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Abstract. Nonlinear dynamical systems abound as models of natural
phenomena. They are often characterized by highly unpredictable be-
haviour which is hard to analyze as it occurs, for example, in chaotic
systems. A basic problem is to understand what kind of information we
can realistically expect to extract from those systems, especially informa-
tion concerning their long-term evolution. Here we review a few recent
results which look at this problem from a computational perspective.

1 Introduction

Scientists have always been fascinated by problems involving dynamical systems.
These appear in the context of many important applications, ranging from ce-
lestial mechanics to electronics. Efforts to understand those systems have led
to many important insights. A relatively complete theory was developed for the
case of linear systems. It was also shown that the general theory of linear systems
can often be applied even for non-linear systems: near (hyperbolic) equilibrium
points, a nonlinear system has the same qualitative structure as its linearization
through the Hartman-Grobman theorem [1].

Despite those early successes, over the last few decades scientists have come
to understand that even simple nonlinear dynamical systems can exhibit compli-
cated behaviour. This realization can perhaps be traced back to the work of the
French mathematician Henri Poincaré in the late XIXth century [2]. Poincaré
studied a problem from celestial mechanics known as the three-body problem.
The three-body problem is the problem of determining the motions of three
bodies (e.g. two stars in a binary system plus a planet), which interact in ac-
cordance with the laws of classical mechanics (Newton’s laws of motion and of
universal gravitation), given their initial positions, masses and velocities. Unlike
the two-body problem, which was completely solved and shown to have a very
predictable behaviour (in the case of a star and a planet it yields Kepler’s laws
of planetary motion), Poincaré showed that orbits for the three-body problem
could be very complex — in modern terms, he showed that these orbits had ele-
ments of chaotic behaviour. Subsequent studies of nonlinear dynamical systems
were done by mathematicians such as Hadamard [3], Birkhoff [4], Kolmogorov



[5] M.L. Cartwright and J.E. Littlewood [6], and S. Smale [7]. Although most
of these studies involved physically inspired systems, the resulting papers were
often hard to read for the non-specialist and remained within the pure mathe-
maticians’ community well into the middle of the XXth century. This situation
changed with the arrival of the digital computer. Numerical simulations done by
cheap, fast and widely available computers allowed the non-specialist scientist
to get a grasp on the complexity of their favourite models. Edward Lorenz was
one of these early scientists who stumbled upon chaos. He was a meteorologist
interested in long-term weather prediction. During the course of his weather sim-
ulations, and to save time, he would sometimes start a simulation in the middle
of its course, using data obtained in previous simulations. His computer used 6
decimal digits internally, but would only print 3 digits as a result. Since he only
had access to those 3 digits, he restarted the computation using this truncated
data. He soon realized, to his surprise, that the small error introduced by the
truncation could have a huge effect in the evolution of the system, and that this
effect could happen quite rapidly [8]. Nowadays this phenomenon is known as
“sensitive dependence on initial conditions” or, more poetically, as the “butterfly
effect” – a hurricane’s formation could be contingent on whether or not a distant
butterfly had flapped its wings several weeks before. However, this “butterfly ef-
fect” also raises critical questions about the reliability of computer-generated
simulations of nonlinear systems. For example, the experiments suggested that
the trajectories of the system which Lorenz was studying would converge over
time to a butterfly shaped object, later known as the Lorenz attractor. But to
rigorously prove that the figure drawn by a computer was not an artefact of
round-off error accumulation was a much harder problem. It was the 14th prob-
lem on the list of problems proposed by the Fields medallist S. Smale [9] for the
21st century. It was finally solved in 1998, following the work of Tucker [10].

The interplay between chaos (and other forms of nonlinear complex be-
haviour) and computers poses interesting questions to the theoretical computer
science community; in particular, questions such as the following: Are chaotic
and other highly complex systems necessarily computationally intractable? How
do they compare to intractability in Turing Machines? Is it possible to relate the
degree of computational intractability with some degree of “chaos complexity”
(or other) of the system? On the other hand, since physical implementations
of computers are subjected to natural laws, can chaotic/nonlinear computers
be computationally more powerful than Turing machines (from a computability
and/or computational complexity perspective)? Many of these interesting ques-
tions have to do with the long-term behaviour of dynamical systems. In this
paper we review, from a computational perspective, a few selected results that
we have obtained recently in this area.

2 Dynamical systems: basics

A dynamical system is a way of describing how points in a state space evolve
(deterministically) over time. Formally it is a triple (S,T, φ), where S is an open



set of the Euclidean space (the state space), T is a semigroup which denotes the
time (usually T = R — continuous-time systems — or T = N — discrete-time
systems) and φ : T×S → S is a map (the evolution rule). The map φ must also
have the following properties (we write φ(t, x) = φt(x), where φt : S → S): (i)
φ0 : S → S is the identity; (ii) φt ◦ φs = φt+s for each t, s ∈ T. It can be shown
[11] that the evolution of a discrete-time system can be obtained by iterating
a map (= φ1). Iterating the map t times will yield the state of the system at
time t. For C1 continuous-time systems, the evolution rule can be rewritten as
a differential equation x′ = f(x), where f(x) = ∂tφt(x)|t=0.

Dynamical systems theory deals with the long-term qualitative behaviour
of dynamical systems, since quantitative information is usually a too-ambitious
goal. Some typical questions studied in dynamical systems include: “Will the
system settle down to some steady state in the long term? If yes, which properties
characterize this steady state? Can one tell if there are several co-existing steady
states? Which types of steady states does a particular class of dynamical systems
admit?”

We remark that these questions correspond to problems in theoretical com-
puter science and related applications (e.g. control theory — see e.g. [12]) which
are interested in analyzing the long-term behaviour of some system. The steady
states mentioned above are usually known as attractors or, in a broader sense,
as invariant sets. The set of points which converge to a given attractor de-
fines its basin of attraction. Up to dimension two, dynamical systems are rela-
tively well-behaved. The Poincaré-Bendixson Theorem (see [13], Section 8*.5 for
more details) rules out chaos in two-dimensional systems — it states that, ex-
cept for singularities (like homoclinic solutions [14]), attractors in the plane can
only be points or closed (periodic) orbits. However, as soon as one enters three-
dimensional space, complex chaotic behaviour can appear, as demonstrated by
the Lorenz system (which is a three-dimensional system of ordinary differential
equations defined by quadratic functions). Thus, low-dimensional systems de-
fined by simple rules can have attractors and invariant sets with a much more
complex structure than fixed points or periodic orbits.

3 Computability

Before analyzing the computational complexity of problems related to dynami-
cal systems, it makes sense to first investigate whether these problems are com-
putable. Since problems in dynamical systems theory deal with the long-term
behaviour of systems one might stumble upon the Halting problem. Indeed, since
Turing machines, considered as discrete-time dynamical systems, can be embed-
ded into many classes of discrete-time or continuous-time dynamical systems,
these latter systems often inherent the rich structures of Turing machines and,
in particular, undecidability (see e.g. [15], [16], [17], [18]). The embedding of a
Turing machine (which is a purely discrete model) into a continuous system is
often done by implicitly using discrete elements, like piecewise linear functions,
or more generally piecewise defined functions or dynamics.



A more challenging task is to analyze problems which do not allow these dis-
crete elements. Classical physics is built upon polynomials, trigonometric func-
tion, logarithms, etc. (these functions, their inverses, and all of their possible
compositions are known in Analysis as elementary functions — not to be con-
fused with elementary functions in computability theory, see e.g. [19] — or as
closed-form functions) and elementary functions are analytic. Analyticity is a
very strong property; for an analytic function, its global property is determined
by its local behaviour. Thus, it is much harder to encode the Halting problem
(or the behaviour of a given Turing machine) into an analytic dynamical system
and it may not be evident whether these systems can present non-computable
behaviour. For these reasons, we have focused much of our work on analytic
systems, avoiding noncomputability results which could be obtained due only to
the inherently discrete dynamics of the system.

Although the long term behaviour of a system can be very complicated and
often chaotic, many problems associated with the system are still (algorithmi-
cally) decidable. For example, it is possible to decide whether or not some (ra-
tional) initial point will converge to the fixed point of

x′ = Ax

at the origin, when A is an n×n hyperbolic (i.e. the real parts of the eigenvalues
of A are nonzero) matrix [20].

3.1 Computability of trajectories over unbounded domains

A basic problem concerning the computability of solutions for ordinary differen-
tial equations (ODEs)is the following: given some ODE and some initial condi-
tion, can we compute the respective solution for arbitrary t ≥ 0? Or equivalently,
are trajectories of a continuous-time dynamical system computable? This prob-
lem is not as trivial as it first might seem. One might suggest using any standard
numerical method to solve it. The problem with numerical methods is that vir-
tually all numerical methods use a strong hypothesis: the existence of a Lipschitz
constant valid for the vector field over the entire domain where the solution is
defined. Of course, if the vector field is C1 and the time is restricted to a closed
interval [t0, t1], then this desired global Lipschitz constant is readily obtainable
(see e.g. [1] p. 71). This global Lipschitz constant is also critical for previous
results concerning computability of ODEs; in fact, it is to be found in virtually
any such result previously obtained (see e.g. [21]). Although there are several
computability results established for ODEs without a global Lipschitz constant
— as long as the solution is assumed to be unique (see [21], Section 7.1), those
results however only hold for ODEs defined on a closed interval [t0, t1]. Another
related result can be found in [22], where the author proves computability of
solutions of ODEs in unbounded domains without requiring the use of Lipschitz
constants. However, Ruohonen requires a very restrictive bound on the growth
of f .

Thus the previous results on computability of ODEs do not address the
general case where computability must be established over the time interval



[0,+∞) for functions which might grow (in absolute terms) quicker than a linear
function (in which case no global Lipschitz constant exists).

Classically, existence and uniqueness results for C1 ODEs over the maximal
interval where the solution is defined (see e.g. [1], Section 2.4 for a precise def-
inition of the maximal interval) is shown recursively: first establish existence
and uniqueness over an interval [a, b]; then the interval where existence and
uniqueness is guaranteed is recursively extended, and shown to converge to a
maximal interval. Note that this convergence can be non-effective, as we have
shown in [23]: a computable ODE with computable initial conditions can yield
a non-computable maximal interval even if the ODE is analytic. The result is
further refined in [24], where it is shown that the set of all initial data generating
solutions with lifespans longer than k, k ∈ N, is in general not computable. Al-
though the maximal interval of existence may be non-computable, it is (lower)
semi-computable and therefore, if we want to compute the solution y of the ODE
at time t, it suffices to extend the interval [a, b] until it includes t and then we
can use a standard algorithm to compute y(t) (see e.g. [23]). In this process, how
to extend the interval [a, b] is a key step and, concerning the extension, there
are two approaches. The first approach (see e.g. [1], Section 2.4, for the similar
case of C1 functions) is to use local Lipschitz constants to extend the solution
recursively. This can be done for C1 functions. In particular, we have shown in
[23] that the solution of y′ = f(y), y(t0) = y0 can be computed over its maximal
interval of definition from (f, f ′, t0, x0) for C1 functions.

This result was later generalized in [25], using the second classical approach
to extend the interval [a, b] (see e.g. [26], p. 12, Theorem 3.1). In this approach
we split the state space into several compacts and provide an algorithm to gen-
erate partial solutions inside these compacts (via Peano’s Existence Theorem).
This approach is more general then the previous one in the sense that it does
not require Lipschitz constants (it is valid even for ODEs with non-unique so-
lutions). But, computationally, it requires to know how to “glue” the partial
solutions to get the whole solution over the maximal interval. In [25] we solve
this problem by using an enumeration approach. The idea is to generate all pos-
sible “tubes” which cover the solution, and then check if this cover is valid within
the desired accuracy. The proof is constructive, although terribly inefficient in
practice. Nonetheless this technique shows that if the solution to an initial-value
problem defined by an ODE is unique, then the solution must be computable
over its maximal interval of existence, under the (minimal) classical conditions
ensuring existence of a solution to an ODE initial-value problem (continuity).

Theorem 1 ([25]). Consider the initial value problem y′ = f(y), y(t0) = y0,
where f is continuous on Rn. Suppose that there is a unique solution y, defined
on the maximal interval (α, β). Then y(t) is computable from f, t0, x0, t, where
t ∈ (α, β).

An interesting problem which we will tackle in Section 4.1 is to determine
the computational complexity of computing the solution of a given ODE over
its maximal interval of existence.



3.2 Computability of attractors and invariant sets

We have seen in Section 2 that a trajectory may converge over time to some
kind of attractor (steady state). It is an important problem both in theory and
in practice to characterize these attractors. For example, one is often interested
in verification problems. The purpose of verification theory is to prove (or dis-
prove) that a system behaves as intended. A system may have safe states (in-
variant sets), where the system should be, and unsafe states, where undesirable
behaviour may occur (e.g. turbulence over a wing, a nuclear reactor overheating,
etc.). Thus many verification problems often amount to understand which kind
of attractors/invariant sets a system has, and which are their respective basins
of attraction.

For verification problems involving complex systems, computers are, of course,
essential tools. Thus, it becomes useful to know which invariant sets are com-
putable and which are not; for computable invariant sets, which can be computed
efficiently. Many specialized results exist in the literature of control theory. Here
we will focus on more general problems in dynamical systems. One of our ini-
tial projects was to investigate computability in the planar dynamical systems.
As we have mentioned, due to the Poincaré-Bendixson theorem, invariant sets
in the plane can only be fixed points or periodic orbits (with the exception of
singularities). Thus it is natural to study this class of systems first. In general,
fixed points can be computed since they are the zeros of the function f defining
the differential equation y′ = f(y) and isolated zeros of a computable function
are also computable — see e.g. [27]. On the other hand, many problems related
to the simple planar dynamics can be undecidable, as the following results [28]
show.

Theorem 2 ([28]). Given as input an analytic function f , the problem of de-
ciding the number of equilibrium points of y′ = f(y) is undecidable, even on
compact sets. However, the set formed by all equilibrium points is upper semi-
computable.

Theorem 3 ([28]). Given as input an analytic function f , the problem of decid-
ing the number of periodic orbits of y′ = f(y) is undecidable, even on compact
sets. However, the set formed by all hyperbolic periodic orbits is upper semi-
computable.

In short, a hyperbolic periodic orbit is an orbit to which nearby trajectories
converge exponentially fast (see e.g. [1] for more details). The hyperbolic prop-
erty entails stronger stability properties to small perturbations of the system.
This is important when computing an invariant set, since despite round-off er-
rors, one should still be able to effectively approximate the invariant set. In this
sense, the notion of stability in dynamical systems theory seems to be intertwined
with computability.

The above results show that one cannot hope for general procedures to com-
pute invariant sets for relatively large families of dynamical systems such as
planar systems. Instead, algorithms should be devised for each particular case.



As we have seen before, invariant sets need not to be fixed points or periodic
orbits, but may take complex shapes such as Lorenz attractor. Are these complex
shapes computable? We have analyzed in [20] the case of Smale’s horseshoe (see
e.g. [14]), which was the first example of an hyperbolic invariant set which is
neither an equilibrium point nor a periodic orbit. Contrarily to what one could
expect a priori, Smale’s horseshoe is computable.

Theorem 4 ([20]). The Smale Horseshoe is a computable (recursive) closed
set.

3.3 Computability of basins of attraction

Similar to the case of invariant sets, when a class of dynamical systems is con-
sidered, general algorithms for computing basins of attractor do not exist, even
for classes of well-behaved systems; in particular, when the class is large. For
instance, Zhong [29] showed that there exists a C∞ computable dynamical sys-
tem having a unique computable hyperbolic equilibrium point but the basin of
attraction of this hyperbolic equilibrium point is non-computable.

This result was generalized in a paper we just submitted:

Theorem 5. There exists a computable analytic dynamical system having a
computable hyperbolic equilibrium point such that its basin of attraction is re-
cursively enumerable, but is not computable.

Thus finding the basin of attraction of a given attractor is, in general, a
non-computable problem, although one can semi-compute this basin from the
inside.

4 Computational complexity

4.1 Computational complexity of trajectories over unbounded
domains

We have seen that the trajectories of a non-linear dynamical system are com-
putable over their maximal interval of definition. It thus becomes interesting to
understand the underlying computational complexity of finding these trajecto-
ries. However, the two results [23] and [25] are not very helpful in that respect
because they use an exhaustive approach — the underlying algorithm will al-
ways stop when some condition is met (and we are sure that this condition must
eventually be met) — but we do not have a priori any clue on how much time
this will take.

Recently we have been focusing on polynomial differential equations. This
particular subclass has some advantages: it is well-behaved, it corresponds to a
particular model of computation — Shannon’s General Purpose Analog Com-
puter [30] (thus understanding the computational complexity of polynomial dif-
ferential equations is equivalent to understand the computational complexity of



this computational model), and it captures more complex ODEs defined using
trigonometric functions, exponentials, etc. [31].

Unfortunately, computing solutions of ODEs efficiently over unbounded do-
mains is not easy. We can get a numerical estimate of the solution, but Lipschitz
constants play a crucial role for estimating in an efficient manner the error made
in the computation and are thus needed if we want to compute the solution of
a polynomial ODE in the sense of computable analysis [27]. But since no global
Lipschitz constant exist, in general, for polynomials in unbounded domains, we
have to compute local Lipschitz constants. But these local Lipschitz constants
depend on the compact set where the solution is. Thus, to be sure that the solu-
tion is in a given compact set, given only some numerical estimate of the solution,
we need to know the error of this estimate, i.e. we need to know beforehand the
Lipschitz constant we were trying to find in the first place.

In [32] we presented a solution to this problem: break the vicious circle using
the size of the solution as one of the parameters on which the computational
complexity of the solution is measured upon.

Theorem 6 ([32]). The solution, at time T , of an initial-value problem y′ =
p(y) with initial condition y(t0) = y0 ∈ Rd, where p is a vector of polynomials,
can be computed, in an uniform manner, with precision 2−n, in time polynomial
in T , n and Y = supt0≤t≤T ‖y(t)‖.

Methods usually used for numerical integrations (including the basic Euler’s
method, Runge Kutta’s methods, etc.) tend to fall in the general theory of n-
order methods for some fixed n ∈ N. They do compute the solution of an ODE
in polynomial time in a compact time interval [a, b], but are not guaranteed to
work in polynomial time over the maximal interval of definition of the solution.

In [32] we solve this problem by using variable order methods. This is done
with the help of a Taylor approximation, with the number of terms used on the
approximation depending on the input. The idea of using variable order methods
is not new. W. Smith mentioned it in [33], where he claimed that some classes of
ODEs can be solved in polynomial time over maximal intervals, however without
providing a full proof to this claim. Variable order methods have also been used
in [34], [35], [36], but for the case of bounded domains.

It is not only polynomial ODEs which can be solved in polynomial time over
their maximal interval of definition, many analytic ODEs can also be solved in
polynomial time, as long as the function defining the ODE and its solution do
not grow quicker than a very generous bound [37].

Theorem 7 ([37]). Let y(t) be the solution of the initial-value problem y′ =
f(y), y(t0) = y0, in Cd, where f is analytic in Cd and p-poly-bounded (in Cd),
f, t0, x0 are polynomial-time computable, and y(t) admits an analytic extension
to Cd and is poly-bounded over Cd. Then the function which maps f, x0, t0, and
t to the value y(t) is polynomial-time computable.

(a function is p-poly-bounded if ‖f(x)‖ is bounded by 2p(log ‖x‖)). This result
uses previous results from Müller et al. [38], [34], [39] which say that, locally,



the solution of an analytic ODE can be computed in polynomial time. We then
extract (in polynomial-time) the coefficients of the Taylor series of the solution,
which allow us to compute, in polynomial time, the solution of the ODE in its
maximal interval of definition using the hypothesis of poly-boundedness. The
hypothesis that f is analytic on the complex space (and poly-bounded there)
and that the solution of the ODE admits an analytic extension to Cd are needed
because we use the Cauchy integral formula in the proof.
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