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The complexity of interior point methods for solving discounted

turn-based stochastic games

Thomas Dueholm Hansen∗† Rasmus Ibsen-Jensen∗

Abstract

We study the problem of solving discounted, two player, turn based, stochastic games (2TB-
SGs). Jurdziński and Savani showed that 2TBSGs with deterministic transitions can be reduced
to solving P -matrix linear complementarity problems (LCPs). We show that the same reduction
works for general 2TBSGs. This implies that a number of interior point methods for solving
P -matrix LCPs can be used to solve 2TBSGs. We consider two such algorithms. First, we
consider the unified interior point method of Kojima, Megiddo, Noma, and Yoshise, which runs
in time O((1 + κ)n3.5L), where κ is a parameter that depends on the n× n matrix M defining
the LCP, and L is the number of bits in the representation of M . Second, we consider the
interior point potential reduction algorithm of Kojima, Megiddo, and Ye, which runs in time
O(−δ

θ
n4 log ǫ−1), where δ and θ are parameters that depend on M , and ǫ describes the quality

of the solution. For 2TBSGs with n states and discount factor γ we prove that in the worst
case κ = Θ(n/(1− γ)2), −δ = Θ(

√
n/(1− γ)), and 1/θ = Θ(n/(1− γ)2). The lower bounds for

κ, −δ, and 1/θ are obtained using the same family of deterministic games.

1 Introduction

Two-player turn-based stochastic games (2TBSGs). A two-player turn-based stochastic
game (2TBSG) consists of a finite set of states and for each state a finite set of actions. The game
is played by two players (Player 1 and Player 2) for an infinite number of rounds. The states are
partitioned into two sets S1 and S2, belonging to Player 1 and Player 2, respectively. In each
round the game is in some state, and the player controlling the current state i chooses an action
a available from state i. Every action is associated with a probability distribution over states, and
the next state is picked at random according to the probability distribution for a. After every
transition the game ends with probability 1 − γ > 0, where γ is the discount factor of the game.
Every action has an associated cost, and the objective of Player 1 is to minimize the expected sum
of costs, whereas the objective of Player 2 is to maximize the expected sum of costs, i.e., the game
is a zero-sum game. Our main focus is the case where all states have two actions.
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The class of (turn-based) stochastic games was introduced by Shapley [20] in 1953 and has
received much attention since then. For books on the subject see, e.g., Neyman and Sorin [16] and
Filar and Vrieze [5]. 2TBSGs with a single player, i.e., one player controls all the states, are known
as Markov decision processes; a problem that is important in its own right (see, e.g., Puterman
[17]). Shapley showed that every state in a 2TBSG has a value that can be enforced by both players
(a property known as determinacy). Solving a 2TBSG means finding the values of all the states,
and the problem of solving 2TBSGs is the topic of this paper.

Classical algorithms for solving 2TBSGs. 2TBSGs form an intriguing class of games
whose status in many ways resembles that of linear programming 40 years ago. They can be solved
efficiently with strategy iteration algorithms, resembling the simplex method for linear program-
ming, but at the same time no polynomial time algorithm is known. Strategy iteration algorithms
were first described for discounted 2TBSGs by Rao et al. [18]. Building on a result by Ye [22],
Hansen et al. [8] showed that the standard strategy iteration algorithm solves 2TBSGs with a fixed
discount, γ, in strongly polynomial time. Prior to this result a polynomial bound by Littman [15]
was known for the case where γ is fixed. Littman showed that Shapley’s value iteration algorithm
[20] solves discounted 2TBSGs in time O(nmL

1−γ
log 1

1−γ
), where n is the number of states, m is the

number of actions, and L is the number of bits needed to represent the game. For a more thorough
introduction to the background of the problem we refer to Hansen et al. [8] and the references
therein.

Interior point methods. Several polynomial time algorithms have been discovered for solving
linear programs. Perhaps the most notable family of such algorithms is interior point methods. The
first interior point method was introduced by Karmarkar [11] in 1984, and the technique has since
been studied extensively and applied in other contexts. See, e.g., Ye [21]. In particular, interior
point methods can be used to solve P -matrix linear complementarity problems (LCPs). One may
hope that a polynomial time algorithm for solving 2TBSGs whose discount factor γ is not fixed
(i.e., the discount factor is part of the input) can be obtained through the use of interior point
methods. Indeed, this approach was suggested by Jurdziński and Savani [10] and Hansen et al. [8].
In this paper we study a reduction from 2TBSGs to P -matrix LCPs, and we study the complexity
of two known interior point methods when applied to the resulting P -matrix LCPs.

P -matrix linear complementarity problems. A linear complementarity problem (LCP) is
defined as follows: Given an (n × n)-matrix M and a vector q ∈ R

n, find two vectors w, z ∈ R
n,

such that w = q + Mz, wTz = 0, and w, z ≥ 0. LCPs have also received much attention. For
books on the subject see, e.g., Cottle et al. [4] and Ye [21].

Jurdziński and Savani [10] showed that solving a deterministic 2TBSG G, i.e., every action leads
to a single state with probability 1, can be reduced to solving an LCP (M,q). Gärtner and Rüst
[6] gave a similar reduction from simple stochastic games; a class of games that is polynomially
equivalent to 2TBSGs (see [1]). Moreover, Jurdziński and Savani [10], and Gärtner and Rüst [6],
showed that the resulting matrix M is a P -matrix (i.e., all principal sub-matrices have a positive
determinant). We show that the reduction of Jurdziński and Savani also works for general 2TBSGs,
and that the resulting matrix M is again a P -matrix.

Krishnamurthy et al. [14] gave a survey on various stochastic games and LCP formulations of
those.

The unified interior point method. There exist various interior point methods for solving
P -matrix LCPs. One algorithm we consider in this paper is the unified interior point method of
Kojima, Megiddo, Noma, and Yoshise [12]. The unified interior point method solves an LCP whose
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matrix M ∈ R
n×n is a P∗(κ)-matrix in time O((1+κ)n3.5L), where L is the number of bits needed

to describe M . A matrix M is a P∗(κ)-matrix, for κ ≥ 0, if and only if for all vectors x ∈ R
n, we

have that xT(Mx) + 4κ
∑

i∈δ+(M) xi(Mx)i ≥ 0, where δ+(M) = {i ∈ [n] | xi(Mx)i > 0}. If M is a
P -matrix then it is also a P∗(κ)-matrix for some κ ≥ 0. Hence, the algorithm can be used to solve
2TBSGs.

Following the work of Kojima et al. [12], many algorithms with complexity polynomial in κ, L,
and n have been introduced. For additional examples see [3, 2, 9].

An interior point potential reduction algorithm. The second interior point method we
consider is the potential reduction algorithm of Kojima, Megiddo, and Ye [13]. (See also Ye [21].)
The potential reduction algorithm is an interior point method that takes as input a P -matrix
LCP and a parameter ǫ > 0, and produces an approximate solution w, z, such that wTz < ǫ,
w = q + Mz, and w, z ≥ 0. The running time of the algorithm is O(−δ

θ
n4 log ǫ−1), where δ

is the least eigenvalue of 1
2(M + MT), and θ is the positive P -matrix number of M , that is,

θ = min‖x‖2=1 maxi∈{1,...,n} xi(Mx)i. We refer to −δ
θ

as the condition number of M . The analysis
involving the condition number appears in Ye [21].

Rüst [19] showed that there exists a simple stochastic game for which the P -matrix LCPs
resulting from the reduction of Gärtner and Rüst [6] has a large condition number. The example
of Rüst contains a parameter that can essentially be viewed as the discount factor γ for 2TBSGs,
and he shows that the condition number can depend linearly on 1

1−γ
. To be more precise, Rüst [19]

showed that the matrix M resulting from the reduction of Gärtner and Rüst [6] has positive P -
matrix number smaller than 1, and that the smallest eigenvalue of the matrix 1

2(M + MT) is
−Ω

(

1
1−γ

)

. This bound can be viewed as a precursor for our results.

1.1 Our contributions

Our contributions are as follows. We show that the reduction by Jurdziński and Savani [10] from
deterministic 2TBSGs to P -matrix LCPs generalizes to 2TBSGs without modification. Although
the reduction is the same, we provide an alternative proof that the resulting matrix is a P -matrix.
Let MG be the matrix obtained from the reduction for a given 2TBSG G. We also show that for
any 2TBSG G with n states and discount factor γ we have:

(i) The matrix MG is a P∗(κ)-matrix for κ = O
(

n
(1−γ)2

)

.

(ii) The matrix
MG+MT

G
2 has smallest eigenvalue δ, where −δ = O

(

√
n

1−γ

)

.

(iii) The reciprocal of the positive P -matrix number of MG is 1
θ(MG) = O

(

n
(1−γ)2

)

.

Item (i) implies that the running time of the unified interior point method of Kojima et al. [12]

for 2TBSGs is at most O((1 + κ)n3.5L) = O
(

n4.5L
(1−γ)2

)

. Items (ii) and (iii) together imply that the

running time of the potential reduction algorithm of Kojima et al. [13] for 2TBSGs is at most

O
(−δ

θ
n4 log ǫ−1

)

= O
(

n5.5 log ǫ−1

(1−γ)3

)

.

Finally, we define a family of deterministic 2TBSGs Gn for which we prove matching lower

bounds: (i) κ = Ω
(

n
(1−γ)2

)

, (ii) −δ = Ω
(

√
n

1−γ

)

, and (iii) 1
θ(MGn )

= Ω
(

n
(1−γ)2

)

.

Note that the upper bounds we prove for the two algorithms are worse than the O(n
2L

1−γ
log 1

1−γ
)

bound for the value iteration algorithm for the case where every state has two actions. Although
our results for existing interior point methods for solving 2TBSGs are therefore negative, other
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interior point methods may solve 2TBSGs efficiently. It is also possible that the known bounds for
the algorithms studied in this paper do not reflect their true running time. In fact, we believe that
interior point methods are the key to solving 2TBSGs efficiently, and that the study of interior
point methods in this context remains an important question for future research.

1.2 Overview

In Section 2 we formally introduce the various classes of problems under consideration. More
precisely, in Subsection 2.1 we define LCPs, and in Subsection 2.2 we define 2TBSGs. In Sub-
section 2.3, we show that the reduction by Jurdziński and Savani [10] from deterministic 2TBSGs
to P -matrix LCPs generalizes to general 2TBSGs. In Section 3 we estimate the κ for which the
matrices of 2TBSGs are P∗(κ)-matrices, thereby bounding the running time of the unified interior
point method of Kojima et al. [12]. In Section 4 we similarly bound the smallest eigenvalue and
the positive P -matrix number, proving a bound for the running time of the potential reduction
algorithm of Kojima et al. [13].

2 Preliminaries

2.1 Linear complementarity problems

Definition 1 (Linear complementarity problems) A linear complementarity problem (LCP)
is a pair (M,q), where M is an (n×n)-matrix and q is an n-vector. A solution to the LCP (M,q)
is a pair of vectors (w, z) ∈ R

n such that:

w = q+Mz

wTz = 0

w, z ≥ 0 .

Definition 2 (P -matrix) A matrix M ∈ R
n×n is a P -matrix if and only if all its principal sub-

matrices have a positive determinant.

The following lemma gives an alternative definition of P -matrices (see, e.g., [4, Theorem 3.3.4]).

Lemma 3 A matrix M ∈ R
n×n is a P -matrix if and only if for every non-zero vector x ∈ R

n

there is an i ∈ [n] = {1, . . . , n} such that xi(Mx)i > 0.

Definition 4 (Positive P -matrix number) The positive P -matrix number of a matrix M ∈
R
n×n is

θ(M) = min
‖x‖2=1

max
i∈[n]

xi(Mx)i .

Note that, according to Lemma 3, θ(M) > 0 if and only if M is a P -matrix.

Definition 5 (P∗(κ)-matrix) A matrix M ∈ R
n×n is a P∗(κ)-matrix, for κ ≥ 0, if and only if

for every vector x ∈ R
n:

∑

i∈δ−(M)

xi(Mx)i + (1 + 4κ)
∑

i∈δ+(M)

xi(Mx)i ≥ 0 ,
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where δ−(M) = {i ∈ [n] | xi(Mx)i < 0} and δ+(M) = {i ∈ [n] | xi(Mx)i > 0}. We say that M is
a P∗-matrix if and only if it is a P∗(κ)-matrix for some κ ≥ 0.

Kojima et al. [12] showed that every P -matrix is also a P∗-matrix. By definition, a symmetric
matrix M is a P∗(0)-matrix if and only if it is positive semi-definite.

2.2 Two-player turn-based stochastic games

Definition 6 (Two-player turn-based stochastic games) A two-player turn-based stochastic
game (2TBSG) is a tuple, G = (S1, S2, (Ai)i∈S1∪S2 , p, c, γ), where

• Sk, for k ∈ {1, 2}, is the set of states belonging to Player k. We let S = S1 ∪S2 be the set of
all states, and we assume that S1 and S2 are disjoint.

• Ai, for i ∈ S, is the set of actions applicable from state i. We let A =
⋃

i∈S Ai be the set of
all actions. We assume that Ai and Aj are disjoint for i 6= j, and that Ai 6= ∅ for all i ∈ S.

• p : A → ∆(S) is a map from actions to probability distributions over states.

• c : A → R is a function that assigns a cost to every action.

• γ < 1 is a (positive) discount factor.

We let n = |S| and m = |A|. Furthermore, we let Ak =
⋃

i∈Sk Ai, for k ∈ {1, 2}. We refer
to Player 1 as the minimizer and to Player 2 as the maximizer. Figure 1 shows an example of a
simple 2TBSG. The large circles and squares represent the states controlled by Player 1 and 2,
respectively. The edges leaving the states represent actions. The cost of an action is shown inside
the corresponding diamond shaped square, and the probability distribution associated with the
action is shown by labels on the edges leaving the diamond shaped square.

We say that an action a is deterministic if it moves to a single state with probability 1, i.e.,
if p(a)j = 1 for some j ∈ S. If all the actions of a 2TBSG G are deterministic we say that G is
deterministic.

Plays and outcomes. A 2TBSG is played as follows. A pebble is moved from state to state
starting from some initial state i0 ∈ S. When the pebble is at state i ∈ Sk, Player k chooses
an action a ∈ Ai, and the pebble is moved to a random new state according to the probability
distribution p(a). Let at be the t-th chosen action for every t ≥ 0. The sequence of chosen actions
is called a play, and the outcome of the play, paid by Player 1 to Player 2, is

∑

t≥0 γ
t · c(at).

To simplify notation, we next introduce a way to represent a 2TBSG with vectors and matrices.
Figure 1 shows an example of this representation.

Definition 7 (Matrix representation) Let G = (S1, S2, (Ai)i∈S1∪S2 , p, c, γ) be a 2TBSG. As-
sume without loss of generality that S = [n] = {1, . . . , n} and A = [m] = {1, . . . ,m}.

• We define the probability matrix P ∈ R
m×n by Pa,i = (p(a))i, for all a ∈ A and i ∈ S.

• We define the cost vector c ∈ R
m by ca = c(a), for all a ∈ A.

• We define the source matrix J ∈ {0, 1}m×n by Ja,i = 1 if and only if a ∈ Ai, for all a ∈ A
and i ∈ S.
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Figure 1: Example of a simple 2TBSG, as well as a strategy profile σ = (σ1, σ2) shown with solid
lines.

• We define the ownership matrix I ∈ {−1, 0, 1}n×n by Ii,j = 0 if i 6= j, Ii,i = −1 if i ∈ S1,
and Ii,i = 1 if i ∈ S2.

Note that Pa,i is the probability of moving to state i when using action a. For a matrix
M ∈ R

m×n and a subset of indices B ⊆ [m], we let MB be the sub-matrix of M consisting of rows
with indices in B. Also, for any i ∈ [m], we let Mi ∈ R

1×n be the i-th row of M . We use similar
notation for vectors.

Definition 8 (Strategies and strategy profiles) A strategy σk : Sk → Ak for Player k ∈
{1, 2} maps every state i ∈ Sk to an action σk(i) ∈ Ai applicable from state i. A strategy profile
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σ = (σ1, σ2) is a pair of strategies, one for each player. We let Σk be the set of strategies for Player
k, and Σ = Σ1 × Σ2 be the set of strategy profiles.

We view a strategy profile σ = (σ1, σ2) as a map σ : S → A from states to actions, such that
σ(i) = σk(i) for all i ∈ Sk and k ∈ {1, 2}.

A strategy σk ∈ Σk can also be viewed as a subset σk ⊆ Ak of actions such that σk∩Ai = {σk(i)}
for all i ∈ Sk. A strategy profile σ = (σ1, σ2) ∈ Σ can be viewed similarly as a subset of actions
σ = σ1 ∪ σ2 ⊆ A. Note that Pσ is an n × n matrix for every σ ∈ Σ. We assume without loss of
generality that actions are ordered such that Jσ = I, where I is the identity matrix, for all σ ∈ Σ.
Figure 1 shows a strategy profile σ represented by solid lines, the corresponding matrix Pσ, and
the vector cσ.

The matrix Pσ defines a Markov chain. In particular, the probability of being in the j-th state
after t steps when starting in state i is (P t

σ)i,j . In Figure 1 such probabilities are shown in the table
in the lower right corner, where e1 is the first unit vector. We say that the players play according
to σ if whenever the pebble is at state i ∈ Sk, Player k uses the action σ(i). Let i ∈ S be some
state and t some number. The expected cost of the t-th action used when starting in state i is
(P t

σ)icσ. In particular, the expected outcome is
∑∞

t=0 γ
t(P t

σ)icσ. The following lemma shows that
this infinite series always converges.

Lemma 9 For every strategy profile σ ∈ Σ the matrix (I − γPσ) is non-singular, and

(I − γPσ)
−1 =

∞
∑

t=0

γtP t
σ .

The simple proof of Lemma 9 has been omitted. For details we refer to, e.g., [7].

Definition 10 (Value vectors) For every strategy profile σ ∈ Σ we define the value vector vσ ∈
R
n by:

vσ = (I − γPσ)
−1cσ .

The i-th component of the value vector vσ, for a given strategy profile σ, is the expected
outcome over plays starting in i ∈ S when the players play according to σ.

It follows from Lemma 9 and Definition 10 that vσ is the unique solution to:

vσ = cσ + γPσv
σ . (1)

Definition 11 (Lower and upper values) We define the lower value vector v ∈ R
n and upper

value vector v ∈ R
n by:

∀i ∈ S : vi = min
σ1∈Σ1

max
σ2∈Σ2

v
(σ1 ,σ2)
i

∀i ∈ S : vi = max
σ2∈Σ2

min
σ1∈Σ1

v
(σ1 ,σ2)
i .

Shapley [20] showed that v = v. Hence, we may define the optimal value vector uniquely as
v∗ := v = v.

7



Definition 12 (Optimal strategies) A strategy σ1 ∈ Σ1 is optimal if and only if:

∀i ∈ S : max
σ2∈Σ2

v
(σ1 ,σ2)
i = v∗

i .

Similarly, a strategy σ2 ∈ Σ2 is optimal if and only if:

∀i ∈ S : min
σ1∈Σ1

v
(σ1 ,σ2)
i = v∗

i .

We say that a strategy profile σ = (σ1, σ2) ∈ Σ is optimal if and only if σ1 and σ2 are optimal.
Equivalently, σ is a Nash equilibrium.

Note that an optimal strategy for Player 1 (Player 2) minimizes (maximizes) the values of all
states simultaneously. Hence, it is not obvious that optimal strategies exist. This was shown, how-
ever, by Shapley [20]. Solving a 2TBSG means finding an optimal strategy profile, or equivalently
the optimal value vector.

Definition 13 (Reduced costs) For every strategy profile σ ∈ Σ we define the vector of reduced
costs c̄σ ∈ R

m by:
∀i ∈ S, a ∈ Ai : c̄σa = ca + γPav

σ − vσ
i .

The following theorem establishes a connection between optimal strategies and reduced costs.
For details see, e.g., [8, 7].

Theorem 14 (Optimality condition) A strategy profile σ ∈ Σ is optimal if and only if (c̄σ)A1 ≥
0 and (c̄σ)A2 ≤ 0.

2.3 LCPs for solving 2TBSGs

Jurdziński and Savani [10] showed how the problem of solving deterministic 2TBSGs can be reduced
to the problem of solving P -matrix LCPs. We next show that the same reduction works for general
2TBSGs.

Throughout this section we let G = (S1, S2, (Ai)i∈S , p, c, γ) be some 2TBSG and (P, c, J,I, γ)
be the corresponding matrix representation. We assume that there are exactly two actions available
from every state, i.e., |Ai| = 2 for all i ∈ S, and we partition A into two disjoint strategy profiles
σ and τ .

An LCP for solving G can be derived as follows. Consider the following system of linear
equations and inequalities, where w,y, z ∈ R

n are variables.

(I − γPσ)y − Iw = cσ (2)

(I − γPτ )y − Iz = cτ (3)

wTz = 0 (4)

w, z ≥ 0 (5)

Lemma 15 The system (2), (3), (4), and (5) has a unique solution w,y, z ∈ R
n, where y is the

optimal value vector for G. Also, a strategy profile π is optimal if and only if π ⊆ {σ(i) | i ∈
[n] ∧wi = 0} ∪ {τ(i) | i ∈ [n] ∧ zi = 0}, and such a strategy profile exists.
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Proof Observe first that if we let y = v∗, then (2) and (3) ensure that w and z correspond to the
reduced costs for an optimal strategy profile π∗. More precisely, we have:

∀i ∈ S1 : c̄π
∗

σ(i) = wi and c̄π
∗

τ(i) = zi

∀i ∈ S2 : c̄π
∗

σ(i) = −wi and c̄π
∗

τ(i) = −zi

It then follows from definitions 10 and 13 that wTz = 0, and from Theorem 14 that w, z ≥ 0.
Hence the optimal value vector and the corresponding reduced costs are a solution to (2), (3), (4),
and (5). We next show that for every solution w,y, z ∈ R

n, y is the optimal value vector. Since
the optimal value vector is unique it follows that the system has a unique solution.

Let w,y, z ∈ R
n be a solution to (2), (3), (4), and (5), and let B = {σ(i) | i ∈ [n] ∧ wi =

0} ∪ {τ(i) | i ∈ [n] ∧ zi = 0}. Furthermore, let Π be the set of all strategy profiles contained in B.
Since w and z satisfy (4), we know that Π 6= ∅.

Let a ∈ B ∩Ai for some i ∈ S. It follows from (2) and (3) that yi − γPay = ca. Hence, we get
from Equation (1) that y = vπ, for every π ∈ Π. Combining this with (2), (3), and (5) we get that:

∀i ∈ S1, a ∈ Ai : vπ
i − γPav

π ≤ ca

∀i ∈ S2, a ∈ Ai : vπ
i − γPav

π ≥ ca

It follows from Definition 13 and Theorem 14 that π is an optimal strategy profile. �

We know from Lemma 9 that (I−γPτ ) is non-singular. Hence, (3) can be equivalently expressed
as:

y = (I − γPτ )
−1(cτ + Iz) .

Eliminating y in (2) we then get the following equivalent equation:

(I − γPσ)(I − γPτ )
−1(cτ + Iz)− Iw = cσ ⇐⇒

I(I − γPσ)(I − γPτ )
−1Iz−w = Icσ − I(I − γPσ)(I − γPτ )

−1cτ ⇐⇒
w = (I(I − γPσ)(I − γPτ )

−1cτ − Icσ) + I(I − γPσ)(I − γPτ )
−1Iz (6)

To simplify equation (6) we make the following definition.

Definition 16 (MG,σ,τ and qG,σ,τ ) Let G be a 2TBSG with matrix representation (P, c, J,I, γ),
and let the set of actions of G be partitioned into two disjoint strategy profiles σ and τ . We define
MG,σ,τ ∈ R

n×n and qG,σ,τ ∈ R
n by:

MG,σ,τ = I(I − γPσ)(I − γPτ )
−1I

qG,σ,τ = I(I − γPσ)(I − γPτ )
−1cτ − Icσ .

Equation (6) can now be stated as w = qG,σ,τ +MG,σ,τz. It follows that (2), (3), (4), and (5) can
be equivalently stated as y = (I − γPτ )

−1(cτ + Iz) and:

w = qG,σ,τ +MG,σ,τz

wTz = 0

w, z ≥ 0 .

9



Hence, a solution to the LCP (MG,σ,τ ,qG,σ,τ ) gives a solution to (2), (3), (4), and (5), which, using
Lemma 15, solves the 2TBSG G. We say that (MG,σ,τ ,qG,σ,τ ) solves G.

Jurdziński and Savani [10] showed that MG,σ,τ is a P -matrix when G is deterministic. To prove
the same for general 2TBSGs we introduce the following lemma. The lemma is also used in the later
parts of the paper. To understand the use of v in the lemma observe that xT(I−γPσ)(I−γPτ )

−1x =
xT(I − γPσ)v.

Lemma 17 Let x be a non-zero vector, v = (I − γPτ )
−1x, and j ∈ argmax i |vi|. Then:

|xj| ≥ (1− γ) |vj| . (7)

∀i : |xi| ≤ (1 + γ) |vj| . (8)

xj((I − γPσ)(I − γPτ )
−1x)j ≥ (1− γ) |xjvj | > 0 . (9)

Proof Observe first that v is the unique solution to v = x + γPτv. In fact, we can interpret v
as the value vector for τ when the costs cτ have been replaced by x. If v = 0 then this implies
that 0 = x + 0 6= 0 which is a contradiction. Thus, v 6= 0 and in particular vj 6= 0. Since, for
every i, the entries of (Pτ )i are non-negative and sum to one we have that |γ(Pτ )iv| ≤ γ |vj |. The
equations vi = xi + γ(Pτ )iv, for all i, then imply that:

|xj | = |vj − γ(Pτ )jv| ≥ |vj| − |γ(Pτ )jv| ≥ |vj| − γ |vj | = (1− γ) |vj | , and

∀i : |xi| = |vi − γ(Pτ )iv| ≤ |vi|+ |γ(Pτ )iv| ≤ |vj |+ γ |vj | = (1 + γ) |vj| .

This proves (7) and (8).
We next observe that vj and xj have the same sign. This again follows from |γ(Pτ )jv| ≤ γ |vj |

and vj = xj + γ(Pτ )jv . Using that vj and xj have the same sign we see that:

xj((I − γPσ)(I − γPτ )
−1x)j = xj((I − γPσ)v)j = xjvj − γxj(Pσ)jv

≥ xjvj − γxjvj = (1− γ)xjvj > 0 .

This proves (9). �

We know from Lemma 3 that the matrix MG,σ,τ is a P -matrix if and only if for every x 6= 0
there exists a j ∈ [n] such that xj(MG,σ,τx)j > 0. Since Ix 6= 0, inequality (9) in Lemma 17 shows
that xj(MG,σ,τx)j > 0 for j ∈ argmax i

∣

∣((I − γPτ )
−1Ix)i

∣

∣. Hence, MG,σ,τ is a P -matrix.
The following theorem summarizes the main result of this section.

Theorem 18 Let G be a 2TBSG, and let σ and τ be two disjoint strategy profiles that form a
partition of the set of actions of G. Then the optimal value vector for G is v∗ = (I−γPτ )

−1(cτ+Iz),
where (w, z) is a solution to the LCP (MG,σ,τ ,qG,σ,τ ). Furthermore, MG,σ,τ is a P -matrix.

Recall that Kojima et al. [12] showed that every P -matrix is a P∗-matrix. Hence, we have shown
that MG,σ,τ is a P∗-matrix.

3 The P∗(κ) property for 2TBSGs

Let G be a 2TBSG with matrix representation (P, c, J,I, γ), and let σ and τ be two disjoint strategy
profiles that form a partition of the set of actions of G. Recall that G can be solved by solving the
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LCP (MG,σ,τ ,qG,σ,τ ). In this section we provide essentially tight upper and lower bounds on the
smallest number κ for which the matrix MG,σ,τ is guaranteed to be a P∗(κ)-matrix. More precisely,
we first show that for κ = n

(1−γ)2
, the matrix MG,σ,τ is always a P∗(κ)-matrix. We then show that

for every n > 2 and γ < 1 there exists a game Gn, and two strategy profiles σn and τn, such that

MGn,σn,τn is not a P∗(κ)-matrix for any κ < γ2(n−2)
8(1−γ)2

− 1
4 . It follows that the unified interior point

method of Kojima et al. [12] solves the 2TBSG G in time O( n4.5L
(1−γ)2

), where L is the number of bits

required to describe G, and that this bound cannot be improved further by bounding κ.
Recall thatMG,σ,τ = I(I−γPσ)(I−γPτ )

−1I, and defineM := IMG,σ,τI = (I−γPσ)(I−γPτ )
−1.

It is easy to see that MG,σ,τ is a P∗(κ)-matrix for some κ ≥ 0 if and only if M is. Indeed, the
inequality of Definition 5 must hold for all x ∈ R

n, and we can therefore substitute x by Ix. Hence,
for the remainder of this section we will bound the κ for which M is a P∗(κ)-matrix.

Theorem 19 Let G be a 2TBSG with n states and discount factor γ, where 0 < γ < 1. Further-
more, let σ and τ be two strategy profiles that partition the set of actions of G. Then the matrix
MG,σ,τ is a P∗(κ)-matrix for κ = n

(1−γ)2
.

Proof As discussed above we may prove the theorem by bounding κ for M = (I−γPσ)(I−γPτ )
−1.

We thus need to find a number κ, such that

∀x ∈ R
n :

∑

i∈δ−(M)

xi((I − γPσ)(I − γPτ )
−1x)i + (1+4κ)

∑

i∈δ+(M)

xi((I − γPσ)(I − γPτ )
−1x)i ≥ 0 ,

where δ−(M) = {i ∈ [n] | xi(Mx)i < 0} and δ+(M) = {i ∈ [n] | xi(Mx)i > 0}.
Let x be any non-zero vector (the expression is trivially satisfied for x = 0), v = (I −

γPτ )
−1x, and j ∈ argmax i |vi|. To prove the lemma we estimate

∑

i∈δ−(M) xi((I − γPσ)v)i and
∑

i∈δ+(M) xi((I − γPσ)v)i separately.
Using Lemma 17 we see that:

∀i : |xi((I − γPσ)v)i| ≤ |xi| (|vj |+ γ |vj|) ≤ (1 + γ)2|vj |2 < 4|vj|2 ,

which implies that:
∣

∣

∣

∣

∣

∣

∑

i∈δ−(M)

xi((I − γPσ)v)i

∣

∣

∣

∣

∣

∣

< 4n|vj|2 .

Similarly, from Lemma 17 we have that:

xj(Mx)j ≥ (1− γ)xjvj = (1− γ) |xj| |vj | ≥ (1− γ)2|vj|2 ,

which implies that:
∑

i∈δ+(M)

xi((I − γPσ)v)i ≥ (1− γ)2|vj |2 .

We conclude that:

∑

i∈δ−(M)

xi((I − γPσ)v)i + (1 + 4κ)
∑

i∈δ+(M)

xi((I − γPσ)v)i > −4n|vj|2 + (1 + 4κ)(1 − γ)2|vj |2 .

11



3 4 . . . n− 1 n

a a1 2

1 1 -1 -1

Figure 2: The game Gn and two strategy profiles σn (solid) and τn (dashed).

It follows that M is a P∗(κ)-matrix when:

−4n|vj |2 + (1 + 4κ)(1 − γ)2|vj |2 ≥ 0 ⇐⇒

4κ(1 − γ)2|vj |2 ≥ (4n − (1− γ)2)|vj |2 ⇐⇒

κ ≥ n

(1− γ)2
− 1

4
.

�

We next present a lower bound that matches the upper bound given in Theorem 19. We
establish the lower bound using the family of games {Gn | n > 2} shown in Figure 2. The game
Gn consists of n states that all belong to Player 2. Every state has two actions, and all actions
are deterministic. The actions from states 1 and 2 form self-loops. The actions from state i, for
i > 2, lead to state 1 and 2, respectively. Both actions from state 1 have cost 1, both actions from
state 2 have cost −1, and all the remaining actions have cost a ∈ R, where a will be specified in
the analysis. The discount factor γ < 1 is given along with n.

We also define two strategy profiles σn and τn that partition the set of actions. Since all states
belong to Player 2, σn and τn are simply strategies for Player 2. The strategies σn and τn are
represented in Figure 2 by solid and dashed arrows, respectively. The strategies σn and τn both
contain self-loops at states 1 and 2. Furthermore, for every state i > 2, the strategy σn contains
the action leading to state 1, and the strategy τn contains the action leading to state 2. Observe
that since all states belong to Player 2 we have I = I such that:

MGn,σn,τn = (I − γPσn)(I − γPτn)
−1 .

Note also that MGn,σn,τn is independent of the parameter a.
Since all our lower bounds use Gn and many of the calculations are similar, we first establish

the following lemma concerning various properties of the game.

Lemma 20 Let n be given and consider Gn. Let v := vτn = (I − γPτn)
−1cτn be the value vector

12



for τn in the game Gn. Define r := MGn,σn,τncτn , and let r′ ∈ R
n satisfy r′i = (cτn)iri. Then,

(cτn)i =











1 if i = 1

−1 if i = 2

a if i > 2

vi =











1
1−γ

if i = 1
−1
1−γ

if i = 2

a− γ
1−γ

if i > 2

ri =











1 if i = 1

−1 if i = 2

a− 2γ
1−γ

if i > 2

r′i =











1 if i = 1

1 if i = 2

a2 − 2γa
1−γ

if i > 2 .

Proof The calculation of vτ follows straightforwardly from (1), i.e., v = cτn + γPτnv, which can
be stated as:

v1 = 1 + γv1

v2 = −1 + γv2

∀i > 2 : vi = a+ γv2

Let ri = (MGn,σn,τncτn)i = ((I − γPσn)v)i = vi − γ(Pσnv)i and observe that:

r1 =
1

1− γ
− γ

1

1− γ
= 1

r2 =
−1

1− γ
+ γ

1

1− γ
= −1

∀i > 2 : ri =

(

a− γ

1− γ

)

− γ
1

1− γ
= a− 2γ

1− γ

The value of r′i = (cτn)iri is computed straightforwardly as well. �

Theorem 21 Let n > 2 and 0 < γ < 1 be given. The matrix MGn,σn,τn is not a P∗(κ)-matrix for

κ < γ2(n−2)
8(1−γ)2 − 1

4 = Ω
(

γ2n
(1−γ)2

)

.

Proof To simplify notation we denote MGn,σn,τn by M . Recall that M is a P∗(κ)-matrix if and
only if

∀x :
∑

i∈δ−(M)

xi((I − γPσn)(I − γPτn)
−1x)i + (1 + 4κ)

∑

i∈δ+(M)

xi((I − γPσn)(I − γPτn)
−1x)i ≥ 0

where δ−(M) = {i ∈ [n] | xi(Mx)i < 0} and δ+(M) = {i ∈ [n] | xi(Mx)i > 0}. We show that the

inequality is violated when κ < γ2(n−2)
8(1−γ)2 − 1

4 and x = cτn for an appropriate choice of a.

Let r′i = xi(Mx)i. From Lemma 20 we have that

r′i =











1 if i = 1

1 if i = 2

a2 − 2γa
1−γ

if i > 2 .
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We choose a = γ
1−γ

in order to minimize r′i for i > 2, which gives r′i = −( γ
1−γ

)2. It follows that:

∑

i∈δ−(M)

xi(Mx)i = −(n− 2)

(

γ

1− γ

)2

and
∑

i∈δ+(M)

xi(Mx)i = 2 .

Hence, we get:
∑

i∈δ−(M)

xi(Mx)i + (1 + 4κ)
∑

i∈δ+(M)

xi(Mx)i ≥ 0 ⇐⇒

2(1 + 4κ) ≥ (n− 2)

(

γ

1− γ

)2

⇐⇒

κ ≥ n− 2

8

(

γ

1− γ

)2

− 1

4
.

�

4 Bounds for the potential reduction algorithm

The interior point potential reduction algorithm of Kojima et al. [13] for solving a P -matrix LCP
(M,q) takes as input a parameter ǫ > 0 and produces a feasible solution (w, z) for which wTz < ǫ.
Following Ye [21], the running time of the potential reduction algorithm is upper bounded by

O(−δ
θ
n4 log ǫ−1), where δ is the smallest eigenvalue of M+MT

2 , and θ = θ(M) is the positive P -
matrix number of M (Definition 4). In this section we bound the running time of the potential
reduction algorithm when applied to 2TBSGs by studying the two quantities δ and θ.

Throughout the section we let G be a 2TBSG with matrix representation (P, c, J,I, γ), and σ
and τ be two disjoint strategy profiles that form a partition of the set of actions of G. To simplify
notation we let M := MG,σ,τ . We study the smallest eigenvalue δ of M+MT

2 in Section 4.1, and the
positive P -matrix number θ(M) in Section 4.2. For both quantities we provide upper and lower
bounds that are essentially tight.

Let δn be the smallest eigenvalue of the matrix 1
2(MGn,σn,τn +MT

Gn,σn,τn
), where MGn,σn,τn is

derived from the game in Figure 2. To be precise, we prove the two bounds for δ and δn:

δ > −(1 + γ)
√
n

1− γ

δn ≤ 1− γ
√

(n − 2)√
2(1− γ)

For the positive P -matrix number we prove the two bounds:

θ(M) ≥ (1− γ)2

(1 + γ)2n

θ(MGn,σn,τn) <
(1− γ)2

(2γ)2(n− 2)
.

Note that the upper bounds for the smallest eigenvalue δn and the positive P -matrix number
θ(MGn,σn,τn) are obtained using the same matrix MGn,σn,τn , which was also used in the proof of

Theorem 21. Hence, for the game Gn we achieve the worst-case ratio of −δ
θ

= Ω( γn3/2

(1−γ)3
).
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4.1 Bounds for the smallest eigenvalue

We first lower bound the smallest eigenvalue of M+MT

2 , where M = I(I − γPσ)(I − γPτ )
−1I. We

let Rn
‖·‖ℓ=1 be the set of vectors in R

n such that each vector v ∈ R
n
‖·‖ℓ=1 has ‖v‖ℓ = 1.

Theorem 22 The matrix M+MT

2 has smallest eigenvalue greater than − (1+γ)
√
n

1−γ
= −O(

√
n

1−γ
)

Proof Consider the equation λx = M+MT

2 x, where λ is the smallest eigenvalue. We have that:

λx =
M +MT

2
x

=
I(I − γPσ)(I − γPτ )

−1I + I(I − γPT
τ )−1(I − γPT

σ )I
2

x

= I (I − γPσ)(I − γPτ )
−1 + (I − γPT

τ )−1(I − γPT
σ )

2
Ix .

By letting y = Ix we obtain the equation:

λy =
(I − γPσ)(I − γPτ )

−1 + (I − γPT
τ )

−1(I − γPT
σ )

2
y .

We can without loss of generality assume that y has L2-norm equal to one, and by the triangle
inequality we therefore have:

|λ| = ‖λy‖2 =
∥

∥

∥

∥

(I − γPσ)(I − γPτ )
−1 + (I − γPT

τ )
−1(I − γPT

σ )

2
y

∥

∥

∥

∥

2

≤ 1

2

∥

∥(I − γPσ)(I − γPτ )
−1y

∥

∥

2
+

1

2

∥

∥

∥
(I − γPT

τ )
−1(I − γPT

σ )y
∥

∥

∥

2
.

We bound
∥

∥(I − γPσ)(I − γPτ )
−1y

∥

∥

2
and

∥

∥(I − γPT
τ )

−1(I − γPT
σ )y

∥

∥

2
separately. We first ob-

serve that:
∥

∥(I − γPσ)(I − γPτ )
−1y

∥

∥

2
≤ max

v∈Rn
‖·‖∞=1

∥

∥(I − γPσ)(I − γPτ )
−1v

∥

∥

2

= max
v∈Rn

‖·‖∞=1

∥

∥

∥

∥

∥

(I − γPσ)

∞
∑

t=0

γtP t
τv

∥

∥

∥

∥

∥

2

≤ max
v∈Rn

‖·‖∞=1

∥

∥

∥

∥

∥

(I − γPσ)
∞
∑

t=0

γtv

∥

∥

∥

∥

∥

2

= max
v∈Rn

‖·‖∞=1

∥

∥

∥

∥

(I − γPσ)
v

1− γ

∥

∥

∥

∥

2

≤ max
v∈Rn

‖·‖∞=1

∥

∥

∥

∥

(1 + γ)v

1− γ

∥

∥

∥

∥

2

=
1 + γ

1− γ
max

v∈Rn
‖·‖∞=1

‖v‖2

=
(1 + γ)

√
n

1− γ
.
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Here, the first inequality follows from the fact that if v ∈ R
n has L2-norm equal to 1, then it

has L∞-norm equal to at most 1. The first equality follows from Lemma 9. To prove the second
inequality we use that

∥

∥P t
τv

∥

∥

∞ ≤ ‖v‖∞, for all t ≥ 0, since the entries of Pτ are in [0, 1]. The third
inequality follows from the fact that ‖(I − γPσ)v‖∞ ≤ (1+γ) ‖v‖∞. The last equality follows from
the fact that if a vector v ∈ R

n has L∞-norm equal to 1 then it has L2-norm at most
√
n.

We also have that:
∥

∥

∥
(I − γPT

τ )
−1(I − γPT

σ )y
∥

∥

∥

2
≤ max

v∈Rn
‖·‖1=1

∥

∥

∥
(I − γPT

τ )−1(I − γPT

σ )
√
nv

∥

∥

∥

2

≤ (1 + γ)
√
n max

v∈Rn
‖·‖1=1

∥

∥

∥
(I − γPT

τ )
−1v

∥

∥

∥

2

= (1 + γ)
√
n max

v∈Rn
‖·‖1=1

∥

∥

∥

∥

∥

∞
∑

t=0

γt(P t
τ )

Tv

∥

∥

∥

∥

∥

2

≤ (1 + γ)
√
n max

v∈Rn
‖·‖1=1

∥

∥

∥

∥

∥

∞
∑

t=0

γtv

∥

∥

∥

∥

∥

2

= (1 + γ)
√
n max

v∈Rn
‖·‖1=1

∥

∥

∥

∥

v

1− γ

∥

∥

∥

∥

2

=
(1 + γ)

√
n

1− γ
max

v∈Rn
‖·‖1=1

‖v‖2

=
(1 + γ)

√
n

1− γ
.

Here, the first inequality follows from the fact that if a vector v ∈ R
n has L2-norm equal to 1 then

it has L1-norm equal to at most
√
n. The second inequality follows from the fact that the columns

of PT
σ sum to 1 such that

∥

∥(I − γPT
σ )v

∥

∥

1
≤ (1 + γ) ‖v‖1. The first equality follows from Lemma

9. For the third inequality we again use that the columns of PT
σ sum to 1, which implies that

eTPT
σ v = eTv such that

∥

∥PT
σ v

∥

∥

1
≤ ‖v‖1. The last equality follows from the fact that if a vector

v ∈ R
n has L1-norm equal to 1 then it has L2-norm at most 1.

Hence,

|λ| ≤ 1

2

(1 + γ)
√
n

1− γ
+

1

2

(1 + γ)
√
n

1− γ
=

(1 + γ)
√
n

1− γ
,

which completes the proof. �

We next upper bound the smallest eigenvalue of
MGn,σn,τn+MT

Gn,σn,τn
2 , where Gn, σn, and τn are

defined in Section 3 (Figure 2).

Theorem 23 Let n > 2 and 0 < γ < 1 be given, and let M := MGn,σn,τn . The matrix M+MT

2 has

smallest eigenvalue at most 1− γ
√
n−2√

2(1−γ)
.

Proof Recall that

(cτ )i =











1 if i = 1

−1 if i = 2

a if i > 2 .
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We show that, for an appropriate choice of a, x = cτ is an eigenvector for the matrix M+MT

2 with

eigenvalue λ = 1− γ
√
n−2√

2(1−γ)
. Hence, we prove that the following equation is satisfied:

λx =
M +MT

2
x

=
I(I − γPσ)(I − γPτ )

−1I + I(I − γPT
τ )−1(I − γPT

σ )I
2

x .

Recall that I = I. We evaluate the two terms on the right-hand-side separately and from right to
left.

We first evaluate r := (I − γPσ)(I − γPτ )
−1x. From Lemma 20 we get that

ri =











1 if i = 1

−1 if i = 2

a− 2γ
1−γ

if i > 2 .

We next evaluate r′′ := (I − γPT
τ )

−1(I − γPT
σ )x. Let v

′ = (I − γPT
σ )x. Observe that no actions

move to state i for i > 2, which means that (PT
σ )i = 0 and (PT

τ )i = 0 for i > 2. By similarly
considering the incoming actions for states 1 and 2, it is easy to check that

v′
i =











1− γ − γa(n − 2) if i = 1

−1 + γ if i = 2

a if i > 2 .

Since r′′ = (I−γPT
τ )

−1v′ we see that r′′i = v′
i+γ(PT

τ )ir
′′. For i > 2, it follows that r′′i = v′

i+0 = a.
For i = 1, only the self-loop moves to state 1 in τ , and we get that

r′′1 = v′
1 + γr′′1 = 1− γ − γa(n − 2) + γr′′1 = 1− γa(n − 2)

1− γ
.

For i = 2, all actions in τ , except the one from state 1, move to state 2. We therefore see that

r′′2 = v′
2 + γ

n
∑

j=2

r′′j = −1 + γ + γa(n− 2) + γr′′2 = −1 +
γa(n− 2)

1− γ
.

Hence, we have that

r′′i =











1− γa(n−2)
1−γ

if i = 1

−1 + γa(n−2)
1−γ

if i = 2

a if i > 2 .

We conclude that

(

M +MT

2
x

)

i

=
ri + r′′i

2
=















1− γa(n−2)
2(1−γ) if i = 1

−1 + γa(n−2)
2(1−γ) if i = 2

a− γ
1−γ

if i > 2 .
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It remains to show that λx = r+r
′′

2 , which corresponds to the system of equations:

λ = 1− γa(n − 2)

2(1− γ)

λa = a− γ

1− γ
.

By eliminating λ, using the first equation, we get:

a− γa2(n− 2)

2(1− γ)
= a− γ

1− γ
⇐⇒

γ

1− γ
=

γa2(n − 2)

2(1 − γ)
⇐⇒

2 = a2(n− 2) ⇐⇒

a = ±
√

2

n− 2
.

Thus for a =
√

2
n−2 we get that

λ = 1− γ
√
n− 2√

2(1− γ)

is an eigenvalue for M+MT

2 with eigenvector x = cτ , and in particular the smallest eigenvalue for
M+MT

2 is at most 1− γ
√
n−2√

2(1−γ)
. �

4.2 Bounds for the positive P -matrix number

We next lower bound the positive P -matrix number for any 2TBSG.

Theorem 24 Let n and 0 < γ < 1 be given. For any 2TBSG G with n states, the matrix
M := MG,σ,τ , where σ and τ partition the actions of G, has positive P -matrix number, θ(M), at

least (1−γ)2

(1+γ)2n
= Ω( (1−γ)2

n
)

Proof Recall that the positive P -matrix number of M = MG,σ,τ is defined as:

θ(M) = min
‖x‖2=1

max
i∈[n]

xi(Mx)i .

Let x ∈ R
n
‖·‖2=1 be given. Let v = (I−γPτ )

−1x and j ∈ argmax i |vi|. From Lemma 17 we know

that xj(Mx)j ≥ (1− γ) |xjvj | ≥ (1− γ)2(vj)
2. We also know from Lemma 17 that v2

j ≥ x
2
i

(1+γ)2
for

all i ∈ [n]. Hence, we see that xj(Mx)j ≥ (1−γ)2x2
i

(1+γ)2
for all i ∈ [n]. Since ‖x‖2 = 1 there must exist

an index i such that |xi| ≥ 1√
n
. It follows that xj(Mx)j ≥ (1−γ)2

(1+γ)2n
. Since this inequality holds for

all x ∈ R
n
‖·‖2=1 we see that θ(M) ≥ (1−γ)2

(1+γ)2n
.

�

We next upper bound the positive P -matrix number of MGn,σn,τn , where once again Gn, σn,
and τn are from the construction shown in Figure 2.
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Theorem 25 Let n > 2 and 0 < γ < 1 be given. The matrix M := MGn,σn,τn has positive P -matrix

number θ(M) < (1−γ)2

(2γ)2(n−2)
.

Proof Recall that the positive P -matrix number of M = MGn,σn,τn is defined as:

θ(M) = min
‖x‖2=1

max
i∈[n]

xi(Mx)i .

Recall also that

(cτ )i =











1 if i = 1

−1 if i = 2

a if i > 2 .

Define x := cτ and x′ := x

‖x‖2
. We show that, for an appropriate choice of a, x′ satisfies

max
i∈[n]

x′
i(Mx′)i <

(1− γ)2

(2γ)2(n− 2)
.

This implies that θ(M) < (1−γ)2

(2γ)2(n−2)
, completing the proof.

Let r′ ∈ R
n satisfy r′i = xi(Mx)i for all i ∈ [n]. From Lemma 20, we then get that

(r′)i = xi(Mx)i =











1 if i = 1

1 if i = 2

a2 − 2γa
1−γ

if i > 2 .

Since ‖x‖2 =
√

2 + (n− 2)a2 it follows that

x′
i(Mx′)i =

xi(Mx)i

‖x‖22
=















1
2+(n−2)a2 if i = 1

1
2+(n−2)a2

if i = 2
a2− 2γa

1−γ

2+(n−2)a2
if i > 2 ,

and for a = 2γ
1−γ

we see that:

x′
i(Mx′)i =























1

2+(n−2) (2γ)2

(1−γ)2

if i = 1

1

2+(n−2) (2γ)2

(1−γ)2

if i = 2

0 if i > 2 .

Since

1

2 + (n− 2) (2γ)2

(1−γ)2

<
1

(n− 2) (2γ)2

(1−γ)2

=
(1− γ)2

(2γ)2(n− 2)
,

there is a vector x′, with ‖x′‖2 = 1, such that

max
i∈[n]

x′
i(Mx′)i <

(1− γ)2

(2γ)2(n− 2)
,
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implying that

θ(M) = min
‖x‖2=1

max
i∈[n]

xi(Mx)i <
(1− γ)2

(2γ)2(n− 2)
.

�
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[10] M. Jurdziński and R. Savani. A simple P-matrix linear complementarity problem for discounted
games. In Proc. of 4th CiE, pages 283–293, 2008.

[11] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395, 1984.

[12] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A unified approach to interior point
algorithms for linear complementarity problems: A summary. Oper. Res. Lett., 10(5):247–254,
1991.

[13] M. Kojima, N. Megiddo, and Y. Ye. An interior point potential reduction algorithm for the
linear complementarity problem. Mathematical Programming, 54:54–267, 1992.

[14] N. Krishnamurthy, T. Parthasarathy, and G. Ravindran. Solving subclasses of multi-player
stochastic games via linear complementarity problem formulations – a survey and some new
results. Optimization and Engineering, 13:435–457, 2012.

20



[15] M. L. Littman. Algorithms for sequential decision making. PhD thesis, Brown University,
1996.

[16] A. Neyman and S. Sorin. Stochastic games and applications. Kluwer Academic Publishers,
Dordrecht Boston, 2003.

[17] M. Puterman. Markov decision processes. Wiley, 1994.

[18] S. S. Rao, R. Chandrasekaran, and K. P. K. Nair. Algorithms for discounted stochastic games.
Journal of Optimization Theory and Applications, 11:627–637, 1973.
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