We demonstrate that, although
the category itself has only one object, modulo classes of integers play the same
rôle as objects in this untyped setting. Thus, the structural isomorphisms cor-
respond to (highly non-trivial) identities in modular arithmetic. Further, the
classic theory of coherence that usually allows us to ignore structural isomor-
phisms completely in this case allows us to derive infinite sets of identities in
modular arithmetic, essentially for free.

1.3 Categorical identities up to isomorphism

In category theory, especially the theory of monoidal categories, coherence iso-
morphisms are reversible structural operations that transform objects of cat-
egories (frequently, concrete mathematical structures) into isomorphic objects
that differ only by a simple structural equivalence.

The canonical example, of course, is associativity, where for foundational
reasons one must replace the strict identity X ⊗ (Y ⊗ Z) = (X ⊗ Y ) ⊗ Z by a
pair of mututally inverse isomorphisms

X ⊗ (Y ⊗ Z)

τX,Y,Z --
(X ⊗ Y )⊗ Z

τ−1
X,Y,Z

mm

These natural isomorphisms are required to satisfy a family of coherence condi-
tions that ensure that any such re-bracketing is both reversible and confluent.

The distinction between a strict structural property (based on equality) and
one that holds up to isomorphism is subtle, and a variety of coherence theorems
[22] tell us that for all practical purposes, we may ignore this subtlety, and treat
properties such as associativity as though they are strict. However, a passing
comment in the appendix of [14] (expanded upon in a talk given by the author at
Dagstuhl Seminar 12352, ‘Information Flow and its Applications’ [3]) observes
that in various settings, these structural isomorphisms are concrete reversible
arithmetic operations and the very coherence theorems used to ignore them have
non-trivial computational content.

This paper expands upon these observations via a simple representative ex-
ample. We give an untyped (i.e. single-object) unitless monoidal category
whose structural isomorphisms are based on modular arithmetic, and then de-
scribe the significant computational advantage that the theory of categorical
coherence provides in decisions procedures for equality of such reversible op-
erations. In particular, we demonstrate that categorical diagrams based on k
distinct nodes correspond to arithmetic identities over equivalence classes of the
form {2k.N+x}x=0...2k−1. Despite this, the coherence theorem for associativity
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provides, for free, a large (countably infinite) class of arithmetic identities over
such modular clases that are guaranteed to be correct. At least to the author,
these identities are not readily apparent simply from their algebraic description.

1.4 MacLane’s coherence theorem for associativity, and
untyped monoidal categories

MacLane’s coherence theorem for associativity is commonly, although incor-
rectly, described as stating that ‘all diagrams built from coherence isomorphisms
commute’. This is a correct characterisation of the more technical result in some,
but certainly not all, cases (in particular simple calculations will demonstrate
that it does not hold the for constructions of this paper). The distinction be-
comes important when the objects of the category do not satisfy a ‘freeness’
condition with respect to the monoidal tensor, leading to what [22] refers to
as undesirable identifications between objects. Thus, when the class of objects
is not only a set, but is finite, the informal characterisation above can never
coincide with the formal statement of the theorem.

This paper presents a rather extreme example of this: we exhibit a small
(unitless) symmetric monoidal category with exactly one object N satisfying
the equality1 N ⊗ N = N , as in the example of J. Isbell used by MacLane to
motivate the notion of coherence up to isomorphism [22] p. 160.

This ‘untyped’ monoidal category is an example of a general construction
introduced in [10, 11] – see also [14, 13]. As demonstrated in an Appendix to
[14], there are uncountably many such untyped monoidal categories based on
functions on N (in 1:1 correspondence with the interior points of the Cantor set,
excluding a subset of measure zero), of which the one we present is merely the
simplest.

We then describe which canonical diagrams of this category are predicted to
commute by MacLane’s coherence theorem for associativity, and demonstrate
that these are non-obvious identities in modular arithmetic.

2 An untyped monoidal category

We first give some simple arithmetic constructions on N, based on arithmetic
modulo 2k, for k ∈ N, with a close connection to the theory of symmetric
monoidal categories [22]:

Definition 2.1. Let us denote the monoid of bijections on the natural numbers
by J , and treat this as a single-object category. We define τ, σ ∈ J = J (N,N)

1Note that this is strict equality, rather than isomorphism. For category-theorists worried
about foundational questions related to a notion of equality between objects, we emphasise
that this is a small category. Although N ⊗ (N ⊗N) = (N ⊗N)⊗N , this equality of objects
does not imply that the corresponding associativity isomorphism is a strict identity.
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as follows:

τ(n) =

 2n n (mod 2) = 0,
n+ 1 n (mod 4) = 1,
n−1
2 n (mod 4) = 3.

σ(n) =

{
n+ 1 n even,
n− 1 n odd.

We also give an operation that, given two bijections on N, returns another bi-
jection. Given arbitrary f, g ∈ J , we define

(f ? g)(n) =

{
2.f
(
n
2

)
n even,

2.g
(
n−1
2

)
+ 1 n odd.

The following properties of the above bijections and operations will be estab-
lished via basic modular arithmetic. These properties are, as will be apparent,
closely related to the structural properties and coherence conditions of symmet-
ric monoidal categories:

Proposition 2.2. Let ( ? ), σ, τ be as in Definition 2.1 above. Then for all
f, g, h ∈ J , the following properties hold:

1. Identities id ? id = id

2. Interchange (h ? k)(f ? g) = (hf ? kg)

3. Natural associativity τ(f ? (g ? h)) = ((f ? g) ? h)τ

4. Natural symmetry σ(g ? f) = (f ? g)σ

5. Pentagon τ2 = (τ ? id)τ(id ? τ)

6. Hexagon τστ = (σ ? id)τ(id ? σ)

Proof.

1. By definition, (id ? id)(n) =

 2
(
n
2

)
= n n even,

2
(
n−1
2

)
+ 1 = n n odd.

2. Similarly, (h ? k)(f ? g)(n) =

 (h ? k)
(
2f
(
n
2

))
n even,

(h ? k)
(
2g
(
n−1
2

)
+ 1
)

n odd.

Now observe that 2f
(
n
2

)
is always even, for arbitrary choice of f ∈

Bij(N,N) and even n ∈ N. Similarly, 2g
(
n−1
2

)
+ 1 is always odd, for

arbitrary choice of g ∈ Bij(N,N) and odd n ∈ N. Thus

(h ? k) ((f ? g)(n)) =


2h

(
2f(n

2 )
2

)
n even,

2k

(
(2g(n−1

2 )+1)−1
2

)
+ 1 n odd.
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Simplifying this expression,

(h ? k)(f ? g)(n) = (hf ? kg)(n) =

{
2hf

(
n
2

)
n even,

2kg
(
n−1
2

)
+ 1 n odd.

3. We first establish explicit formulæ for f ? (g ? h) and (f ? g) ? h. By
definition,

(f ? (g ? h))(n) =

{
2f
(
n
2

)
n even,

(g ? h)
(
n−1
2

)
+ 1 n odd.

Unwinding the definition of (g ? h),

(g ? h)

(
n− 1

2

)
=


2g
(
n−1
4

)
n−1
2 even,

2h

(
(n−1

2 )−1
2

)
+ 1 n−1

2 odd.

Thus

(f ? (g ? h))(n) =

 2f
(
n
2

)
n (mod 2) = 0,

2g
(
n−1
4

)
+ 1 n (mod 4) = 1,

2h
(
n−3
4

)
+ 3 n (mod 4) = 3.

Using similar reasoning,

((f ? g) ? h)(n) =

 4f
(
n
4

)
n (mod 4) = 0

4g
(
n−2
4

)
+ 2 n (mod 4) = 2

2h
(
n−1
2

)
+ 1 n (mod 2) = 1

From the explicit description of τ ,

τ(f ? (g ? h)) =

 4f
(
n
2

)
n (mod 2) = 0

4g
(
n−1
4

)
+ 2 n (mod 4) = 1

2h
(
n−3
4

)
+ 1 n (mod 4) = 3

and an almost identical calculation will verify that ((f ? g) ? h)τ is given
by the same formula.

4. Direct calculation gives that

σ(g ? f)(n) = (f ? g)σ(n) =

{
2f
(
n
2

)
+ 1 n (mod 2) = 0

2g
(
n−1
2

)
n (mod 2) = 1

5. We first describe the individual parts of the Pentagon equation:

(id ? τ)(n) =


n n (mod 2) = 0
2n− 1 n (mod 4) = 1
n+ 2 n (mod 8) = 3
n−1
2 n (mod 8) = 7
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Similarly,

(τ ? id)(n) =


2n n (mod 4) = 0
n+ 2 n (mod 8) = 2
n+1
2 n (mod 8) = 6

n n (mod 2) = 1

Composing, on a case-by-case basis, gives

τ2(n) = (τ ? id)τ(id ? τ)(n) =


4n n (mod 2) = 0
n+ 2 n (mod 4) = 1
n+1
2 n (mod 8) = 3

n−3
4 n (mod 8) = 7

6. For the hexagon equation, direct calculations (that by this stage, we are
happy to leave as an exercise) demonstrate that

τστ(n) = (σ ? id)τ(id ? σ)(n) =

 2n+ 2 n (mod 2) = 0
n+1
2 n (mod 4) = 1

n− 3 n (mod 4) = 3

Remark 2.3. J is a monoid — a one-object, or single-typed, category. Despite
this, the above calculations demonstrate how the rôle of distinct objects in the
theory of symmetric monoidal categories is instead played by certain subsets of
N — the congruence classes of the form {2k.N + x}x=0...2k−1.

As demonstrated in Proposition 2.2 above, (J , ?, τ, σ) has all the structure
of a symmetric monoidal category, except for the existence of a unit object. We
axiomatise such situations as follows:

Definition 2.4. Let C be a category. We say that C is semi-monoidal when it
satisfies all the properties for a monoidal category except for the requirement of a
unit object — i.e. there exists a tensor ( 2 ) : C×C → C together with a natural
object-indexed family of associativity isomorphisms {τA,B,C : A2(B2C)→
(A2B)2C}A,B,C∈Ob(C) satisfying MacLane’s pentagon condition

(τA,B,C21D)τA,B2C,D(1A2τB,C,D) = τA2B,C,DτA,B,C2D

When there also exists a natural object-indexed natural family of symme-
try isomorphisms {σX,Y : X2Y → Y2X}X,Y ∈Ob(C) satisfying MacLane’s
hexagon condition

τA,B,CσA2B,CτA,B,C = (σA,C21B)τA,C,B(1A2σB,C)

we say that (C,2, τ, σ) is a symmetric semi-monoidal category.
A functor Γ : C → D between two semi-monoidal categories (C,2C) and

(D,2D) is called (strictly) semi-monoidal when Γ(f2Cg) = Γ(f)2DΓ(g). All
monoidal categories are semi-monoidal, but not vice versa; the relationship is
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precisely analogous to that between monoids and semigroups. When a semi-
monoidal category does not contain a unit object, we call it unitless monoidal.

When a semi-monoidal category has only one object, we call it untyped
monoidal, or simply untyped.

Theorem 2.5. The structure (J , ? , τ, σ), as given in Definition 2.1 is an
untyped symmetric monoidal category.

Proof. This follows from Proposition 2.2 above.

Remark 2.6. As observed in [14], we may construct similar structures based
on congruence classes of the form {pkN+ x}x=0...pk−1, for arbitrary p ≥ 2 ∈ N,
and in general the untyped symmetric monoidal structures on the monoid of
bijections on the natural numbers are in 1:1 correspondence with the interior
points of the Cantor set (and thus are uncountably infinite). We also refer to
[10, 18] for many examples of these, given in terms of algebraic representations
of inverse semigroups. As observed in the introduction, these are heavily used
in models of reversible computation and logic.

2.1 Coherence in unitless monoidal categories

When working with semi-monoidal categories, it would be exceedingly useful
to be able to rely on MacLane’s coherence theorems, for both associativity and
(when appropriate) symmetry. A natural worry, therefore, is whether there
is some exceedingly subtle interaction between the existence of a unit object,
and the monoidal tensor, that means these theorems are not applicable in the
absence of a unit object.

Readers familiar with the proof of MacLane’s coherence theorem for associa-
tivity will recall that associativity and the units conditions are treated individ-
ually, and so this is unlikely to be the case. A conclusive argument is provided
by an Appendix to [13], where the obvious procedure for adjoining a (strict)
unit object to a semi-monoidal category is described, and proved to be adjoint
to the equally obvious forgetful functor. Thus, a semi-monoidal category may
be transformed into a monoidal category with no side-effects.

Despite this, there is a subtlety about untyped monoidal categories that is
worth observing. In [22], MacLane gives an argument, due to J. Isbell, for
considering associativity up to canonical isomorphism, rather than up to strict
identity. This argument was based on a denumerable object D in the skeletal
category of sets satisfying D ⊗ D = D, and a proof that strict associativity
at this object would force a collapse to a triviality (i.e. the unit object for
this category). Isbell’s argument was phrased in terms of a single category
with categorical products — an appendix to [14] argues that this is the case in
arbitrary untyped monoidal categories, and a full coherence result is given in
[13].
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2.2 Coherence in the untyped monoidal category (J , ?)
In Section 2.1, we have seen that canonical isomorphisms for the untyped
monoidal category (J , ?) are simply arithmetic expressions, built using modular
arithmetic. Thus, it is possible (albeit frequently tedious and complex – see also
Section 3) to verify whether or not a diagram commutes by direct calculation.
Fortunately, we are also able to use MacLane’s coherence theorem for associa-
tivity to derive — from basic categorical principles — a large class of diagrams
that are guaranteed to commute, and thus a large class of number-theoretic
identities that are guaranteed to be true.

However, we are not able to use the common simplification of the associa-
tivity theorem — valid in a wide range of settings — that states all canonical
diagrams commute. Since all arrows of J have the same source and target,
this would imply that all arrows built recursively from the set

{
τ, ( ? ), ( )−1

}
are equal, and this is clearly not the case! Instead, we must use the full state-
ment of MacLane’s theorem, in order to give a large class of diagrams that are
guaranteed to commute.

The coherence theorem for associativity is based on the free monogenic
monoidal category. As we are interested in the unitless case, we work with
this category, with the unit removed. Readers unhappy with this are invited to
adjoin a unit object to J , apply the coherence theorem for associativity, and
then remove the unit object.

Definition 2.7. We define (W,2), the free monogenic semi-monoidal cat-
egory, to be precisely MacLane’s free monogenic monoidal category [22], with
the unit object removed. An explicit description follows:,

• (Objects) These are non-empty binary trees over a single variable symbol
x. Thus, x ∈ Ob(W), and, for all a, b ∈ Ob(W), the formal string a2b ∈
Ob(W).

• (Arrows) Given w ∈ Ob(W), the rank of w is the number of occurrences
of the symbol x within the string w, so rank(x) = 1, and rank(w) ≥ 1 for
arbitrary w ∈ Ob(W). There then exists a unique arrow between any two
objects a, b of the same rank, which we denote (b← a) ∈ W(a, b).

• (Composition) The composite of two unique arrows is simply the unique
arrow with the appropriate source / target. Thus, (c← b)(b← a) = (c←
a).

• (Tensor) On objects, the tensor of a and b is the formal string a2b. The
definition on arrows must then be (b, a)2(v, u) = (b2v, a2u).

• (Associativity isomorphisms) The canonical isomorphism from a2(b2c)
to (a2b)2c is the unique arrow between these two objects.

The arrows between objects of rank n correspond to the rebracketings of binary
trees with n leaves, in the obvious way.
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There is then a natural semi-monoidal functor, Sub : (W,2) → (J , ?), the
(unitless version of the) Substitution functor of [22] p. 162. Expanding out the
abstract definition gives the following characterisation of this functor:

• Sub(w) = N, for all w ∈ Ob(W).

• Sub(w ← w) = idN

• Sub(a2v ← a2u) = idN ? Sub(v ← u)

• Sub(v2a← u2a) = Sub(v ← u) ? idN

• Sub(a2b)2c← a2(b2c) = τ .

MacLane’s theorem states that Sub(W,2) → (J , ?) is indeed a (semi-)
monoidal functor, and thus any diagram over (J , ?) that is the image of a
diagram over (W,2) under this functor is guaranteed to commute. This simple
result gives a countably infinite set of diagrams that are guaranteed to commute
(and thus a corresponding set of arithmetic identities that are guaranteed to
hold). For example, in (J , ?, τ), the following diagram commutes:

N

τ

��

Nτoo τ−1
//

τ−1?τ
��

N

τ−1

��
N N

τ
�� τ−1

��

N

N

(τ(τ?1))?1

__

N

1?(τ−1(1?τ))

??

To prove that this commutes, simply note that it is the image of the following
diagram over (W,2)

((v2v)2v)2(v2v)

��

((v2v)2v)2(v2(v2v))oo //

��

(v2v)2(v2(v2v))

��
(((v2v)2v)2v)2v v2(v2(v2(v2v)))

((v2(v2v))2(v2v))2v

OO

(v2(v2v))2((v2v)2v)oo // v2((v2v)2((v2v)2v))

OO

(We do not label the arrows of this diagram, since they are uniquely deter-
mined by their source and target. They may, of course, simply be thought of as
re-bracketings of binary trees of rank 6).

3 Number-theoretic identities via coherence

We have shown that MacLane’s coherence theorem provides a countably infinite
set of categorical diagrams that may be guaranteed to commute; however, the
basic building blocks of these diagrams are the modular arithmetic operations of
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Definition 2.1 — thus the coherence theorem predicts identities within modular
arithmetic. It is of course possible to verify that such diagrams, such as the
above diagram, commute, using modular arithmetic and a case-by-case analysis,
as in Section 2.1. However, to prove the following identities

τ2 = ((τ(τ ? 1)) ? 1)τ(τ−1 ? τ) and τ−2 = (1 ? (τ−1(1 ? τ−1)))τ−1(τ−1 ? τ)

as expressed by this diagram, would involve working with a case-by-case analysis
of modulo classes of the form {n (mod 32) = k}k=0...31. The unfortunate referee
assigned the task of verifying the calculations of Proposition 2.2 will agree that
this is a task to be avoided, if at all possible.

In general, a canonical diagram with N nodes may be the image of a diagram
in (W,2) containing trees of depth N . An arithmetic check of the validity of
this diagram may therefore require a case-by-case analysis that includes modulo
classes {N + x (mod K)}x=0...K , where 0 ≤ K < 2N . Clearly this is unfeasible,
even for moderately large N . However, when a diagram is indeed the image of
a diagram in (W,2) the coherence theorem for associativity allows us to assert
equality between all paths within the diagram that have the same source and
target — and thus the correctness of the (somewhat complicated) corresponding
arithmetic identities.

Checking that an arbitrary diagram is within the image of this functor (and
thus commutes) may be seen intuitively to be a much simpler task. In Section
4 below, we suggest that this task is in fact linear, instead of exponential.

Remark 3.1. As well as the modular arithmetic identities predicted by the
coherence theorem for associativity, it may be observed that (J , ?) is a symmetric
untyped monoidal category, and thus the theory of coherence of symmetry will
predict an additional countably infinite set of identities. This is indeed correct,
and coherence for other categorical properties (e.g. the distributivity of × over
]) also provide further sets of arithmetic identities. The study of these is work
in progress.

4 Conclusions and future work

We have demonstrated that, working within a simple representative arithmetic
example, MacLane’s coherence theorem predicts the correctness of a countably
infinite set of identities in modular arithmetic. As observed in the introduction,
this particular category is simply the simplest possible example of an uncount-
ably infinite set of similar untyped monoidal categories based on reversible arith-
metic functions of the natural numbers. Thus, there appears to be considerable
scope for deriving arithmetic and number-theoretic identities from categorical
first principles.

Of equal interest – both in the category we give, or in any similar category
— is whether we can go in the opposite direction; given a canonical diagram
expressing some identities of modular arithmetic, is there a partial or complete
decision procedure that will tell us whether it is the image of some diagram un-
der MacLane’s substitution functor (and thus whether the arithmetic identities
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expressed are correct)? We conjecture that not only is this the case, but that
the complexity of this decision procedure is linear in the number of edges of the
diagram (this conjecture is based on an algorithm presented by the author at
the conference [3], based on Robinson’s unification algorithm [5]).

We also expect to find further applications in a number of other fields. In
particular, constructions similar to those of this paper were used in an algebraic
setting to give full concrete representations of Thompson’s V and F groups
[19, 20]. Thus, any results or decision procedures for the abstract categorical
theory can reasonably be expected to find applications to the theory of these
groups.
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